JPS58127387A - High efficiency solar battery - Google Patents

High efficiency solar battery

Info

Publication number
JPS58127387A
JPS58127387A JP57009847A JP984782A JPS58127387A JP S58127387 A JPS58127387 A JP S58127387A JP 57009847 A JP57009847 A JP 57009847A JP 984782 A JP984782 A JP 984782A JP S58127387 A JPS58127387 A JP S58127387A
Authority
JP
Japan
Prior art keywords
layer
solar cell
solar battery
constituted
mixed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57009847A
Other languages
Japanese (ja)
Other versions
JPS6214110B2 (en
Inventor
Masashi Yamaguchi
真史 山口
Atsushi Shibukawa
渋川 篤
Hideo Sugiura
杉浦 英雄
Akinori Katsui
勝井 明憲
Zeio Kamimura
税男 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57009847A priority Critical patent/JPS58127387A/en
Publication of JPS58127387A publication Critical patent/JPS58127387A/en
Publication of JPS6214110B2 publication Critical patent/JPS6214110B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

PURPOSE:To enlarge the band of spectrum sensitivity to the sun light, by contriving the optimization of the energy band gap and the lattice constant of each layer semiconductor material. CONSTITUTION:On an N (or P) type InP single crystal substrate 11, an N (or P) layer 12 and a P (N) layer 13 constituted of the composition of mixed crystal semiconductor Ga1-yInyAs1-zPzy=0.6-0.9, z=0.2-0.8 are hetero epitaxially grown resulting in the constitution of the lower part solar battery 14 constituted of a PN junction. On a P (or N) type Ga1-yInyAs1-zPz layer 13, a tunnel junction 17 of thin layers with film thicknesses 100Angstrom or less each of a high density impurity added P<+> (or N<+>) layer 15 and N<+> (or P<+>) layer 16 which are constituted of the composition of mixed crystal semiconductor In1-xAlxAs x=0.4-0.65 is formed, and thus the upper solar battery 18 and the lower solar battery 14 are connected by this tunnel junction 17. The upper solar battery 18 is constituted of a P-N junction obtained by hetero epitaxially growing an N (or P) layer 19 and a P (or N) layer 20 constituted of the composition of mixed crystal semiconductor In1-xAlx As x=0.4-0.65.

Description

【発明の詳細な説明】 本発明は、多層へテロ接合構造太陽電池に関し、特に各
暦学導体材料の禁止帯幅、格子定数の最適化をはかるこ
とにより光電に換効率を高めた高効率太陽電池に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar cell with a multilayer heterojunction structure, and in particular to a high-efficiency solar cell that increases the photoelectric conversion efficiency by optimizing the forbidden band width and lattice constant of each ephemeris conductor material. It is related to.

従来の太陽電池の多くは、例えば第1図(4)に示すよ
うに、81 、 GaAmの同一材料からなるpn接合
構造/で構成されていた。これらの単一半導体を用いて
いる限りは、太陽光エネルギーを有効利用できず、特に
半導体の禁止帯幅より低エネルギーの光は太陽電池内に
おける光起電力発生に寄与し得す、光電変換効率はSi
において8〜8%、 GaAsにおいて、27− x%
が限界である等の欠点があった。
Most conventional solar cells have been constructed with a pn junction structure made of the same material, eg, GaAm, as shown in FIG. 1 (4), for example. As long as these single semiconductors are used, solar energy cannot be used effectively, and in particular, light with energy lower than the forbidden band width of the semiconductor can contribute to the generation of photovoltaic power within the solar cell, resulting in low photoelectric conversion efficiency. is Si
8-8% in GaAs, 27-x% in GaAs
There were drawbacks such as limitations.

また、第1図(B)に示すように、太陽光に対するスペ
クトル感度帯域を拡大し、高効率化をはかる目的で、G
1゜aAjo、zAlのpn接合コを有する上部太陽電
池3とGaAaのpnn接合側有する下部太陽電池jと
をGa a。、AI、、ム―のpn接合からなるトンネ
ル接合≦を介して接続した太陽電池も提案されている。
In addition, as shown in Figure 1 (B), in order to expand the spectral sensitivity band to sunlight and improve efficiency,
1°aAjo, zAn upper solar cell 3 having a pn junction side of Al and a lower solar cell j having a pnn junction side of GaAa are Ga a. , AI, , Mu - solar cells connected via tunnel junctions ≦ consisting of p-n junctions have also been proposed.

しかし、この太陽電池においては、上部太陽電池3およ
び下部太陽電池jの構成材料Ga o。。AI。、@ 
A aおよびGaAsの格子定数整合−の最適化ははか
られているものの、これら構成材料の禁止帯幅が各々/
、≦j・■および/。#J@Vであるため、太陽光スペ
クトルの内/、り3・■よりも低エネルギーの光は太陽
電池内における光起電力発生に寄与し得す、従って太陽
光エネルギーを有効利用できず々光電変換効率は理論的
にも釣〃弧、実験上でも75%と低いなどの欠点があっ
た。
However, in this solar cell, the constituent material of the upper solar cell 3 and the lower solar cell j is Ga o. . A.I. ,@
Although efforts have been made to optimize the lattice constant matching of A and GaAs, the forbidden band widths of these constituent materials are
, ≦j・■ and /. #J@V, therefore, the light with lower energy than / within the sunlight spectrum can contribute to the generation of photovoltaic power in the solar cell, so the solar energy cannot be used effectively. The photoelectric conversion efficiency was low both theoretically and experimentally at 75%.

本発明は、これらの欠点を除去するためになされたもの
で、その目的は、多層へテロ接合構造太陽電池において
、各暦学導体材料の禁止帯幅および格子定数の最適化を
はかることにより、太陽光に対するスペクトル感度帯域
を拡大させた高効率の太陽電池を提供することにある。
The present invention was made to eliminate these drawbacks, and its purpose is to optimize the forbidden band width and lattice constant of each ephemeris conductor material in a multilayer heterojunction structure solar cell. The object of the present invention is to provide a highly efficient solar cell with an expanded spectral sensitivity band for light.

かかる目的を達成するために、本発明では、ImP単結
晶基板上に混晶半導体Ga t7I IIyA l 1
−x P N(y=O,≦〜O,デ、 、=o)〜o、
t>から成るpn接合による下部太陽電池を構成し、混
晶半導体1n、−x)J、As(x=0.ダ〜0.8)
から威る一烏接合により上部太陽電池を構成し、該上部
太陽電池と前記下部太陽電池とを前記混晶半導体Ga 
+ 、、7I m yA m 1−s Pgまたは11
11−x Aj !A−のシンネ#接合で接続したこと
を特徴とする。
In order to achieve such an object, the present invention provides a mixed crystal semiconductor Ga t7I IIyA l 1 on an ImP single crystal substrate.
-x P N(y=O, ≦~O, de, ,=o)~o,
The lower solar cell is composed of a pn junction consisting of a mixed crystal semiconductor 1n, -x) J, As (x = 0.~0.8).
An upper solar cell is constructed by a one-row junction formed from the above, and the upper solar cell and the lower solar cell are connected to the mixed crystal semiconductor Ga
+ ,,7I m yA m 1-s Pg or 11
11-x Aj! It is characterized by being connected with an A- shin # joint.

以下に図面を参照しながら、実施例を用いて本発明の詳
細な説明するが、かかる実施例は本発明の例示に過ぎず
、本発明の範囲内で種々の改良や変形があり得ることは
勿論である。
The present invention will be described in detail below using examples with reference to the drawings, but these examples are merely illustrative of the present invention, and it is understood that various improvements and modifications may be made within the scope of the present invention. Of course.

第−回国は、本発明に係る太陽電池の基本構成を示す。The third country shows the basic configuration of the solar cell according to the present invention.

ここで、n(またはp)形InP単結晶基板//上に混
晶半導体G& +、l1lyA I 41PKの組成y
−0,4〜0.9 、 s == 0.2〜0.1から
成るn(またはp)層/2およびp(n)層/3をヘテ
ロエピタキシャル成長させてpn7合から成る下部太陽
電池/ダを構成する。p(またはn)形Ga 、−yI
 n、Am 1−、PSI f@ /j上に混よびn(
またはp )層14の各々膜厚10OOA以下の薄層の
トンネル接合17を形成し、このトンネル接合/7によ
り上部太陽電池/lと下部太陽電池l#とを接続する。
Here, the composition y of the mixed crystal semiconductor G& +, l1lyA I 41PK on the n (or p) type InP single crystal substrate //
-0.4 to 0.9, s == 0.2 to 0.1 by heteroepitaxially growing an n (or p) layer/2 and a p(n) layer/3 to form a lower solar cell consisting of a pn7 combination. Configure da. p (or n) form Ga, -yI
n, Am 1-, PSI f@ /j and n(
or p) A thin tunnel junction 17 having a film thickness of 10OOA or less is formed in each of the layers 14, and the upper solar cell /l and the lower solar cell l# are connected by this tunnel junction /7.

上部太陽電池/Iは混晶半導体I n 1−xAj x
A−の組成x x 00II NO,uから成るn(ま
たはp)層/?およびp(またはn)層〃をヘテロエピ
タキシャル成長させて得たpm11合から成る太陽電池
で構成する。上述のへチルエピタキシャル成長に関して
は、Ga、、In、Am、−、Pg層は液相エピタキシ
ャル法で’ ”1−xAlxAs層は分子線エピタキシ
ャル法で作製できるが、気相エピタキシャル法でも実施
できる。
Upper solar cell/I is a mixed crystal semiconductor I n 1-xAj x
Composition of A- x x 00II n (or p) layer consisting of NO, u/? and a p (or n) layer formed by heteroepitaxial growth. Regarding the above-mentioned hetyl epitaxial growth, the Ga, In, Am, -, and Pg layers can be formed by liquid phase epitaxial method, and the 1-xAlxAs layer can be formed by molecular beam epitaxial method, but vapor phase epitaxial method can also be used.

p(またはn)形I r* 1−xAjxAm MI 
Jにおける表面再結合の影響を軽減する必要のある場合
には、第一図(2)に示すように、P(またはn)形r
n、、、xAjxAs層Xの表面に高エネルギー禁止帯
幅半導体から成る窺材料層1をヘテロエピタキシャル成
長させれば良い。
p (or n) type I r* 1-xAjxAm MI
When it is necessary to reduce the effect of surface recombination in J, as shown in Figure 1 (2), P (or n) type r
A material layer 1 made of a high-energy bandgap semiconductor may be heteroepitaxially grown on the surface of the n,...xAjxAs layer X.

更に、表面層電極として格子状電極nを層X亥たはl上
に形成し、結晶基板l/の裏面に電極ntt形成するこ
とにより、I n、−xAlxAsの上部太陽電池/I
とGa t71 ayAs 1.、−z Pzの下部太
陽電池/ヂとをFンネル接合17により接続した太陽電
池が得られる。
Furthermore, by forming a lattice electrode n as a surface layer electrode on the layer X or l, and forming an electrode ntt on the back surface of the crystal substrate l/, an
and Ga t71 ayAs 1. , -z A solar cell is obtained in which the lower solar cells/di of Pz are connected by an F-tunnel junction 17.

本実施例の高効率太陽電池においては、上部太陽電池/
Iおよび下部太陽電池/#を構成する混晶半導体材料I
 nl−xAjxAmおよびGa 17I !1yA1
1P 11の禁止帯幅が各々ムダ〜/、9・■および0
.l〜ノ、コ・Vであり、太陽光3に対するスペクトル
感度帯域の拡大がはかられており、理想的な太陽電池材
料の禁止帯幅の組合せ/、42 eV / 0,91 
eVを包含し、光電変換効率は〃〜It?%に達する。
In the high efficiency solar cell of this example, the upper solar cell/
Mixed crystal semiconductor material I constituting I and lower solar cell/#
nl-xAjxAm and Ga17I! 1yA1
1P 11 prohibited band widths are waste~/, 9, ■, and 0
.. The spectral sensitivity band for sunlight 3 is expanded, and the combination of the bandgap of ideal solar cell materials is /,42 eV/0,91
Including eV, the photoelectric conversion efficiency is ~It? reach %.

また、本発明高効率太陽電池を構成するI nt−xA
l xAl。
In addition, Int-xA constituting the high-efficiency solar cell of the present invention
lxAl.

Ga1−yI与A1−z PzおよびInP単結晶基板
の格子定数の整合も極めて良い特長を有する。上部太陽
電池材料・I n 1−xAjxAmと下部太陽電池材
料Ga 、−yInyAs 、−、Pgとの格子定数の
不整合率はO,/−以下と低く、ミスフィツト転位の発
生がはとんどなく、上部太陽電池内のキャリヤ収集効率
低下を抑制でき、界面再結合速度はt12/set以下
にでき、界面におけるキャリヤ収集効率低下も抑制でき
、高効率化を達成できる。ImP単結晶基板と下部太陽
電池材料G& t 7Ill yA1−、Pgとの格子
定数の不整合率も0.0!1%以下と格子整合が極めて
良< 、’& 1.7I n yAl 1−I P1層
内におけるミスフィツト転位の発生がなく、下部太陽電
池内のキャリヤ収集効率低下を抑制でき、高効率化を太
陽電池の禁止帯幅、格子定数の最適化がなされており、
従来の太陽電池に比べて高効率化を達成できる。
The lattice constant matching between Ga1-yI, A1-z Pz and InP single crystal substrates is also very good. The mismatch rate of lattice constants between the upper solar cell material I n 1-xAjxAm and the lower solar cell material Ga, -yInyAs, -, Pg is as low as O,/- or less, and misfit dislocations hardly occur. , it is possible to suppress a decrease in carrier collection efficiency in the upper solar cell, the interfacial recombination rate can be lower than t12/set, it is also possible to suppress a decrease in carrier collection efficiency at the interface, and high efficiency can be achieved. The lattice constant mismatch rate between the ImP single crystal substrate and the lower solar cell material G&t7IllyA1-,Pg is also 0.0!1% or less, which is an extremely good lattice match. There is no occurrence of misfit dislocations in the P1 layer, suppressing the decline in carrier collection efficiency in the lower solar cell, and optimizing the forbidden band width and lattice constant of the solar cell to increase efficiency.
Higher efficiency can be achieved compared to conventional solar cells.

以上の実施例においては、上部太陽電池/lと下部太陽
電池/ヂとを接続するトンネル接合/2の構成材料とし
て上部太陽電池材料の混晶半導体I r* 1−xAj
 xム畠を用いた結果をもとに説明したが、下部太陽電
池材料の混晶半導体G & 171 RyA l 11
PZをトンネル接合17の構成材料に用いることもでき
、その場合には光吸収損失を低減するためにトンネル1
帽1層化をはかれば良い。
In the above embodiment, the mixed crystal semiconductor I r* 1-xAj of the upper solar cell material is used as the constituent material of the tunnel junction /2 that connects the upper solar cell /l and the lower solar cell /di.
Although the explanation was based on the results using xmuhata, the mixed crystal semiconductor G & 171 RyA l 11 of the lower solar cell material
PZ can also be used as the constituent material of the tunnel junction 17, in which case the tunnel 1
All you have to do is make the hat one layer.

以上説明したように、本発明の高効率太陽電池は、上部
太陽電池および下部太陽電池の禁止帯−1格子定数の最
適化がなされ、太陽光に対するスペクトル感度帯域が拡
大されているので、従来の太陽電池に比べて高効率であ
るなどの利点を有する。
As explained above, in the high-efficiency solar cell of the present invention, the forbidden band-1 lattice constant of the upper solar cell and the lower solar cell is optimized, and the spectral sensitivity band for sunlight is expanded. It has advantages such as high efficiency compared to solar cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(4)お上び偉)は従来の太陽電池の構成例を示
す断面図、第2図(4)およびω)は本発明に係る高効
率太陽電池の一例を示す断面図である。 ハ・・ホモpn接合、   コ・・・Ga。、@AI 
O,t” pnn会合3・・・上部太陽電池、   参
・・・GmAs pn接合、j・・・下部太陽電池、 t −−−Ga0.、AI、、、A−トンネル接合、/
/・・・n (p)形InP単結晶基板、/コ−n(p
)形Ga、−,In、As 、−、Pg層、/J−p(
n)形Ga、−、In、As、−、Pz層、/ヂ・・・
下部太陽電池、 /j ・・・高不純物゛濃度添加p+(n+)形I n
 + −、ムjxA@層、/ト・・高不純物濃度添加−
(p+)形1 m 、−、Aj xAs層、17・・・
トンネル接合、/I・・・上部太陽電池、/!・・・n
(p)形In、−xAJxAs層、X) −p(n)形
I n 、−xAjxA s層、1・・・牛導体室材料
、   n・・・格子状電極、n・・・裏面電極、  
   2グ・・・太陽光。 特許出願人 日本電信電話公社 へ鳩1 区 !−一
FIG. 1 (4) and ω) are cross-sectional views showing an example of the configuration of a conventional solar cell, and FIG. 2 (4) and ω) are cross-sectional views showing an example of a high-efficiency solar cell according to the present invention. . C...Homo pn junction, C...Ga. , @AI
O,t'' pnn association 3...Top solar cell, Reference...GmAs pn junction, j...Bottom solar cell, t ---Ga0., AI, , A-tunnel junction, /
/...n(p) type InP single crystal substrate, /co-n(p
) type Ga, -, In, As, -, Pg layer, /J-p (
n) Ga, -, In, As, -, Pz layer, /di...
Lower solar cell, /j...high impurity concentration doped p+(n+) type I n
+ -, MjxA@ layer, /t... high impurity concentration addition -
(p+) type 1 m, -, Aj x As layer, 17...
Tunnel junction, /I...Top solar cell, /! ...n
(p) type In, -xAJxAs layer,
2g...sunlight. Patent applicant: 1 pigeon to Nippon Telegraph and Telephone Public Corporation! −1

Claims (1)

【特許請求の範囲】[Claims] InP単結晶基板上に混晶半導体Ga 、−yInyA
a 、−、Pg(y=o、t〜o、q 、 x =o、
2〜o、t )から成るpm接合による下部太陽電池を
構成し、混晶半導体”t−t”l’(x=0.II〜O
,U )から成るpn接合により上部太陽電池を構成し
、該上部太陽電池と前記下部太陽電池とを前記混晶半導
体Ga 17I nyAs <1PsまたはI m 1
−XAjxA−のトンネル接合で接続したことを特徴と
する高効率太陽電池。
Mixed crystal semiconductor Ga, -yInyA on InP single crystal substrate
a, -, Pg(y=o, t~o, q, x=o,
The lower solar cell is composed of a pm junction consisting of a mixed crystal semiconductor "t-t"l' (x=0.II-O
, U ), and the upper solar cell and the lower solar cell are connected to the mixed crystal semiconductor Ga 17I nyAs <1Ps or I m 1
A high-efficiency solar cell characterized in that it is connected by a tunnel junction of -XAjxA-.
JP57009847A 1982-01-25 1982-01-25 High efficiency solar battery Granted JPS58127387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57009847A JPS58127387A (en) 1982-01-25 1982-01-25 High efficiency solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57009847A JPS58127387A (en) 1982-01-25 1982-01-25 High efficiency solar battery

Publications (2)

Publication Number Publication Date
JPS58127387A true JPS58127387A (en) 1983-07-29
JPS6214110B2 JPS6214110B2 (en) 1987-03-31

Family

ID=11731517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57009847A Granted JPS58127387A (en) 1982-01-25 1982-01-25 High efficiency solar battery

Country Status (1)

Country Link
JP (1) JPS58127387A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218174A (en) * 1989-02-17 1990-08-30 Mitsubishi Electric Corp Photoelectric converting semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441206Y2 (en) * 1985-12-03 1992-09-28

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218174A (en) * 1989-02-17 1990-08-30 Mitsubishi Electric Corp Photoelectric converting semiconductor device

Also Published As

Publication number Publication date
JPS6214110B2 (en) 1987-03-31

Similar Documents

Publication Publication Date Title
US7217882B2 (en) Broad spectrum solar cell
US7122733B2 (en) Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
JP4064592B2 (en) Photoelectric conversion device
US7309832B2 (en) Multi-junction solar cell device
Geisz et al. Lattice-mismatched GaAsP solar cells grown on silicon by OMVPE
Fan et al. 20%-efficient epitaxial GaAsP/Si tandem solar cells
JP2000312017A (en) Solar cell and manufacture of the same
KR20130018283A (en) Lattice matchable alloy for solar cells
Choi et al. High-performance GaInAsSb thermophotovoltaic devices with an AlGaAsSb window
US8431815B2 (en) Photovoltaic device comprising compositionally graded intrinsic photoactive layer
Sodabanlu et al. 24.5% efficient GaAs p-on-n solar cells with 120 µm h− 1 MOVPE growth
Takamoto et al. High efficiency InGaP solar cells for InGaP/GaAs tandem cell application
JPS58127387A (en) High efficiency solar battery
Katsuyama et al. New approaches for high efficiency cascade solar cells
Chang et al. Efficiency improvement of single-junction In0. 5Ga0. 5P solar cell with compositional grading p-emitter/window capping configuration
JP5548908B2 (en) Manufacturing method of multi-junction solar cell
Agui et al. High-efficient dual-junction InGaP/GaAs solar cells with improved tunnel interconnect
CN205752204U (en) A kind of two-sided growth four-junction solar cell with reflecting layer
Tseng et al. Crystalline quality and photovoltaic performance of InGaAs solar cells grown on GaAs substrate with large-misoriented angle
Zhang et al. Theoretical study on potential performance of lattice-matched monolithic GaNP/GaNAsP/Si triple-junction solar cell
CN111276560B (en) Gallium arsenide solar cell and manufacturing method thereof
Olson et al. High efficiency, multijunction GaInP/GaAs solar cells
Lewis et al. Recent developments in multijunction solar cell research
WO2003052836A1 (en) Multi-junction solar cell device
Schulte et al. Effect of Doping Density on the Performance of Metamorphic GaInAs Solar Cells Grown by Dynamic Hydride Vapor Phase Epitaxy