JPS58127386A - Multistage connected solar battery - Google Patents

Multistage connected solar battery

Info

Publication number
JPS58127386A
JPS58127386A JP57009845A JP984582A JPS58127386A JP S58127386 A JPS58127386 A JP S58127386A JP 57009845 A JP57009845 A JP 57009845A JP 984582 A JP984582 A JP 984582A JP S58127386 A JPS58127386 A JP S58127386A
Authority
JP
Japan
Prior art keywords
solar cell
layer
stage
junction
constituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57009845A
Other languages
Japanese (ja)
Inventor
Masashi Yamaguchi
真史 山口
Hideo Sugiura
杉浦 英雄
Atsushi Shibukawa
渋川 篤
Akinori Katsui
勝井 明憲
Zeio Kamimura
税男 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57009845A priority Critical patent/JPS58127386A/en
Publication of JPS58127386A publication Critical patent/JPS58127386A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

PURPOSE:To enlarge the band of spectrum sensitivity to the sun light by a method wherein the optimization of the energy band gap and the lattice constant of each layer semiconductor material is contrived, and therefor solar batteries are connected in a multilayer. CONSTITUTION:On an N-(or P-) type Ge single crystal substrate 11, the second stage solar battery 14 constituted of a P-N junction is constituted, which junction is formed by hetero epitaxially growing an N (or P) layer 12 and a P (or N) layer constituted of the composition of mixed crystal semiconductor Ga1-yInyAs y =0.15-0.55. On a P-(or N-) type Ga1-y InyAs layer 13, a tunnel junction 17 of thin layers with film thicknesses 100Angstrom or less each of a high density impurity added P<+> (or N<+>) layer 15 and N<+> (or P<+>) layer 16 which are constituted of the composition of mixed crystal semicondutor Ga1-xAlxAs x=0.1- 0.4 is formed, and thus the first stage solar battery 18 and the second solar battery 14 are connected. The first solar battery 18 is constituted of a solar battery formed of a P-N junction formed by hetero epitaxially growing an N (or P) layer 19 and a P (or N) layer 20 constituted of the composition of mixed crystal semiconductor Ga1-xAlxAs x=0.1-0.4.

Description

【発明の詳細な説明】 本発明は、多層へテロ接合構造太陽電池に関し。[Detailed description of the invention] The present invention relates to a multilayer heterojunction structure solar cell.

特に各暦学導体材料の禁止帯幅、格子定数の最適化をは
かや、太陽電池の多段接続によ抄充電変換効率を高めた
多段接続太陽電池に関するものである0 従来の太陽電池の多くは、例えば第1wJ(2)K示す
ようlc、 81 、 GaAs5の同一材料から成る
p−n接合構f[lて構成されてい友。これらの単一半
導体を用いているII#)は、太陽光エネルギーを有効
利用できず、%に半導体の禁止帯幅よ抄紙エネルギーの
光は太陽電池内における光起電力発生に寄与し得す、光
電変換効率はaiにおいて22−2t%、Gapsにお
いてn−ムラが限界である等の欠点があった。
In particular, it is concerned with multi-stage connected solar cells that improve charge conversion efficiency by optimizing the forbidden band width and lattice constant of each solar cell conductor material and by connecting solar cells in multiple stages.0 Most conventional solar cells For example, as shown in the first wJ(2)K, a p-n junction structure made of the same materials of lc, 81, and GaAs5 is constructed. II#) using these single semiconductors cannot effectively utilize solar energy, and the paper-making energy light can contribute to the generation of photovoltaic power within the solar cell due to the semiconductor's forbidden band width. There were drawbacks such as the photoelectric conversion efficiency was 22-2 t% in AI, and n-unevenness was the limit in Gaps.

また、第1図(B)に示すように、太陽光に対するスペ
クトル感度帯域を拡大し、晶効率化をはかる目的で、 
Ga0.、ム1.,2ムBのpn接合コを有する上部太
陽電池3とGaAg (D pn接合ダを有する下部太
陽電池jとをGa、、ム10.2ムSのpn接合から成
るトンネル接合≦を介して接続し九太陽電池も提案され
ている。しかし、この太陽電池においては、上部太陽電
池3および下部太陽電池jの各構成材料eao、sム1
0.2ムSおよびGaAgの格子定数整合の最適化はは
かられてはいるものの、これら構成材料の禁止帯幅が各
kl、ぶs eVおよびt、tn eVであるため、太
陽光スペクトルの内/、9J6Vよりも低エネルギーの
光は太陽電池内における光起電力発生に寄与し得す、従
って太陽光エネルギーを有効利用できず、光電変換効率
は理論的にも約3θ%、実験上で屯/J%と低いなどの
欠点があった。
In addition, as shown in Figure 1 (B), in order to expand the spectral sensitivity band to sunlight and improve crystal efficiency,
Ga0. , Mu1. The upper solar cell 3 having a pn junction of Ga, 2μB and the lower solar cell j having a pn junction of GaAg (D) are connected through a tunnel junction ≦ consisting of a pn junction of Ga, , 10.2μS. A solar cell has also been proposed. However, in this solar cell, the constituent materials of the upper solar cell 3 and the lower solar cell j are eao and smu1.
Although efforts have been made to optimize the lattice constant matching of 0.2 μmS and GaAg, the forbidden band widths of these constituent materials are kl, μs eV and t, tn eV, so the solar spectrum is Light with energy lower than 9J6V can contribute to the generation of photovoltaic power within the solar cell, so solar energy cannot be used effectively, and the photoelectric conversion efficiency is theoretically about 3θ%, but experimentally There were drawbacks such as a low ton/J%.

本発明は、これらの欠点を除去するためになされたもの
で、その目的は、多層へテロ接合構造太陽電池において
、各暦学導体材料の禁止帯幅および格子定数の最適化を
はか抄、太陽電池を多段接続することにより太陽光に対
するスペクトル感度帯域を拡大させた高効率の多段接続
太陽電池を提供することにある。
The present invention has been made to eliminate these drawbacks, and its purpose is to optimize the forbidden band width and lattice constant of each solar conductor material in a multilayer heterojunction solar cell. The object of the present invention is to provide a highly efficient multi-stage connected solar cell whose spectral sensitivity band to sunlight is expanded by connecting cells in multiple stages.

かかる目的を達成する丸めに、本発明では、Ge単結晶
基板上に混晶半導体Ga、 、In、ム8 (y =0
./j〜O,SS )から成るpn接合によ鰺第コ段目
太陽電池を構成し、混晶半導体Ga、、ムlxム8(X
=O,/〜O,a )から成るpn接合により第7段目
太陽電池を構成し、該第1段目太陽電池と前記館2段目
太陽電池とを前記混晶半導体Ga、、ムlxム8による
トンネル接合を介して接続し九ことを特徴とする。
To achieve this purpose, the present invention provides mixed crystal semiconductors Ga, In, Mu8 (y = 0) on a Ge single crystal substrate.
.. /j~O,SS) constitutes the third stage solar cell, and the mixed crystal semiconductor Ga,, mulxmu8(X
A seventh stage solar cell is constructed by a pn junction consisting of =O,/~O,a), and the first stage solar cell and the second stage solar cell are connected to the mixed crystal semiconductor Ga, mulx It is characterized in that it is connected via a tunnel junction by a system 8.

本発明の他の形態では、Go単結晶基板内あるいは該G
e単結晶基板上にpn接合を形成して第3段目太陽電池
を構成し、該第3段目太陽電池を、混晶ず導体Ga +
 −yInyム8 (y = 0./J 〜0.j月あ
るいはGeによるトンネル接合を介して前記混晶半導体
Ga、−アInyAsから成るpn接合による第2段目
太陽電池と接続し、混晶半導体Ga、−zAj!As 
(x−O,/〜O9参)から成るpn接合により第1段
目太陽電池を構成し、該第1段目太陽電池と前記第1段
目太陽電池とを前記混晶半導体Ga、−、ムjXAs 
Kよるトンネル接合を介して接続し丸亀&を牝徽も14
、前記第1.第一および第3段太陽電池を直列接続した
ことを特徴とする。
In another embodiment of the present invention, within the Go single crystal substrate or the G
e A pn junction is formed on the single crystal substrate to constitute a third stage solar cell, and the third stage solar cell is made of a mixed crystal conductor Ga +
-yInym8 (y = 0./J ~ 0.j) Connected to the second stage solar cell by a pn junction made of the mixed crystal semiconductor Ga and -A InyAs through a tunnel junction made of moon or Ge, and Semiconductor Ga, -zAj!As
A first stage solar cell is constructed by a pn junction consisting of (x-O, /~O9 reference), and the first stage solar cell and the first stage solar cell are connected to the mixed crystal semiconductor Ga, -, MujXAs
Connected via tunnel junction by K, Marugame & 14
, the above-mentioned No. 1. It is characterized in that the first and third stage solar cells are connected in series.

以下に、 W4WJを参照しながら、実施例を用いて本
発明の詳細な説明するが、かかる実施例は本発明〇fL
4示に過ぎず1本発明の範囲内で種々の改良や変形があ
抄部ることは勿論である。
The present invention will be described in detail below using Examples while referring to W4WJ.
This is merely an illustration, and it goes without saying that various improvements and modifications may be made within the scope of the present invention.

第2図(4)および(四は本発明多段接続太陽電池の−
o@IiKおける構成例を示す。ここで、n(tたはp
)形ae単結晶基板ll上に混晶半導体Ga、□In、
Asの組成y = o、is 〜o、ssから成るn(
または電池)−を構成する。p(f九はn)形Ga、 
−、In。
Fig. 2 (4) and (4) - of the multi-stage connected solar cell of the present invention
An example of the configuration in o@IiK is shown. Here, n(t or p
) mixed crystal semiconductors Ga, □In,
The composition of As is n(
or batteries). p (f9 is n) form Ga,
-, In.

(iたはn+ )層isおよびn+ (tたはP” )
層/4の各々膜厚1000 X以下の薄層のトンネル接
合/7を形成して第1段目太陽電池/Iと第一段目太陽
電池/ヂとを接続する。第1段目太陽電池/Iは、混晶
半導体Ga、−xAj、ムSの組成x = 0.I N
o、1から成るn(tたはp)層19およびp(1九は
n)層Xをヘテロエピタキシャル成長させて形′威し九
pn接合から成る太陽電池で構成する。
(i or n+) layer is and n+ (t or P'')
A thin tunnel junction /7 having a film thickness of 1000× or less in each layer /4 is formed to connect the first stage solar cell /I and the first stage solar cell /D. The first stage solar cell/I has a composition of mixed crystal semiconductors Ga, -xAj, and S, x = 0. IN
An n (t or p) layer 19 consisting of o, 1 and a p (t or p) layer X are grown heteroepitaxially to form a solar cell consisting of a pn junction.

p(tたFin)形Ga、−、ム1xABWIコOにお
ける表面再結合の影響を低減する必要のある場合には、
第λ図山)に示すように、p(まえはn)形Ga、−x
AlXkts層コOの表面にpifたはn)形Ga、−
、ム1xムBの組成x := 0,4〜0.9から成る
室材料層コlをヘテロエピタキシャル成長させれば良い
When it is necessary to reduce the effect of surface recombination in p(tFin) type Ga, -, mu1xABWI coO,
As shown in Fig.
pif or n) type Ga, - on the surface of the AlXkts layer
, M1xMB composition x:=0.4 to 0.9 may be grown by heteroepitaxial growth.

上述のへテロエピタキシャル成長は分子線エピタキシャ
ル法で実施できるが、他に気相エピタキシャル法、液相
エピタキシャル法でも実施で亀る。
The above-mentioned heteroepitaxial growth can be carried out by molecular beam epitaxial method, but it can also be carried out by vapor phase epitaxial method or liquid phase epitaxial method.

更に1第一図(1)、OB)の実施例において1表面層
電極として格子状電極nを層zl九はI上に形成し、結
晶基板//の裏面に電極nを形成することKより、Ga
、−、ムl□ムSの第1段目太陽電池/IとGa、−ア
In、Asの第1段目太陽電池/lとをトンネル接合7
7により接続し九多段接続太陽電池が得られる。
Furthermore, in the embodiment shown in Figure 1 (1), OB), a lattice electrode n is formed as a surface layer electrode on the layer I, and an electrode n is formed on the back surface of the crystal substrate. , Ga
The first stage solar cell/I of , -, Mu S and the first stage solar cell/l of Ga, -A, In, and As are connected by tunnel junction 7.
7 to obtain nine multi-stage connected solar cells.

本実施例の多段接続太陽電池においては、第2段目太陽
電池l−よび第1段目太陽電池/ヂをそれぞれ構成する
混晶半導体材料Ga、−、ムjXAsおよびGa、−y
I!lyA&D禁止帯幅が各k /、r 〜/、9 e
Vおよび0.11〜八コj eVであり、入射太陽光コ
ゲに対するスペクトル感度帯域の拡大がはかられてお9
、理想的な太陽電池材料の禁止帯幅の組合せ/、6コe
V10、デj eVを包含し、光電変換効率はy〜v%
に達する。を九、本発明多段接続太陽電池を構成するG
a、、ムlXムs 、 Ga、−、In、AsおよびG
e単結晶基板の格子定数の整合も良い。
In the multi-stage connected solar cell of this example, the mixed crystal semiconductor materials Ga, -, MujXAs and Ga, -y that constitute the second stage solar cell l- and the first stage solar cell /, respectively
I! lyA&D forbidden band width is each k/, r ~/, 9 e
V and 0.11 to 8 koj eV, and the spectral sensitivity band for incident solar burns has been expanded.
, ideal combination of forbidden band widths of solar cell materials/, 6 pieces
V10, including dej eV, photoelectric conversion efficiency is y~v%
reach. 9. G constituting the multi-stage connected solar cell of the present invention
a,,MuXmus,Ga,-,In,As and G
eThe lattice constant of the single crystal substrate is well matched.

さらに、Go単結晶上にGa、−yInyABを組成y
をOから徐★に増加させながら傾斜成長させて第一段目
太陽電池/#を形成することもできるから、Ga、−ア
Inアム8層内へのンスフィット転位の発生を抑制でき
、第1段目太陽電滝/l内のキャリア収集効率低下を抑
制でき、高効率化を達成できる。このようなGa、−ア
In yム8の傾斜組成層はこの層内に内蔵電界を誘起
せしめ、さらにキャリアの収集効率を高めることができ
るなどの利点本省する。
Furthermore, on the Go single crystal, Ga, -yInyAB is added to the composition y
It is also possible to form the first stage solar cell /# by gradually increasing from O to ★ to form the first stage solar cell /#, so it is possible to suppress the occurrence of Sfit dislocations in the Ga, -Ar 8 layer, and to It is possible to suppress a decrease in carrier collection efficiency within the first stage solar electric waterfall/l and achieve high efficiency. Such a graded composition layer of Ga, -In ym 8 has advantages such as inducing a built-in electric field in this layer and further increasing the carrier collection efficiency.

第3図■および(2)は本発明多段接続太陽電池の他の
形態における構成例を示す。ここで、n(tたはp)形
Ge単結晶基板//へ熱拡散、イオン注入岬によりp(
またはn)形Ge層コjを形成する。
FIGS. 3 (2) and (2) show examples of other configurations of the multi-stage connected solar cell of the present invention. Here, p(
or n) forming a type Ge layer;

あるいは第3図(8)に示すようにエピタキシャル威長
郷によりn(まえはp)形Go Mコ4を形成し先後に
p(またはn)形Go Illを形成する。それにより
Geのpn 1合による第3段目太陽電池1を加したp
+ <またはn+ )層1およびn” (まえはp+ 
>層Zの各々膜厚tooo l以下の薄層のトンネル接
合Xを形成し、このトンネル接合Xを介して第1段目太
陽電地/lと第3段目太陽電池1壇九は1′とを接続す
る。次いで、先の実施例の場合と同様に、第2段目太陽
電池l−を構成するn(ま九はp)形Ga、−、In、
AS層/コおよびp(を九はn)形Ga、−。
Alternatively, as shown in FIG. 3(8), an n (previously p) type Go M is formed by epitaxial process, and a p (or n) type Go Ill is formed afterwards. Therefore, the third stage solar cell 1 due to the pn 1 combination of Ge is added
+ < or n+ ) layer 1 and n” (before p+
>For each layer Z, a thin tunnel junction X is formed with a film thickness of too l or less, and through this tunnel junction Connect with. Next, as in the case of the previous embodiment, the n-type (p) type Ga, -, In, which constitutes the second stage solar cell l-,
AS layer/co and p (9 is n) type Ga, -.

In yAs N /J、トンネル接合nを形成するI
)(tたはn十3 W G’+−xムlxム8層/j 
(x = 0./ −0,参)およびn” (t 九は
p” )形Ga、−xAIXム8層l嶋および第2段目
太陽電池l−を構成するn(またはp)%Ga、−、ム
リムB Ill /9およびp(またはn)形Ga、−
xムノ、ム1層J7.更Km)(1*はn)形Ga 、
 −xA7.ム8による窓材料1をこの順序でへテロエ
ピタキシャル成長させる。次いで、表面層電極nを室材
料層I上に形成し、車両電極nを基板//に形成するこ
とKより、3個の太陽電池を直列接続した多段接続太陽
電池が構成される。本実施例の多段接続太陽電池におい
ては、各段の太陽電池を構成する半導体材料Ga、−、
ム1Xムg、Ga、−,工n、AsおよびGeの禁止帯
幅が各々/、j N/、9 eV 、 0.13〜へJ
j eVおよびo、46 eVであ抄、入射太陽光3に
対するスペクトル感度帯域の拡大がさらにはかられてお
り、第1図(1)、(3)に示し九コ段接続太陽電池の
光電変換効率よ抄さらにj%程度の向上が可能となる。
In yAs N /J, I forming the tunnel junction n
)(t or n13 W G'+-xmlxmu8 layers/j
(x = 0./-0, see) and n" (t9 is p") type Ga, -xAIX 8-layer layer and n (or p)% Ga constituting the second stage solar cell l-. , -, Murim B Ill /9 and p (or n) type Ga, -
x muno, mu1 layer J7. further Km) (1* is n) type Ga,
-xA7. The window material 1 is grown heteroepitaxially using the film 8 in this order. Next, a surface layer electrode n is formed on the chamber material layer I, and a vehicle electrode n is formed on the substrate //, thereby forming a multi-stage connected solar cell in which three solar cells are connected in series. In the multi-stage connected solar cell of this example, the semiconductor materials constituting each stage of solar cells are Ga, -,
The forbidden band widths of M1X, Ga, -, n, As and Ge are respectively /,j N/,9 eV, 0.13 to J
eV and o, 46 eV, the spectral sensitivity band for incident sunlight 3 has been further expanded, and the photoelectric conversion of the nine-stage connected solar cell shown in Figure 1 (1) and (3). It is possible to further improve paper efficiency by about J%.

以上説明し丸ように1本発明の多段接続太陽電池は、各
段太陽電池を構成する半導体材料の禁止帯幅、格子定数
の最適化がなされ、各段太陽電池を多段接続することに
より太陽光に対するスペクトル感度帯域が拡大されてい
るので、従来の太陽電池に比べて高効率であるなどの利
点を有する。
As explained above, the multi-stage connected solar cell of the present invention is achieved by optimizing the bandgap and lattice constant of the semiconductor material constituting each stage solar cell, and by connecting each stage solar cell in multiple stages, Since the spectral sensitivity band for solar cells has been expanded, it has advantages such as higher efficiency than conventional solar cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(1)およびtB)は従来の太陽電池の構成例を
示す断面図、第2図(1)および(8)は本発明の一実
施の態様における多段接続太陽電池の構成例を示す断面
図、第3図(4)および色)Fi本発明の他の実施の態
様における多段接続太陽電池の構成例を示す断面図であ
る。 /・ホモp−n接合、  コ・Ga、、ム10.2ムg
pn接合、3・・・上部太陽電池、   参・・・Ga
As pn接合。 j・・・下部太陽電池、 ≦・・・GaO,Iム!0.2ムBトンネル接合、//
・・・n (p)形Ge単結晶基板、/2−n(p)形
Ga、−、In、As層、−/J−p(n)形Ga 1
−y I n yム竺層、/#−・・第2段目太陽電池
、lj・・・p+(n+)形G〜−xu xAs層、l
≦・n (p)形Ga、−1Aj、ムIL17・・・ト
ンネル接合、11・・・第1段目太陽電池、/9−nt
p)形Ga、−、ム1XAB層、J −= p (n)
形Ga、−xAjXAs層。 I・・・pfn)形Ga、 −xA4XAs IF材料
層、n・・・表面層電極、   n・・・裏面電極、J
・・・太陽光、      B・・・p(n)形Ge層
。 ム・・・n (p)形Ge層、n、n’・・・第3段目
太陽電池。 コ・・・p+ (n+)形半導体層、?・・・ri”(
p”)形半導体層、〃・・・トンネル接合。 特許出願人 日本電信電話公社    b 区 !−一 呼
Fig. 1 (1) and tB) are cross-sectional views showing an example of the configuration of a conventional solar cell, and Figs. 2 (1) and (8) show an example of the structure of a multi-stage connected solar cell in an embodiment of the present invention. Cross-sectional view, Figure 3 (4) and color) Fi is a cross-sectional view showing a configuration example of a multi-stage connection solar cell in another embodiment of the present invention. /・Homo p-n junction, Co・Ga,,mu10.2mg
pn junction, 3...upper solar cell, 3...Ga
As pn junction. j...lower solar cell, ≦...GaO, Im! 0.2μB tunnel junction, //
...n(p) type Ge single crystal substrate, /2-n(p) type Ga, -, In, As layer, -/J-p(n) type Ga 1
-y I n y vertical layer, /#-...2nd stage solar cell, lj...p+(n+) type G~-xu xAs layer, l
≦・n (p) type Ga, -1Aj, mu IL17... tunnel junction, 11... first stage solar cell, /9-nt
p) type Ga, -, mu 1XAB layer, J - = p (n)
Form Ga, -xAjXAs layer. I...pfn) type Ga, -xA4XAs IF material layer, n...surface layer electrode, n...back surface electrode, J
...Sunlight, B...p(n) type Ge layer. M...n(p) type Ge layer, n, n'...3rd stage solar cell. Co...p+ (n+) type semiconductor layer, ? ...ri” (
p”) type semiconductor layer, 〃...tunnel junction. Patent applicant Nippon Telegraph and Telephone Public Corporation b Ward!-Ichiko

Claims (1)

【特許請求の範囲】 1)Go単結晶基板上に混晶半導体Ga、−7Inアム
S(7= a、/I −0,IJ )から威るpnl!
合により第2段目太陽電池を構威し、混晶半導体G&1
−xムリムs (x = 0.1−OJ )から成るp
n接合により第1段目太陽電池を構成し、該第1段目太
陽電池と前記第一段目太陽電池とを前記混晶半導体Ga
、、llxkm Kよるトンネル接合を介して接続した
ことを特徴とする多段接続太陽電池。 2)  Go単結晶基板内あるいは該G51単結晶基板
上Kpn接合を形成して第1段目太陽電池を構成−験第
3段目太陽電池を、混晶半導体Ga、−7In、As 
(y = o、tz 〜o、ss )あるいはGeKよ
るトンネル接合を介して前記混晶半導体Ga、−yIn
アム−から威るpn接會による第2段目太陽電池と接続
し、混晶半導体Ga、−□ムl□ムB(x=0./〜0
.#)から成るpn接合によ抄第1段目太陽電池を構成
し、該第1段目太陽電池と前記第2段目太陽電池とを前
記混晶半導体G& 1 、uxムBによるトンネル接合
を介して接続し丸へ&t%甑8を鳳前記第1.第コおよ
び第3段目太陽電池を直列接続し九ことを特徴とする多
段接続太陽電池。
[Claims] 1) pnl! formed from a mixed crystal semiconductor Ga, -7In AmS (7= a, /I -0, IJ ) on a Go single crystal substrate.
Depending on the combination, a second stage solar cell is constructed, and the mixed crystal semiconductor G&1
p consisting of -x Murims (x = 0.1-OJ)
A first-stage solar cell is configured by an n-junction, and the first-stage solar cell and the first-stage solar cell are connected to the mixed crystal semiconductor Ga.
A multi-stage connected solar cell characterized in that the solar cell is connected through a tunnel junction using K.,,llxkm K. 2) Forming a Kpn junction in the Go single crystal substrate or on the G51 single crystal substrate to construct the first stage solar cell;
(y = o, tz ~ o, ss) or the mixed crystal semiconductor Ga, -yIn via a tunnel junction made of GeK.
It is connected to the second stage solar cell by pn connection from am to mixed crystal semiconductor Ga, -
.. A first-stage solar cell is formed by a pn junction consisting of #), and a tunnel junction is formed between the first-stage solar cell and the second-stage solar cell by the mixed crystal semiconductor G & 1 and ux M B. Connect through the circle &t% koshiki 8 to the above-mentioned 1st. A multi-stage connected solar cell characterized in that nine first and third stage solar cells are connected in series.
JP57009845A 1982-01-25 1982-01-25 Multistage connected solar battery Pending JPS58127386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57009845A JPS58127386A (en) 1982-01-25 1982-01-25 Multistage connected solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57009845A JPS58127386A (en) 1982-01-25 1982-01-25 Multistage connected solar battery

Publications (1)

Publication Number Publication Date
JPS58127386A true JPS58127386A (en) 1983-07-29

Family

ID=11731459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57009845A Pending JPS58127386A (en) 1982-01-25 1982-01-25 Multistage connected solar battery

Country Status (1)

Country Link
JP (1) JPS58127386A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009719A (en) * 1989-02-17 1991-04-23 Mitsubishi Denki Kabushiki Kaisha Tandem solar cell
US6300558B1 (en) * 1999-04-27 2001-10-09 Japan Energy Corporation Lattice matched solar cell and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009719A (en) * 1989-02-17 1991-04-23 Mitsubishi Denki Kabushiki Kaisha Tandem solar cell
US6300558B1 (en) * 1999-04-27 2001-10-09 Japan Energy Corporation Lattice matched solar cell and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7217882B2 (en) Broad spectrum solar cell
US5223043A (en) Current-matched high-efficiency, multijunction monolithic solar cells
Yamaguchi et al. Effect of dislocations on the efficiency of thin‐film GaAs solar cells on Si substrates
Takamoto et al. Over 30% efficient InGaP/GaAs tandem solar cells
Olson et al. A 27.3% efficient Ga0. 5In0. 5P/GaAs tandem solar cell
US9231135B2 (en) Low-bandgap, monolithic, multi-bandgap, optoelectronic devices
JP4064592B2 (en) Photoelectric conversion device
US5316593A (en) Heterojunction solar cell with passivated emitter surface
CA1222043A (en) Solar cells and photodetectors
Yamaguchi Multi-junction solar cells and novel structures for solar cell applications
CN103915522A (en) Multijunction solar cell with low band gap absorbing layer in the middle cell and method of fabricating same
US20040261837A1 (en) Multi-junction solar cell device
US20050081910A1 (en) High efficiency tandem solar cells on silicon substrates using ultra thin germanium buffer layers
US20140090700A1 (en) High-concentration multi-junction solar cell and method for fabricating same
USH667H (en) Patterned tunnel junction
CN101478014A (en) Light splitting manufacturing process for five-junction solar cell system
JP2722761B2 (en) GaAs solar cell
CN105576068A (en) Double-face-growing InP five-junction solar battery
JPH0661513A (en) Laminated solar battery
CN103000740A (en) GaAs/GaInP double knot solar battery and manufacturing method thereof
JPS58127386A (en) Multistage connected solar battery
CN103247722B (en) The manufacture method of four knot cascade solar cells
CN111430493B (en) Multi-junction solar cell and power supply equipment
CN111276560B (en) Gallium arsenide solar cell and manufacturing method thereof
JPS58127387A (en) High efficiency solar battery