KR960006455B1 - Making method of high strength high toughness hot forging steel with no-thermal refining - Google Patents

Making method of high strength high toughness hot forging steel with no-thermal refining Download PDF

Info

Publication number
KR960006455B1
KR960006455B1 KR1019930023959A KR930023959A KR960006455B1 KR 960006455 B1 KR960006455 B1 KR 960006455B1 KR 1019930023959 A KR1019930023959 A KR 1019930023959A KR 930023959 A KR930023959 A KR 930023959A KR 960006455 B1 KR960006455 B1 KR 960006455B1
Authority
KR
South Korea
Prior art keywords
steel
toughness
forging
strength
hot
Prior art date
Application number
KR1019930023959A
Other languages
Korean (ko)
Other versions
KR950014348A (en
Inventor
이덕락
박수동
박성운
Original Assignee
포항종합제철주식회사
조말수
재단법인산업과학기술연구소
백덕현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철주식회사, 조말수, 재단법인산업과학기술연구소, 백덕현 filed Critical 포항종합제철주식회사
Priority to KR1019930023959A priority Critical patent/KR960006455B1/en
Publication of KR950014348A publication Critical patent/KR950014348A/en
Application granted granted Critical
Publication of KR960006455B1 publication Critical patent/KR960006455B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The steel, composed of in weight 0.2-0.5 % C, 0.4 -0.8 % Si, 1.0 -2.0 % Mn, 0.05 -0.5 % Cr, 0.01-0.1 % Mo, 0.02 -0.1% Ni, 0.05-0.2% V, 0.01-0.04% Ti, 0.01-0.1% Al, 0.005 -0.03% N, less than 0.03% P, 0.02-0.1 % S, balance Fe and other impurities, is treated to make high strength, high tensile strength hot forging steel without quenching and tempering ; after hot rolling to break forged cell structure, it starts forging at 1100- 1300 deg.C, finishs at 900 deg.C, cools down to 400 deg.C at rate of 10-200 deg.C/min. and air cooling.

Description

고강도, 고인성 열간단조용 비조질강의 제조방법Manufacturing method of non-coated steel for high strength, high toughness hot forging

제1도는 본 발명의 방법에 의해 제조된 강의 미세조직사진이다.1 is a microstructure photograph of a steel produced by the method of the present invention.

본 발명은 고강도, 고인성 열간단조용 비조질강의 제조방법에 관한 것이며, 보다 상세히는 소입 및 소려공정이 생략된 고강도, 고인성 열간단조용 비고질강의 제조방법에 관한 것이다. 고강도, 고인성 열간단조용 비조질강은 차량의 크랭크샤프트, 컨넥팅 로드, 허브(Hub), 너클암(Knuckle Arm), 후론트액슬(Front Axles) 등과 같은 차량의 부품소재로 많이 사용된다.The present invention relates to a method for producing a high strength, high toughness hot forging non-steel, and more particularly to a method for manufacturing a high strength, high toughness hot forging non-ferrous steel is omitted. High-strength, high-toughness hot forging is used for many parts of vehicles such as crankshafts, connecting rods, hubs, knuckle arms, and front axles.

종래에는 이같은 부품들은 압연재를 1250℃ 정도의 고온으로 재가열한 후 열간상태에서 열간단조하고 그후 소입·소려과정을 거침으로서 필요한 강도 및 인성을 확보하였다.Conventionally, such parts have re-heated the rolled material to a high temperature of about 1250 ° C., and then hot forged in a hot state, and then subjected to a hardening and annealing process, thereby securing necessary strength and toughness.

상기 공정중 소입·소려 열처리는 850℃ 내외로 가열후 수냉 또는 유냉시켜 재질을 경화시키는 소입(Quenching)공정과, 이를 다시 600℃ 내외로 가열후 냉각시켜 경화된 강에 인성을 부여하는 소려(Tempering) 공정으로 구분된다.The hardening and soaking heat treatment during the process is a quenching process to harden the material by heating it to about 850 ° C., followed by water cooling or oil cooling, and to give toughness to the hardened steel by heating it to about 600 ° C. and cooling it again. ) Process.

이같은 공정들을 통하여 가공되는 종래의 열간단조용강의 소재로는 통상 하기 표1에 제시된 S45C, S50C와 같은 기계구조용 탄소강이나 SCM435와 같은 기계구조용 합금강을 사용하며, 이 소입·소려를 끝낸 최종제품은 템퍼드 마르텐사이트(Tempered Martensite)의 미세조직을 갖고 표 2에 제시된 기계적 성질을 갖는다.Conventional hot forging steels processed through such processes are usually used in mechanical structural carbon steel such as S45C and S50C or mechanical structural alloy steel such as SCM435 as shown in Table 1 below. It has a microstructure of Tempered Martensite and has the mechanical properties shown in Table 2.

[표1]Table 1

[표2][Table 2]

그러나, 1970년대 중반부터 유럽 및 일본을 중심으로 소입·소려열처리를 생략하여 원가절감을 획기적으로 꾀할 수 있는 열간단조용 비조질강이 검토되기 시작하여 1980년대 중반부터는 양산되고 있다. 예를들어 일본특허공고 소 55-138056 및 소 56-156717에는 석출경화형 원소인 바나듐(V)을 0.1% 내외로 함유한 열간단조용 비조질강에 대하여 기술되어 있다.However, from the mid 1970s, hot forged non-coated steel, which can significantly reduce cost by eliminating quenching and annealing heat treatment in Europe and Japan, has been considered and has been mass-produced since the mid-1980s. For example, Japanese Patent Publications Nos. 55-138056 and 56-156717 describe hot forged non-steel for containing about 0.1% of vanadium (V) as a precipitation hardening element.

바나듐을 첨가하는 이유는 단조후 냉각과정에서 바나듐탄질화물을 미세하게 석출시켜 강을 강화시키기 위함이다. 또한 이들 비조질강은 망간(Mn)을 약 1.5% 정도- 다량 함유하고 있는데 이는 인성을 저하시키지 않고 강도를 높혀주는 망간의 특성을 활용하기 위함이다. 그러나 이들 강은 강도는 소입·소려 처리한 기계구조용 탄소강과 거의 유사하지만 충격인성이 열처리강에 비해 아주 낮다는 단점이 있다. 따라서 이들 열간단조용 비조질강은 충격인성이 거의 문제되지 않는 일부 부품에만 제한적으로 사용되었다.The reason for adding vanadium is to strengthen the steel by finely depositing vanadium carbonitride in the cooling process after forging. In addition, these non-alloyed steels contain about 1.5% of manganese (Mn) in large amounts in order to take advantage of the properties of manganese, which enhances the strength without reducing toughness. However, these steels have a similar strength to that of hardened and hardened mechanical structural carbon steels, but the impact toughness is much lower than that of heat treated steels. Therefore, these hot forged steels have been used only in a limited number of parts where impact toughness is hardly a problem.

이러한 문제를 극복하기 위해 개발된 비조질강이 소 61-166919, 소 62-199750, 소 62-253725 등에 제시된 바와 같은 고인성 열간단조용 비조질강이다. 이들 고인성 열간단조용 비조질강은 각종 성분을 바꾸거나 열간가공 조건을 변화시켜서 충격인성을 개선시킨다. 즉, 소 61-166919, 소 62-199750에서는 마무리 단조온도를 800℃ 이하의 저온에서 실시하여 충격인성을 대폭 개선시켰다. 그러나 이들 방법을 1100℃ 정도에서 마무리 단조를 실시하는 기존의 단조공정에 적용하면 다이스 마모가 엄청나서 열처리 생략에 의한 원가절감효과가 거의 상실된다는 문제점이 있다. 한편 소 62-253725에서는 망간 함량을 통상의 중탄소강 수준으로 감소시키고, 대신 고온에서 오스테나이트 입자 미세화에 탁월한 효과가 있는 티타늄(Ti)을 소량 첨가시켜서 인성을 개선하고 있다. 그러나 이 강의 경우 인성저하를 방지할 목적으로 망간등 합금원소양을 과도하게 제한하고 있기 때문에 인장강도(80kg/㎟)가 상대적으로 낮다는 문제가 있다. 즉, 충격인성을 개선하기 위하여 강도를 너무 많이 떨어뜨려 고강도·고인성이 요구되는 부품에 사용하기 곤란하며, 기존 열처리강을 대체할 경우 강도 측면에서 신뢰도가 떨어지는 문제점 있는 것이다.The non-alloyed steel developed to overcome this problem is a non-toughened steel for high toughness hot forging as shown in SO 61-166919, SO 62-199750, SO 62-253725 and the like. These high toughness hot forging steels improve impact toughness by changing various components or changing hot working conditions. That is, in Small 61-166919 and Small 62-199750, the finish forging temperature was performed at a low temperature of 800 ° C. or lower to greatly improve impact toughness. However, if these methods are applied to the existing forging process that performs the finish forging at about 1100 ℃, there is a problem that the cost reduction effect by omitting the heat treatment is almost lost because the die wear is huge. In 62-253725, meanwhile, the manganese content is reduced to the normal level of medium carbon steel, and instead, a small amount of titanium (Ti) is added to improve toughness at high temperatures. However, this steel has a problem that the tensile strength (80kg / ㎜) is relatively low because excessively limit the amount of alloy elements such as manganese in order to prevent the deterioration of toughness. That is, it is difficult to use in parts requiring high strength and high toughness by dropping the strength too much to improve impact toughness, and there is a problem in that reliability is lowered in terms of strength when replacing existing heat-treated steel.

이에 본 발명의 목적은 상기와 같은 종래의 문제점을 해결한 보다 개선된 열간단조용 비조질강의 제조방법을 제공하는데 있다.Accordingly, an object of the present invention is to provide a method of manufacturing an improved non-manufactured steel for hot forging that solves the conventional problems as described above.

본 발명에서는 각종성분을 적절히 조정하여 단조온도를 낮추지 않고도 강도와 인성이 우수한 고강도·고인성 열간단조용 비조질강을 제조하고자 한다.In the present invention, to adjust the various components appropriately to produce a high-strength, high toughness hot forging non-steel for excellent strength and toughness without lowering the forging temperature.

본 발명에 의하면, 고강도·고인성 열간단조용 비조질강을 제조하고자 한다.According to the present invention, an amorphous steel for high strength and high toughness hot forging is prepared.

본 발명에 의하면 중량%로, C : 0.20-0.50%, Si : 0.40-0.80%, Mn : 1.0-2.0%, Cr : 0.05-0.50%, Mo : 0.01-0.1%, Ni : 0.02-0.10%, V : 0.05-0.20%, Ti : 0.01-0.04%, Al : 0.01-0.10%, N : 0.005-0.030%, P : 0.030%이하, S : 0.02-0.10%, 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 강을 열간에서 강편압연 혹은 봉강압연하여 주조 조직을 파괴한 후, 다시 1100-1300℃로 재가열 후 열간단조를 실시하여 900℃ 이상의 온도에서 마무리 단조를 하고, 이후 400℃까지 10-200℃/min의 냉각속도로 냉각시킨 후 공냉하는 것을 특징으로 하는 고강도·고인성 열간단조용 비조질강의 제조방법이 제공된다.According to the present invention, in weight%, C: 0.20-0.50%, Si: 0.40-0.80%, Mn: 1.0-2.0%, Cr: 0.05-0.50%, Mo: 0.01-0.1%, Ni: 0.02-0.10%, V: 0.05-0.20%, Ti: 0.01-0.04%, Al: 0.01-0.10%, N: 0.005-0.030%, P: 0.030% or less, S: 0.02-0.10%, balance Fe and other unavoidable impurities Hot-rolled or bar-rolled steel to break the cast structure, and then reheated to 1100-1300 ℃ and then hot forged to finish forging at a temperature above 900 ℃, and then 10-200 to 400 ℃. Provided is a method for producing a high strength, high toughness hot forged non-coated steel, which is cooled at a cooling rate of ° C / min and then air cooled.

이하, 본 발명의 방법에 대하여 상세히 설명한다.Hereinafter, the method of the present invention will be described in detail.

상기 탄소(C)는 종래의 열처리재(S45C, S50C, SCM435, SCM440)대비 많이 낮추어 페라이트(Ferrite)의 체적분율을 증가시킴으로서 강의 충격인성 및 연성을 증가시킬 수 있으나 탄소함량이 너무 낮은 경우에는 필요강도의 확보가 불가능하므로 탄소함량은 0.20-0.50%로 제한하는 것이 바람직하다.The carbon (C) is much lower than the conventional heat treatment materials (S45C, S50C, SCM435, SCM440) to increase the volume fraction of the ferrite to increase the impact toughness and ductility of the steel, but is required when the carbon content is too low Since the strength cannot be secured, the carbon content is preferably limited to 0.20-0.50%.

규소(Si)는 고용강화에 의한 강도증가 및 페라이트의 분율증가 및 분포개선에 의한 인성증가효과를 얻기위해 0.80%까지 첨가하나 그 이상 첨가되면 오히려 인성을 해치게 된다. 그리고, 필요강도를 확보하고 또 탈산을 충분히 해주기 위해서 0.40% 이상 첨가되는 것이 바람직하다.Silicon (Si) is added up to 0.80% in order to increase the strength due to solid solution strengthening and increase the toughness by increasing the fraction of ferrite and improving the distribution. In order to ensure the required strength and to sufficiently deoxidize, it is preferable to add 0.40% or more.

망간(Mn)은 소입성을 증가시키고 오스테나이트(Austenite)에서 페라이트(Ferrite)에로의 변태온도를 낮추어 주어 조직을 미세화시키는 역활을 하는데, 통상의 강중에 약 2.0%까지는 첨가하여도 인성을 떨어뜨리지 않고 강도를 증가시키므로 인성저하없이 필요강도를 얻기위해서는 상기 망간의 함량은 1.0-2.0%로 한정하는 것이 바람직하다.Manganese (Mn) increases the hardenability and lowers the transformation temperature from austenite to ferrite, thereby miniaturizing the tissue.It does not degrade the toughness even when added to about 2.0% in ordinary steel. It is preferable to limit the content of the manganese to 1.0-2.0% in order to increase the strength without increasing the toughness without increasing the toughness.

크롬(Cr)은 강의 소입성을 증가시켜 강도를 증가시킨다. 0.05% 미만에서는 강화효과가 충분하지 않고, 첨가량이 많으면 목표인성을 확보하기 곤란하고 또 경제성이 없으므로 상기 크롬의 함량은 0 05-0.5%로 한정하는 것이 바람직하다.Chromium (Cr) increases the hardenability of the steel, increasing its strength. If it is less than 0.05%, the strengthening effect is not sufficient, and if the amount is large, it is difficult to secure the target toughness and economic efficiency, so the content of chromium is preferably limited to 0 05-0.5%.

몰리브덴(Mo)은 강의 조직을 침상형 페리이트로 바꾸어 주어 강을 강인화시키는 역활을 한다. 첨가량이 너무 작으면 효과가 충분하지 않고, 첨가량이 많으면 경제성이 없으므로 상기 몰리브덴의 함은 0.01-0.1%로 한정하는 것이 바람직하다.Molybdenum (Mo) converts the river's structure into a needle-shaped ferrite to strengthen the river. If the addition amount is too small, the effect is not sufficient, and if the addition amount is large, it is not economical, so the content of molybdenum is preferably limited to 0.01-0.1%.

니켈(Ni)은 강에 고용되어 강도를 높인다. 첨가량이 너무 작으면 효과가 충분하지 않고, 첨가량이 많으면 경제성이 없으므로, 상기 니켈의 함량은 0.02∼0.1%로 한정하는 것이 바람직하다.Nickel (Ni) is dissolved in steel to increase strength. If the added amount is too small, the effect is not sufficient, and if the added amount is large, there is no economical effect. Therefore, the nickel content is preferably limited to 0.02 to 0.1%.

바나듐(V)은 단조후 냉각과정에서 미세한 탄질화물을 형성시켜 강도향상을 꾀하기 위해 첨가한다. 첨가량이 너무 작으면 강도증가 폭이 적고, 첨가량이 많아지면 강도는 증가하나 인성이 크게 감소함으로 첨가량을 0.05-0.20%로 제한하는 것이 바람직하다.Vanadium (V) is added to form fine carbonitrides in the cooling process after forging to improve strength. If the addition amount is too small, the strength increase range is small, and when the addition amount is large, the strength is increased, but toughness is greatly reduced, so it is preferable to limit the addition amount to 0.05-0.20%.

티타늄(Ti)은 강중에서 질소와 결합하여 티타늄질화물을 형성한다. 티타늄질화물은 단조전 재가열과정에서 오스테나이트 입성장을 억제시켜 강의 충격인성을 개선시킨다.Titanium (Ti) combines with nitrogen in steel to form titanium nitride. Titanium nitride improves the impact toughness of steel by inhibiting austenite grain growth during reheating before forging.

티타늄의 첨가량이 너무 적으면 티타늄질화물 절대량이 적어 효과적으로 입성장을 억제시키기가 곤란하고, 첨가량이 일정량을 넘으면 효과가 포화되므로 고가의 합금원소를 과도히 첨가할 필요는 없다. 따라서 적정 첨가량은 0.010-0.040% 범위이다.If the amount of titanium added is too small, it is difficult to effectively inhibit grain growth due to the absolute amount of titanium nitride, and if the amount exceeds a certain amount, the effect is saturated. Therefore, it is not necessary to add an expensive alloy element excessively. Therefore, the titration amount is in the range of 0.010-0.040%.

알루미늄(Al)은 탈산 및 알루미늄질화물에 의한 입자미세화를 목적으로 첨가한다. 첨가량이 적으면 효과를 충분히 발휘하지 못하고, 첨가량이 일정량을 초과하면 효과가 포화되므로 첨가량을 0.01-0.10%로 한정하는 것이 바람직하다.Aluminum (Al) is added for the purpose of particle oxidation by deoxidation and aluminum nitride. When the addition amount is small, the effect is not sufficiently exhibited, and when the addition amount exceeds a certain amount, the effect is saturated, so it is preferable to limit the addition amount to 0.01-0.10%.

질소(N)는 비조질강중에서 바나듐, 티타늄, 알루미늄과 결합하여 질화물을 형성한다. 첨가량이 0.005%이하이면 충분한 질화물이 형성되지 않고 첨가량이 0.030% 이상이면 효과가 포화되므로 첨가량을 0.005-0.030%로 한정하는 것이 바람직하다.Nitrogen (N) combines with vanadium, titanium, and aluminum to form nitrides in the crude steel. If the added amount is 0.005% or less, sufficient nitride is not formed. If the added amount is 0.030% or more, the effect is saturated. Therefore, it is preferable to limit the added amount to 0.005-0.030%.

인(P)은 오스테나이트 결정입계에 편석되어 인성을 저하시키므로 그 상한을 0.030%로 제한하는 것이 바람직하다.Phosphorus (P) is segregated at the austenite grain boundary and degrades toughness, so the upper limit is preferably limited to 0.030%.

황(S)은 강중에서 망간과 결합하여 망간황화물을 형성한다. 망간황화물은 강의 피삭성을 중가시켜주므로 비조질강의 가공성 향상을 위해 황은 최소한 0.02% 이상 첨가하는 것이 바람직하다. 그러나 첨가량이 많아지면 인성을 떨어뜨리므로 상한을 0.10%로 제한하는 것이 바람직하다.Sulfur (S) combines with manganese in the steel to form manganese sulfide. Since manganese sulfide increases the machinability of steel, it is preferable to add at least 0.02% of sulfur in order to improve the workability of non-coated steel. However, when the added amount is large, toughness is lowered, so it is preferable to limit the upper limit to 0.10%.

상기와 같은 조성의 강을 주조한 다음 재가열후 강편압연 혹은 봉강압연을 한다.After casting the steel of the composition as described above, and then reheated, the steel sheet rolling or bar rolling.

이 과정은 단조하기에 적절한 크기로 사이징(Sizing) 압연하는 의미이므로 압연온도나 압하비는 크게 문제되지 않는다. 이 과정에서 주조조직의 파괴가 이루어지므로 가열온도는 높을수록 좋고 압하비는 클수록 좋다. 강편압연 혹은 봉강압연을 마친 소재는 다시 재가열하여 열간단조를 실시한다. 열간단조작업을 하기위해 재가열하는 온도는 너무 높으면 오스테나이트 입자가 과도히 성장하게 되어 인성을 떨어뜨리고, 너무낮으면 단조온도가 낮아지게 되어 다이스의 수명을 현저히 감소시킨다. 따라서 단조전 재가열온도는 1100-1300℃가 적절하다. 이후 열간단조시 단조온도는, 오스테나이트 영역범위에서는 낮을 수록 충격인성을 향상시키므로, Ar3온도까지(약 900℃) 낮추어도 무방하다.Since this process means sizing rolling to an appropriate size for forging, the rolling temperature and the rolling reduction ratio are not a big problem. Since the casting structure is destroyed in this process, the heating temperature is higher and the reduction ratio is better. After the rolled or rolled steel, the material is reheated and hot forged. If the reheating temperature for hot forging is too high, the austenite particles will grow excessively, leading to a decrease in toughness, and if too low, the forging temperature will be lowered, thereby significantly reducing the die life. Therefore, the reheating temperature before forging is appropriately 1100-1300 ℃. Since the forging temperature during hot forging, the lower the in the austenite range, the better the toughness of impact, the lower the temperature can be lowered to the Ar 3 temperature (about 900 ℃).

단조이후 냉각속도의 경우 200℃/min 이상으로 급냉이 되면 저온 조직이 생성되어 인성을 해칠수가 있고, 10℃/min 이하로 서냉이 되면 입성장 및 석출물 성장이 과도하게 진행되어 강도가 감소하게 된다.In the case of the cooling rate after the forging, if the quenching is more than 200 ℃ / min can form a low-temperature structure and harm the toughness. .

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예)(Example)

하기 표 3과 같은 조성이 강괴(크기 145mm×145mm×L)를 1200℃에서 2시간 가일후 총압하율 45%로 열가압연하여 80mm×150mmj×L인 강편을 제조하였다. 상기와 같이 압연한 강편을 1250℃로 재가열한 후 총압하율 70.84%로 열간단조하였다. 단조개시 온도는 1200℃로 하였으며 단조 종료온도는 1100℃로 관리하였다. 단조재의 최종두께는 13mm, 25mm였으며, 단조 후 공냉시켰다. 이들 단조재의 두께별 공냉각속도는 각각 42℃/min, 21℃/min(400-800℃ 구간평균냉각속도) 였다. 참고로 비교강의 화학성분도 발명강의 화학성분과 함께 표 3에 나타내었다.The steel ingot (size 145mm × 145mm × L) as shown in Table 3 was hot-rolled to a total pressure reduction rate of 45% after 2 hours at 1200 ° C. to prepare 80 mm × 150 mmj × L steel pieces. The rolled steel pieces were reheated at 1250 ° C. and hot forged at a total pressure drop of 70.84%. Forging start temperature was set to 1200 ℃ and forging temperature was controlled to 1100 ℃. Final thickness of the forging material was 13mm, 25mm, it was air-cooled after forging. The air cooling rates of the forgings according to thickness were 42 ° C / min and 21 ° C / min, respectively (400-800 ° C section average cooling rates). For reference, the chemical composition of the comparative steel is also shown in Table 3 together with the chemical composition of the inventive steel.

[표3]Table 3

상기와 같이 제조한 시편에 대하여 미세조직을 관찰하고 기계적 성질을 조사하여 이를 각각 제1도와 표4에 나타내었다.The microstructures of the specimens prepared as described above were observed and their mechanical properties were investigated, respectively.

[표4]Table 4

제1도의 미세조직사진은 42℃/min의 냉각속도로 냉각시킨 경우의 발명강 1과 발경강 2의 미세조직을 보여준다. 이에 따르면 본 발명강의 경우 조직은 페라이트와 펄라이트의 복합조직으토 구성되어 있다.The microstructure photograph of FIG. 1 shows the microstructures of the inventive steel 1 and the hardened steel 2 when cooled at a cooling rate of 42 ° C./min. According to this, in the case of the present invention, the structure is composed of a complex structure of ferrite and pearlite.

또한 발명강에는 다량의 망간 및 기타 합금원소들이 첨가되어 있음에도 불구하고 기계적 성질에 나쁜 영향을 미치는 저온조직은 포함되어 있지 않다.In addition, the invention steel does not contain low temperature structure which adversely affects the mechanical properties despite the addition of a large amount of manganese and other alloying elements.

또한 상기 표 4에 의하면 본 발명강의 경우 단조온도가 1100℃로 높은데도 불구하고 강도 및 인성이 매우 우수한 것을 알 수 있다.In addition, according to Table 4, it can be seen that the steel of the present invention has excellent strength and toughness despite the high forging temperature of 1100 ° C.

상기한 바와 같이 본 발명의 방법에 의하면 소입·소려과정을 거치지 않고도 강성과 인성이 우수한 고강도·고인성 열간단조용 비조질강의 제조가 가능한 것이다.As described above, according to the method of the present invention, it is possible to produce a high-strength, high-toughness hot forging non-ferrous steel excellent in rigidity and toughness without undergoing a hardening and annealing process.

Claims (1)

중량%로, C : 0.20-0.50%, Si : 0.40-0.80%, Mn : 1.0-2.0%, Cr : 0.05-0.50%, Mo : 0.01-0.1%, Ni : 0.02-0.10%, V : 0.05-0.20%, Ti : 0.01-0.04%, Al : 0.01-0.10%, N : 0.005-0.030%, P : 0.030% 이하, S : 0.02-0.10%, 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 강을 열간에서 강편압연 혹은 봉강압연하여 주조조직을 파괴한 후, 다시 1100-1300℃로 재가열후 열간단조를 실시하여 900℃ 이상의 온도에서 마무리 단조를 하고, 이후 400℃까지 10-200℃/min의 냉각속도로 냉각시킨 후 공냉하는 것을 특징으로 하는 고강도·고인성 열간단조용 비조질강의 제조방법.By weight%, C: 0.20-0.50%, Si: 0.40-0.80%, Mn: 1.0-2.0%, Cr: 0.05-0.50%, Mo: 0.01-0.1%, Ni: 0.02-0.10%, V: 0.05- Steel composed of 0.20%, Ti: 0.01-0.04%, Al: 0.01-0.10%, N: 0.005-0.030%, P: 0.030% or less, S: 0.02-0.10%, balance Fe and other unavoidable impurities Hot-rolled or bar-rolled to destroy the cast structure, and then reheated to 1100-1300 ℃ and hot forged to finish forging at a temperature of 900 ℃ or higher, and then 10-200 ℃ / min up to 400 ℃. A method for producing a high strength, high toughness hot forged steel, characterized in that the cooling at a cooling rate and then air cooled.
KR1019930023959A 1993-11-11 1993-11-11 Making method of high strength high toughness hot forging steel with no-thermal refining KR960006455B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930023959A KR960006455B1 (en) 1993-11-11 1993-11-11 Making method of high strength high toughness hot forging steel with no-thermal refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930023959A KR960006455B1 (en) 1993-11-11 1993-11-11 Making method of high strength high toughness hot forging steel with no-thermal refining

Publications (2)

Publication Number Publication Date
KR950014348A KR950014348A (en) 1995-06-16
KR960006455B1 true KR960006455B1 (en) 1996-05-16

Family

ID=19367860

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930023959A KR960006455B1 (en) 1993-11-11 1993-11-11 Making method of high strength high toughness hot forging steel with no-thermal refining

Country Status (1)

Country Link
KR (1) KR960006455B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149249B1 (en) * 2009-04-27 2012-05-25 현대제철 주식회사 Method for producing of V-Free microalloyed steel having equality quality of quenching and tempered carbon steel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100254820B1 (en) * 1997-08-27 2000-05-01 정몽규 Abrasion proof sintering alloy for exhaust valve seat
KR100262890B1 (en) * 1997-12-30 2000-08-01 정몽규 Fe system sintering alloy for valve tappet
KR100952010B1 (en) * 2007-11-14 2010-04-08 현대자동차주식회사 High Strength Microalloyed Steel composition for Connecting Rod and Manufacturing of Fracture Splittable connecting rods using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149249B1 (en) * 2009-04-27 2012-05-25 현대제철 주식회사 Method for producing of V-Free microalloyed steel having equality quality of quenching and tempered carbon steel

Also Published As

Publication number Publication date
KR950014348A (en) 1995-06-16

Similar Documents

Publication Publication Date Title
CN105886933B (en) Hot work die steel with high tempering softening resistance and high toughness and manufacturing method thereof
CN101338398B (en) High strength non-quenched and tempered free machining steel for automobile connecting bar and technological process thereof
CN111511936B (en) Wire rod for cold heading, worked product using the same, and method for manufacturing the same
CN113388784B (en) Low-temperature-resistant non-quenched and tempered steel and preparation method and application thereof
KR20010060772A (en) A non qt steel having superior strength and toughness and a method for manufacturing wire rod by using it
CN112877591A (en) High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof
TW202210637A (en) Method of manufacturing high strength steel tubing from a steel composition and components thereof
US11634803B2 (en) Quench and temper corrosion resistant steel alloy and method for producing the alloy
KR960006455B1 (en) Making method of high strength high toughness hot forging steel with no-thermal refining
KR100940038B1 (en) Non quenched and tempered steel for hot forging with excellent impact toughness and a method for manufacturing the same and the chassis parts for automobile using the same
JPH01176055A (en) Non-heat treated steel for hot forging having excellent machinability
JP2756556B2 (en) Non-heat treated steel for hot forging
JPH0425343B2 (en)
KR20030096892A (en) The Manufacturing method for high strength connecting rod of large commercial vehicle
KR950009168B1 (en) Making method of non-heat-treatment steel with hot forging
CN114134387A (en) 1300 MPa-tensile-strength thick-specification ultrahigh-strength steel plate and manufacturing method thereof
JP2000160286A (en) High-strength and high-toughness non-heat treated steel excellent in drilling machinability
KR100368552B1 (en) Hot forged steel with low material deviation and its manufacturing method
JP2000160285A (en) High-strength and high-toughness non-heat treated steel
KR970007028B1 (en) Method for manufacturing not-quenched and tempered steel
KR100398375B1 (en) A method of manufacturing as-rolled wire rods for
JPH10265891A (en) Ferrite/pearlite type non-heat treated steel
JP3584726B2 (en) High strength non-heat treated steel
KR100256360B1 (en) The manufacturing method for non quenched and tempered with excellent impact toughness
JPH0229725B2 (en) KOJINSEINETSUKANTANZOYOHICHOSHITSUBOKONOSEIZOHOHO

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050511

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee