JPS58126922A - Production of low carbon boron steel parts - Google Patents

Production of low carbon boron steel parts

Info

Publication number
JPS58126922A
JPS58126922A JP842082A JP842082A JPS58126922A JP S58126922 A JPS58126922 A JP S58126922A JP 842082 A JP842082 A JP 842082A JP 842082 A JP842082 A JP 842082A JP S58126922 A JPS58126922 A JP S58126922A
Authority
JP
Japan
Prior art keywords
steel
low carbon
grains
quenching
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP842082A
Other languages
Japanese (ja)
Other versions
JPH042644B2 (en
Inventor
Taisuke Miyamoto
泰介 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP842082A priority Critical patent/JPS58126922A/en
Publication of JPS58126922A publication Critical patent/JPS58126922A/en
Publication of JPH042644B2 publication Critical patent/JPH042644B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To prevent formation of coarse crystal grains and to obtain low carbon boron steel parts having excellent toughness surely by cold working a blank material of low carbon boron steel material of specific compsns. at limited working rates and subjecting the same to hardening and tempering. CONSTITUTION:The steel consisting of 0.15-0.30wt% C, 0.15-0.35% Si, 0.60- 1.60% Mn, <=1.20% Cr, 0.0005-0.0030% B, 0.01-0.04% Ti, 0.01-0.04% Al, and the balance Fe and unavoidable impurities is used as a blank material. Such blank material is beforehand formed to a size larger than the shape of products and is subjected to cold working such as cold forging at >=13% working rates. Thereafter, the material is applied with hardening and tempering treatments. By such method, the formation of coarse crystal grains is prevented, and the fine grains of which the grain sizes of the old austenite crystal after the hardening is >=5 ASTM grain size number are obtained surely. This method is used for production of parts for structural purposes such as bolts.

Description

【発明の詳細な説明】 この発明は低炭素ゾロン鋼を素材としてボルトやこれに
類する部品等の構造用部品を製造する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing structural parts such as bolts and similar parts from low carbon Zolon steel.

周知のように低炭素鋼にホウ素(B)を小量添加すれば
、CrやMe等の高価表特殊元素を用いることなく低コ
ストで焼入れ性を著しく向上させることができ、そのた
め低炭素ゲロン鋼は自動車構造用部品、例えばボルト等
に適した鋼材として注目され、最近では種々検討・実用
化が図られている。
As is well known, if a small amount of boron (B) is added to low carbon steel, the hardenability can be significantly improved at low cost without using expensive special elements such as Cr or Me. has attracted attention as a steel material suitable for automobile structural parts, such as bolts, and has recently been studied and put into practical use in various ways.

しかしながらがロン鋼はオーステナイト結晶粒の粗大化
温度が従来の他の鋼種、例えば通常の炭素鋼やクロム鋼
、クロムモリブデン鋼等と比較して低いため、焼入加熱
時に結晶粒度が粗大化し易く、その結果靭性が低下して
しまうおそれがある。すなわち、本発明者等が第1表に
示すようが組成の低炭素がロン鋼およびクロム鋼につい
て850〜1200℃に種々温度を変えて1時間加熱処
理後水焼入れを施し、旧オーステナイト結晶粒度を測定
したところ、第1図に示す結晶粒粗大化曲線が得られた
However, since the coarsening temperature of austenite crystal grains in Ron steel is lower than that of other conventional steel types, such as ordinary carbon steel, chromium steel, chromium molybdenum steel, etc., the crystal grain size tends to coarsen during quenching heating. As a result, toughness may be reduced. That is, as shown in Table 1, the present inventors applied water quenching to a low carbon steel and a chromium steel with the composition shown in Table 1 at various temperatures of 850 to 1200°C for 1 hour and then water quenching to reduce the prior austenite grain size. As a result of the measurement, a grain coarsening curve shown in FIG. 1 was obtained.

第1図から、クロム鋼の場合には850〜900℃の温
度範囲ではオーステナイト結晶粒が細粒であシ、950
℃程度以上から急激に粗大化されるのに対し、がロン鋼
の場合には850℃から急激に結晶粒が粗大化すること
が明らかである。
From Figure 1, in the case of chromium steel, austenite crystal grains are fine in the temperature range of 850 to 900°C, and 950°C
It is clear that the grains become coarser rapidly from about 850°C onwards, whereas in the case of carbon steel, the grains suddenly become coarser from 850°C onwards.

上述のようにボロン鋼が比較的低温で結晶粒が粗大化す
る原因は次のように考えられる。すなわちボロン鋼の場
合には、微量添加したBをBNとして析出させずに鋼中
に固溶させて焼入性向上効果を発揮させるため、TI等
の添加によって鋼中音素をTIN等として固定させるこ
とが行なわれておシ、そのため通常の焼入れ加熱温度範
囲における結晶粒粗大化防止に効果があるA4Nの析出
が充分でないことに起因すると考えられる。
As mentioned above, the reason why the crystal grains of boron steel become coarse at relatively low temperatures is thought to be as follows. In other words, in the case of boron steel, the phoneme in the steel is fixed as TIN etc. by adding TI etc. in order to have the effect of improving hardenability by allowing the B added in a small amount to be solid dissolved in the steel without precipitating as BN. This is thought to be due to the fact that the precipitation of A4N, which is effective in preventing crystal grain coarsening in the normal quenching heating temperature range, is not sufficient.

上述のような特性のボロン鋼を素材とする製品のオース
テナイト結晶粒を微細化する方法としては、前述のとこ
ろから明らかなように焼入れ加熱温度を低くして焼入加
熱時の結晶粒粗大化を防止 秀する方法が考えられる。
As is clear from the above, the method of refining the austenite grains of products made from boron steel with the characteristics described above is to lower the quenching heating temperature and coarsen the grains during quenching. Prevention There are ways to excel.

しかしながら素材の焼鈍を省略して冷間鍛造等の冷間加
工を行う場合には、素材としてC0,30%以下の低炭
素がロン鋼を使用する必要があり、この場合には低炭素
であるためAI変態点が高く、そのため素材を880℃
程度以下の低温から焼入れた場合には焼入れ不良が生じ
てしまうから、このように焼入加熱温度を低温とするこ
とは実用上困難である。
However, when performing cold processing such as cold forging without annealing the material, it is necessary to use low carbon steel with a carbon content of 30% or less as the material; Therefore, the AI transformation point is high, so the material is heated to 880℃.
If the quenching is carried out at a lower temperature than the quenching temperature, quenching defects will occur, so it is practically difficult to set the quenching heating temperature to such a low temperature.

一方、焼入れ加熱時間を短縮することによって結晶粒の
粗大化を防止することも考、見られる。しかしながら本
発明者等が前記同様に第1表に示される゛組成のボロン
鋼について焼入れ加熱温度を880℃とし、種々加熱時
間を変化させて焼入れる実験を行ったところ、オーステ
ナイト結晶粒炭鉱15分の短時間加熱でもA8TM粒度
番号で5以下の粗粒となってしまい、かつまた混粒傾向
が認められた。したがって加熱時間の短縮によシ結晶粒
粗大化を防止する方法も通常の炉加熱では実現困難であ
る。
On the other hand, it has also been considered and seen that coarsening of crystal grains can be prevented by shortening the quenching heating time. However, when the present inventors conducted a quenching experiment with a boron steel having the composition shown in Table 1 at a quenching heating temperature of 880°C and various heating times, it was found that Even when heated for a short time, the particles became coarse grains with an A8TM particle size number of 5 or less, and a tendency to mix grains was also observed. Therefore, it is difficult to realize a method of preventing crystal grain coarsening by shortening the heating time using ordinary furnace heating.

このほか、焼入加熱温度までの昇温速度を小さくすれは
細粒を得やすくなる傾向が認められるが、その影響は顕
著ではなく、シたがって昇温速度を小さくする方法は細
粒化の目的に対し実用的に充分な程度の効果を得ること
は困難′である。
In addition, there is a tendency for finer grains to be obtained by decreasing the heating rate to the quenching heating temperature, but this effect is not significant, and therefore, the method of reducing the heating rate is effective in making grains finer. It is difficult to obtain a practically sufficient effect for the purpose.

以上のようにボロン鋼、特にC0,30%以下の低炭素
ボロン鋼においては、焼入れ加熱時における結晶粗大化
を確実に防止して靭性低下を確実に防止することは、熱
処理条件の変更では達成困難であった。
As mentioned above, in boron steel, especially in low carbon boron steel with C0.30% or less, it is possible to reliably prevent grain coarsening and reduce toughness during quenching heating by changing the heat treatment conditions. It was difficult.

この発明は以上のような事情に鑑みてなされたもので、
冷間鍛造等の冷間加工後焼入れ焼もどしを行って使用さ
れるメルト等の部品に00.30%以下の低炭素ボロン
鋼を適用するに際して、結晶粒の粗大化を防止して、焼
入れ稜の旧オーステナイト結晶粒度がASTM粒度番号
で5以上の細粒を確実に得ることを目的とするものであ
る。
This invention was made in view of the above circumstances.
When applying low carbon boron steel of 0.30% or less to parts such as melts that are quenched and tempered after cold working such as cold forging, coarsening of crystal grains is prevented and the quenched edges are improved. The purpose is to reliably obtain fine grains with a prior austenite crystal grain size of 5 or more in ASTM grain size number.

本発明者等は上述の目的を達成するべく鋭意実験・検討
を重ねた結果、C0,30%以下の低炭素ボロン鋼から
なる素材を加工率(断面積比)で13チ以上の冷間鍛造
岬の冷間加工を行った後に焼入れ焼もどしを施すことK
よって、ASTM粒度番号で5以上の細粒が得られるこ
とを見田し、この発明をなすに至った。すなわちこの発
明の製造方法は、C0,15〜0.30%、 Sl O
,15〜0.35%、Mn 0.60〜1.60 %、
 C1,20%以下、B O,0005〜0.0030
 %、Ti O,01〜0.04 %、 A70.01
〜0.04%を含有しかつ残部F・および不可避的不純
物よりなる鋼を素材とし、かつ製品形状よシも大きい形
状の素材を用い、加工率13チ以上で冷間鍛造等の冷間
加工を施した後、焼入れ焼もどしを施すことを特徴とす
るものである。
As a result of repeated experiments and studies to achieve the above-mentioned purpose, the present inventors have found that a material made of low carbon boron steel with a C0.30% or less is cold forged to a processing rate (cross-sectional area ratio) of 13 inches or more. Quenching and tempering after cold working of the cape
Therefore, it was discovered that fine particles with an ASTM particle size number of 5 or more could be obtained, and this invention was made. That is, the manufacturing method of the present invention includes C0.15 to 0.30%, SlO
, 15-0.35%, Mn 0.60-1.60%,
C1, 20% or less, BO, 0,0005 to 0.0030
%, TiO, 01-0.04%, A70.01
Cold processing such as cold forging at a processing rate of 13 inches or more is made of steel containing up to 0.04% and the remainder F and unavoidable impurities, and the material is larger than the product shape. It is characterized in that it is then subjected to quenching and tempering.

以・下この発明の方法についてさらに詳細に説明する。The method of the present invention will be explained in more detail below.

先ずこの発明の方法で対象とする鋼の成分限定理由につ
いて説明する。
First, the reason for limiting the composition of steel to be used in the method of this invention will be explained.

Cは焼入れ焼もどし後の強度を確保するために少くとも
0.15%含有している必要がある。またC含有量が増
せばそれだけA3変態点が低下するから焼入加熱温度を
低くすることにょシより一層の細粒化を図ることが可能
であるが、C量が0.30チを鍼えれば焼鈍を行なわず
に冷間加工を行うことが困難となり、またB添加による
焼入性向上動Siは溶鋼の脱酸に有効な元素であるが、
過剰に添加すれば介在物量が増大して製品の機械的性質
を低下させることから、適正な範囲をo、15〜0.3
5%とした。
C must be contained at least 0.15% in order to ensure strength after quenching and tempering. Also, as the C content increases, the A3 transformation point decreases, so it is possible to achieve even finer grains by lowering the quenching heating temperature, but it is possible to achieve even finer grains by lowering the quenching heating temperature. It becomes difficult to perform cold working without annealing, and addition of B improves hardenability.Although Si is an effective element for deoxidizing molten steel,
If added in excess, the amount of inclusions will increase and the mechanical properties of the product will deteriorate, so the appropriate range is o, 15 to 0.3.
It was set at 5%.

Mnは焼入性を向上させるに効果があるが、0.60優
未満ではその効果が充分ではなく、一方励が過剰に含有
されれば冷間加工性を損う。この発明では加工率13チ
以上の冷間加工を行う必要があるから、冷間加工性に問
題のない範囲として、0.60〜1.60%とした。
Mn is effective in improving hardenability, but if it is less than 0.60, the effect is not sufficient, while if Mn is contained in excess, cold workability is impaired. In this invention, since it is necessary to perform cold working at a processing rate of 13 inches or more, the content is set at 0.60 to 1.60% as a range that does not cause problems in cold workability.

Crも焼入性を向上させる元素であるが、過剰に含有さ
れれば冷間加工性を損うから上限を1.20チとした。
Cr is also an element that improves hardenability, but if excessively contained, it impairs cold workability, so the upper limit was set at 1.20 inches.

Ti 、 A1.はともに鋼中のN、0を固定し5.B
を鋼中に固溶させてB添加による顕著な焼入性向上効果
を発揮させる効果があるが、それぞれ0.01    
 ’−未満てはその効果が充分ではない。またTIは0
.04%を越えれば大型のTINの析出が多くなって製
品の機械的性雀に悪影響を与えることから、TIの添加
量を0.01〜0.04優とした。一方尼も0.04−
を越えればAt20.等の粗大な介在物が多くなって機
械的性質を損うから、0゜01〜0.04%の範囲に規
制した。
Ti, A1. 5. Both fix N and 0 in the steel. B
The addition of B has the effect of making it a solid solution in the steel and exerting a remarkable hardenability improvement effect, but each 0.01
If the value is less than '-, the effect is not sufficient. Also, TI is 0
.. If it exceeds 0.04%, large amounts of TIN will precipitate, which will adversely affect the mechanical properties of the product, so the amount of TI added is set at 0.01 to 0.04%. On the other hand, Nun is also 0.04-
If it exceeds At20. Since large amounts of coarse inclusions such as the like increase and impair mechanical properties, the content is regulated within the range of 0.01 to 0.04%.

Bは前述のように鋼中に固溶して焼入性を顕著に向上さ
せる効果があるが、o、ooos%未満ではその効果が
充分ではなく、一方0.0030%’を越えて添加して
もそれ以上焼入性は向上せず、またF・2Bによる脆化
や赤熱脆性を招くから、o、ooos〜O)OO30−
とした。
As mentioned above, B is dissolved in steel and has the effect of significantly improving hardenability, but the effect is not sufficient when it is less than 0.0030%. However, the hardenability will not improve any further, and it will cause embrittlement and red heat embrittlement due to F・2B, so o,ooos~O)OO30-
And so.

次に上述のような成分範囲の鋼に冷間加工を加えた場合
の冷間加工率とオーステナイト結晶粒度との関係につい
て説明する。
Next, the relationship between the cold working rate and the austenite grain size when cold working is applied to steel having the above-mentioned composition range will be explained.

本発明者等は前記成分範囲の鋼として第1!!にメロン
鋼として示した組成の鋼を用意し、その鋼に対し種々の
加工率で冷間鍛造を施し、その後、集用熱処理条件の範
囲内で最も粗大化し易い条件と考えられる熱処理、すな
わち900℃×1時間均熱処理を施し、焼入れした後の
旧オーステナイ得られた。第3図から明らかなように冷
間加工率が高くなるに従って細粒化されて、特に冷間加
工率が13優以上であればA8TM粒度番号で5以上の
細粒が得られることが確認された。このように焼入れ加
熱条件を結晶粒粗大化が生じ易い条件としても、予め加
工率13%以上の冷間鍛造等の冷間加工を施しておくこ
とによp ASTM粒度番号5以上の細粒を得ることが
可能となるから、焼入れ加熱温度は特に低温化する必要
はなくなるが、よシ一層の細粒化を図るためにはA、変
態点以上の可及的に低温とすることが望ましい。なお焼
入れ後の焼もどし処理は、常法にしたがってA1変態点
未満の温度で行えば良い。
The present inventors are the first steel with the above-mentioned composition range! ! Prepare a steel with the composition shown as melon steel in , cold forge the steel at various working rates, and then heat treat it under conditions that are considered to be the most likely to cause coarsening within the range of commonly used heat treatment conditions, i.e. 900 A soaking treatment was carried out for 1 hour at ℃ to obtain old austenite which had been quenched. As is clear from Fig. 3, as the cold working rate increases, the grains become finer, and in particular, if the cold working rate is 13 or more, fine grains with an A8TM grain size number of 5 or more can be obtained. Ta. Even if the quenching heating conditions are such that crystal grain coarsening is likely to occur, by performing cold working such as cold forging with a processing rate of 13% or more in advance, fine grains with an ASTM grain size number of 5 or more can be produced. Therefore, there is no need to particularly lower the quenching heating temperature, but in order to further refine the grains, it is desirable to set the temperature as low as possible, above the transformation point A. Note that the tempering treatment after quenching may be performed at a temperature below the A1 transformation point according to a conventional method.

なおこの発明の製造方法はゲルトあるいはそれに類する
製品に最も好適に適用されるが冷間鍛造によってがルト
を製造する場合、通常は据込鍛造が採用されるから、冷
間加工率はポル)11部で最も高くなり、がルト軸部が
最も低くなるのが通常である。とのためがルト細部の冷
間加工率が13加工率が13−以上となり、その結果製
品全体の旧オーステナイト結晶粒度をASTM粒度番号
5以上に細粒化することができる。このようにゲルト軸
部の冷間加工率(断面積比)を13チ以上とするためK
は、素材として製品のゲルトの軸部最大径の1.07倍
以上のものを用いれば良い。
The manufacturing method of the present invention is most suitably applied to gelt or similar products, but when producing gelt by cold forging, upsetting forging is usually adopted, so the cold working rate is 11. Usually, it is highest at the bottom and lowest at the root shaft. Therefore, the cold working rate of the root details becomes 13- or more, and as a result, the prior austenite crystal grain size of the entire product can be refined to ASTM grain size number 5 or more. In this way, in order to make the cold working rate (cross-sectional area ratio) of the gel shaft part 13 inches or more, K
For this, it is sufficient to use a material that is 1.07 times or more the maximum diameter of the gel shaft part of the product.

以下この発明の実施例を記す。Examples of this invention will be described below.

実施例 CO,28俤、810.2356. Mn 1.06%
、Cr011・5%、Bo、012%、?10.023
%%AL0.03嘔、残部F・ および不可避的不純物
よりなる低炭素?ロン鋼の外径12IEIIの棒材(従
来法)、および同じ成分の低炭素がロン鋼からなる外径
13mの棒材(本発明法)を用いてそれぞれ呼び径12
■のゲルトを冷間鍛造によシ作成し、900℃において
1時間均熱した後、焼入れし、その後500℃において
焼もどしを行った。焼入れ後のゲルト軸の旧オーステナ
イト結晶粒度を調べたところ、第2表に示す結果が得ら
れた。
Example CO, 28 yen, 810.2356. Mn 1.06%
, Cr011・5%, Bo, 012%, ? 10.023
Low carbon consisting of %%AL0.03, balance F and unavoidable impurities? A bar with an outer diameter of 12IEII (conventional method) made of steel with a nominal diameter of 12 IEII and a bar with an outer diameter of 13 m made of steel with the same low carbon content (inventive method) were used.
The gelt (2) was prepared by cold forging, soaked at 900°C for 1 hour, quenched, and then tempered at 500°C. When the prior austenite crystal grain size of the gel shaft after quenching was investigated, the results shown in Table 2 were obtained.

第2表から明らかなように、軸部加工率が〜〇−の場合
と比較して軸部加工率が17−の場合には焼入れ後の旧
オーステナイト結晶粒度が著しく大きくなり、A8TM
粒度番号で6以上の細粒となることが確認された。
As is clear from Table 2, the prior austenite grain size after quenching becomes significantly larger when the shaft processing rate is 17- compared to when the shaft processing rate is ~〇-.
It was confirmed that the particles were fine particles with a particle size number of 6 or more.

以上の説明で明らかなようKこの発明の製造方法によれ
ば、低炭素ボロン鋼を用いてがルト等の部品を製造する
にあたって、焼入れ加熱前に加工率1311以上の冷間
鍛造等の冷間加工を施しておくこ゛とによシ、焼入れ後
の旧オーステナイト結晶粒としてA8TM粒度番号5以
上の細粒を確実かつ容易に得ることができ、したがって
確実かつ容易に靭性の優れたゲルト等の製品を得ること
ができる。
As is clear from the above explanation, according to the manufacturing method of the present invention, when manufacturing parts such as bolts using low carbon boron steel, cold forging with a processing rate of 1311 or more is performed before quenching and heating. By performing processing, fine grains with A8TM grain size number 5 or higher can be reliably and easily obtained as prior austenite crystal grains after quenching, and therefore products such as gelt with excellent toughness can be reliably and easily obtained. Obtainable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の通常のゲロン鋼およびクロム鋼における
オーステナイト結晶粒粗大化曲線を示す線図、第2図は
従来のがロン鋼における焼入加熱時間とオーステナイト
結晶粒度との関係を示す線率とオーステナイト結晶粒度
との関係を示す線図である。 出願人 トヨタ自動車工業株式会社 代理人 弁理士 豊 1)武 久 (ほか1名) 1     (8鷹、Ll崎関均亀) 0 880・C1=bするη日亭ζ、珂閏 (今夕第3図 友聞〃Ω二参   % ヰ
Figure 1 is a diagram showing austenite grain coarsening curves in conventional normal Geron steel and chromium steel, and Figure 2 is a line ratio showing the relationship between quenching heating time and austenite grain size in conventional Geron steel. FIG. 2 is a diagram showing the relationship between austenite grain size and austenite grain size. Applicant Toyota Motor Corporation Representative Patent Attorney Yutaka 1) Hisashi Take (and 1 other person) 1 (8taka, LL Sakiseki Hitoshiki) 0 880・C1=b ηHitteiζ, Kaken (Tonight's 3rd Zuyumon〃Ω2san% ヰ

Claims (1)

【特許請求の範囲】[Claims] C0,15〜0.30%(重量%、以下同じ)、S10
.15〜0.35 %、 Mn 0.60〜1.60 
%、Cr1.20チ以下、Bo、0005〜0.003
0チ、Ti O,01〜0.04チ、kl 0.01〜
0.04fi を含有しかつ残部F・および不可避的不
純物からなる鋼を素材とし、かつその素材の形状を製品
形状よりも大きいものとし、その素材に13−以上の加
工率で冷間加工を施し死後、焼入れ焼もどしすることを
特徴とする低炭素ゾロン鋼部品の製造方法。
C0.15-0.30% (weight%, same below), S10
.. 15-0.35%, Mn 0.60-1.60
%, Cr1.20 or less, Bo, 0005-0.003
0chi, Ti O, 01~0.04chi, kl 0.01~
The material is made of steel containing 0.04fi and the remainder F and unavoidable impurities, and the shape of the material is larger than the product shape, and the material is subjected to cold working at a processing rate of 13- or more. A method for manufacturing low carbon Zolon steel parts, characterized by quenching and tempering after death.
JP842082A 1982-01-22 1982-01-22 Production of low carbon boron steel parts Granted JPS58126922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP842082A JPS58126922A (en) 1982-01-22 1982-01-22 Production of low carbon boron steel parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP842082A JPS58126922A (en) 1982-01-22 1982-01-22 Production of low carbon boron steel parts

Publications (2)

Publication Number Publication Date
JPS58126922A true JPS58126922A (en) 1983-07-28
JPH042644B2 JPH042644B2 (en) 1992-01-20

Family

ID=11692627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP842082A Granted JPS58126922A (en) 1982-01-22 1982-01-22 Production of low carbon boron steel parts

Country Status (1)

Country Link
JP (1) JPS58126922A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286149A (en) * 1985-09-02 1987-04-20 Kobe Steel Ltd Tough and hard bolt steel
DE102009012940A1 (en) * 2009-03-12 2010-09-16 Volkswagen Ag Producing a sheet metal component, comprises trimming and/or deforming a workpiece, and partially heating and definingly cooling the workpiece in a cooling tool by placing cooling tool elements on a surface of the workpiece
US20140116105A1 (en) * 2012-10-26 2014-05-01 Hyundai Motor Company Method and apparatus for forming ultrahigh tensile steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286149A (en) * 1985-09-02 1987-04-20 Kobe Steel Ltd Tough and hard bolt steel
DE102009012940A1 (en) * 2009-03-12 2010-09-16 Volkswagen Ag Producing a sheet metal component, comprises trimming and/or deforming a workpiece, and partially heating and definingly cooling the workpiece in a cooling tool by placing cooling tool elements on a surface of the workpiece
DE102009012940B4 (en) * 2009-03-12 2017-12-07 Volkswagen Ag Method for producing a component, in particular a sheet-metal component, and production line for producing the component
US20140116105A1 (en) * 2012-10-26 2014-05-01 Hyundai Motor Company Method and apparatus for forming ultrahigh tensile steel

Also Published As

Publication number Publication date
JPH042644B2 (en) 1992-01-20

Similar Documents

Publication Publication Date Title
EP1746176B1 (en) Shaped steel article with excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and methods of production of the same
EP3715478B1 (en) Wire rod for cold heading, processed product using same, and manufacturing method therefor
US4226645A (en) Steel well casing and method of production
EP0648853B1 (en) Non-heat-treated steel for hot forging, process for producing non-heat-treated hot forging, and non-heat-treated hot forging
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
US4584032A (en) Bolting bar material and a method of producing the same
US5207843A (en) Chromium hot work steel
TW202210637A (en) Method of manufacturing high strength steel tubing from a steel composition and components thereof
JP3544131B2 (en) Manufacturing method of medium carbon steel
US4806178A (en) Non-heat refined steel bar having improved toughness
EP2641989A2 (en) High-toughness cold-drawn non-heat-treated wire rod, and method for manufacturing same
JP2018512509A (en) Parts having a bainite structure having high strength characteristics and manufacturing method
JPH075960B2 (en) Method for manufacturing cold forging steel
JPS58126922A (en) Production of low carbon boron steel parts
JPS6159379B2 (en)
EP4060072A1 (en) Wire rod and component, for cold forging, each having excellent delayed fracture resistance characteristics, and manufacturing methods therefor
JPH0643605B2 (en) Manufacturing method of non-heat treated steel for hot forging
KR960006455B1 (en) Making method of high strength high toughness hot forging steel with no-thermal refining
JPH0813028A (en) Production of precipitation hardening steel material having high tensile strength and high toughness
KR102448756B1 (en) High-strength wire rod with excellent resistance of hydrogen delayed fracture, heat treatment parts using the same, and methods for manufacturing thereof
JPH04297548A (en) High strength and high toughness non-heat treated steel and its manufacture
JPH0867950A (en) Martensitic stainless steel excellent in strength and toughness and its production
JPH06212347A (en) Hot forged product having high fatigue strength and its production
JPH08337815A (en) Production of chromium-molybdenum steel excellent in strength and toughness
JP3196006B2 (en) Method of manufacturing non-heat treated steel for hot forging, hot forged non-heat treated product, and hot forged non-heat treated product