KR100368552B1 - Hot forged steel with low material deviation and its manufacturing method - Google Patents

Hot forged steel with low material deviation and its manufacturing method Download PDF

Info

Publication number
KR100368552B1
KR100368552B1 KR10-1998-0038328A KR19980038328A KR100368552B1 KR 100368552 B1 KR100368552 B1 KR 100368552B1 KR 19980038328 A KR19980038328 A KR 19980038328A KR 100368552 B1 KR100368552 B1 KR 100368552B1
Authority
KR
South Korea
Prior art keywords
steel
hot
cooling
hot forging
low material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
KR10-1998-0038328A
Other languages
Korean (ko)
Other versions
KR20000019964A (en
Inventor
이덕락
박용식
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1998-0038328A priority Critical patent/KR100368552B1/en
Publication of KR20000019964A publication Critical patent/KR20000019964A/en
Application granted granted Critical
Publication of KR100368552B1 publication Critical patent/KR100368552B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 재질편차가 적은 열간단조용 비조질강의 제조방법에 관한 것으로서, 특히 자동차 및 산업기계의 부품중 열간단조 공정을 통해 제조하는 부품의 소재로 사용되는 재질편차가 적은 열간단조용 비조질강의 제조방법에 관한 것이다. 본 발명은 중량 %로, C: 0.20∼0.40%, Si: 0.10∼0.60%, Mn: 0.70∼2.0%, Cr: 0.25∼1.0, Ni: 0.1∼0.5, V: 0.05∼0.20%, N: 0.0050∼0.020, P: 0.030%이하, S: 0.030%이하, 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 강을 봉상으로 열간압연하여 주조조직을 파괴한 후, 다시 1100~1300℃로 재가열 후 열간에서 단조를 실시하며, 열간단조 후에는 자연방냉 혹은 강제공냉시키는 것을 특징으로 한다.The present invention relates to a method for manufacturing hot forged steel having a low material deviation, and more particularly, to a hot forged steel having a low material deviation, which is used as a material for a part manufactured through a hot forging process among parts of automobiles and industrial machinery. It relates to a manufacturing method. In the present invention, by weight%, C: 0.20 to 0.40%, Si: 0.10 to 0.60%, Mn: 0.70 to 2.0%, Cr: 0.25 to 1.0, Ni: 0.1 to 0.5, V: 0.05 to 0.20%, N: 0.0050 ~ 0.020, P: 0.030% or less, S: 0.030% or less, hot-rolled steel made of residual Fe and other unavoidable impurities in a rod form breaks the casting structure, and then reheats to 1100 to 1300 ° C, followed by hot Forging is carried out, and after hot forging, characterized in that the natural cooling or forced air cooling.

Description

재질편차가 적은 열간단조용 비조질강 및 그 제조방법{omitted}Hot forged steel with low material deviation and its manufacturing method {omitted}

본 발명은 재질편차가 적은 열간단조용 비조질강 및 그 제조방법에 관한 것으로서, 특히 자동차 및 산업기계의 부품중 열간단조 공정을 통해 제조하는 부품의 소재로 사용되는 재질편차가 적은 열간단조용 비조질강 및 그 제조방법에 관한 것이다.The present invention relates to a hot forging non-ferrous steel and a method of manufacturing the same, with a low material deviation, in particular, a hot forging non-ferrous steel used for the material of the parts produced by the hot forging process of the parts of automobiles and industrial machinery And to a method for producing the same.

일반적으로, 고강도의 자동차 및 산업기계 부품들은 도 1에서 보여주는 바와 같이 압연상태의 소재를 1200∼1250℃ 정도의 고온으로 재가열하고, 가열상태에서 최종부품 형상으로 열간 단조를 한 후 냉각시킨다. 이 후에, 소입소려 열처리를 실시하여 요구되는 강도 및 인성을 확보한다. 상술한 공정중 소입소려 열처리는 단조품을 850℃ 정도로 가열한 후 수냉 혹은 유냉시켜 재질을 경화시키는 소입(Quenching)공정과 이를 다시 600℃ 정도로 가열한 후 냉각시켜 경화된 강에 인성을 부여하는 소려(Tempering)공정으로 구분된다. 이와 같은 공정을 통하여 가공되는 종래의 열간단조용강의 소재로는 통상 하기 표 1과 같이 S45C, S50C와 같은 기계구조용 탄소강을 사용하며, 소입소려처리를 끝낸 최종 제품상태에서의 미세조직은 템퍼드 마르텐사이트(Temperod martensite)이다.In general, high-strength automotive and industrial machinery parts are reheated to a high temperature of about 1200 to 1250 ° C. as shown in FIG. 1, and hot forged to a final part shape in a heated state and then cooled. After that, a hardening and annealing treatment is performed to secure the required strength and toughness. The hardening and heat treatment during the above-described process is a quenching process in which a forged product is heated to about 850 ° C., followed by water cooling or oil cooling to harden the material, and a toughness is given to the hardened steel by heating and cooling it to about 600 ° C. again. It is divided into Tempering process. Conventional hot forging steel material processed through such a process is usually used as carbon steel for mechanical structures such as S45C, S50C as shown in Table 1 below, the microstructure in the final product state after the hardening and annealing treatment is tempered Martensite (Temperod martensite).

[표 1]TABLE 1

그러나, 70년대 중반부터 유럽 및 일본을 중심으로 소입소려 열처리를 생략하여 원가절감을 획기적으로 꾀할 수 있는 열간단조용 비조질강이 개발되어 실제로 사용되고 있으며 수요는 계속 증가하고 있는 추세이다. 아래에 공지된 열간단조용 비조질강의 특성을 상세히 설명한다.However, since the mid 70's, forged steel for hot forging has been developed and used, which can drastically reduce cost by eliminating hardening and heat treatment mainly in Europe and Japan, and the demand is continuously increasing. The characteristics of the known non-ferrous steel for hot forging are described in detail below.

대표적인 예로써 일본에서 개발한 비조질강은 탄소함량 0.40∼0.55%의 중탄소강에 석출물 형성원소인 바나듐(V)을 0.10% 함유하고 있는 강들로써 이 강들은 열간단조상태에서 강종에 따라 인장강도 78∼93kg/mm2정도를 가진다. 이러한 강을 기존 열처리강의 대체용으로 사용하고자 하는 경우, 이들 강을 열간단조 후에 냉각하는 과정에서 각각의 단조품들의 냉각속도가 균일하도록 특별한 냉각설비를 갖추어야 한다. 만일 이러한 냉각설비 없이 부위별 두께가 일정하지 않은 단조품을 냉각하는 경우, 부품별로 기계적 성질이 다를 수 있고, 또 하나의 부품 내에서 위치에 따라 기계적성질이 달라질 수 있다. 왜냐하면 단조후 냉각시 냉각속도가 달라지면 최종 미세조직 및 석출상태가 달라짐으로써 기계적 성질이 달라지기 때문이다.As a representative example, non-coarse steels developed in Japan are steels containing 0.40 to 0.55% of carbon and 0.10% of vanadium (V), a precipitate forming element. It has about 93kg / mm 2 . If these steels are to be used as a substitute for existing heat-treated steel, special cooling equipment should be provided to ensure that the cooling rates of the individual forgings are uniform during the cooling of these steels after hot forging. If the cooling of the forged part is not constant thickness of each part without such a cooling facility, the mechanical properties may be different for each part, the mechanical properties may vary depending on the position in another part. This is because the mechanical properties are changed by changing the final microstructure and precipitation state when the cooling rate is changed during cooling after forging.

지금까지 국내외에 개발된 비조질강들은 모두 이와같은 문제점들을 안고 있기 때문에 앞에서 언급한 바와 같이 특별한 냉각설비를 설치하던가 아니면 제품별 혹은 위치별 제질편차가 어느정도 발생하여도 사용에 지장이 없는 까다롭지 않은 용도에만 사용할 수 밖에 없다는 한계점이 있었다.All the non-steels developed at home and abroad have such problems, so it is not difficult to use them even if there is a special cooling facility as mentioned above or any quality deviations by product or location. There was a limitation that only available.

본 발명은 상술한 문제점을 해결하기 위한 것으로서, 강종 성분을 적절히 조정함으로써 냉각속도 변화에 따른 기계적 성질 변화를 극소화시켜 특별한 균일 냉각설비를 설치하지 않고서도 재질편차가 거의 없는 자동차부품 혹은 산업기계부품을 제조할 수 있는 재질편차가 적은 열간단조용 비조질강 및 그 제조방법을 제공하는 데 그 목적이 있다.The present invention is to solve the above-described problems, by appropriately adjusting the steel grade components to minimize the mechanical property changes according to the change in cooling rate to provide a car or industrial machine parts with little material deviation without installing a special uniform cooling equipment It is an object of the present invention to provide a non-coarse steel for hot forging and a method for producing the same, which can be produced with low material deviation.

도 1은 통상의 열간단조 부품의 제조 공정도;1 is a manufacturing process diagram of a conventional hot forging component;

도 2(a) 및 (b)는 본 발명강의 냉각속도에 따른 미세조직사진.Figure 2 (a) and (b) is a microstructure photograph according to the cooling rate of the present invention steel.

상술한 목적을 달성하기 위하여, 본 발명에 따르면, 재질편차가 적은 열간단조용 비조질강은 중량%로, C: 0.20∼0.40%, Si: 0.10∼0.60%, Mn: 0.70∼2.0%, Cr: 0.25∼1.0, Ni: 0.1∼0.5, V: 0.05∼0.20%, N: 0.0050∼0.020, P: 0.030%이하, S: 0.030%이하, 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성된다.In order to achieve the above object, according to the present invention, the forged steel for hot forging with low material deviation is in the weight%, C: 0.20 to 0.40%, Si: 0.10 to 0.60%, Mn: 0.70 to 2.0%, Cr: It is composed of 0.25 to 1.0, Ni: 0.1 to 0.5, V: 0.05 to 0.20%, N: 0.0050 to 0.020, P: 0.030% or less, S: 0.030% or less, balance Fe and other inevitable impurities.

또한, 본 발명에 따르면, 재질편차가 적은 열간단조용 비조질강의 제조방법은 상기 성분으로 조성된 강을 봉상으로 열간압연하여 주조조직을 파괴한 후, 다시 1100∼1300℃로 재가열 후 열간에서 단조를 실시하며, 열간단조 후는 자연방냉 혹은 강제공냉시키는 것을 특징으로 한다.In addition, according to the present invention, the method for producing hot forged steel having a low material deviation is to hot-roll the steel composed of the above components in the form of rods to break the casting structure, and then reheat it to 1100 to 1300 ° C. and then forge in hot. After the hot forging, characterized in that the natural cooling or forced air cooling.

이하, 본 발명의 바람직한 실시예에 대하여 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail.

본 발명에 따른 열간단조용 비조질강은 중량%로, C : 0.20∼0.40%, Si : 0.10∼0.60%, Mn : 0.70∼2.0%, Cr : 0.25∼1.0, Ni : 0.1∼0.5, V : 0.05∼0.20%, N : 0.0050∼0.020, P : 0.030%이하, S : 0.030%이하, 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성된다.The forging steel for hot forging according to the present invention is by weight, C: 0.20 to 0.40%, Si: 0.10 to 0.60%, Mn: 0.70 to 2.0%, Cr: 0.25 to 1.0, Ni: 0.1 to 0.5, V: 0.05 0.20%, N: 0.0050 to 0.020, P: 0.030% or less, S: 0.030% or less, balance Fe and other inevitable impurities.

이하, 본 발명에 있어서 첨가원소의 성분 범위 및 열간단조 조건의 한정 이유에 대하여 상세히 설명한다.Hereinafter, the reason for limitation of the component range of an additional element and hot forging conditions in this invention is demonstrated in detail.

탄소(C)는 강의 강도증가에 필요한 원소이다. 탄소함량이 너무 낮은 경우에는 필요강도의 확보가 불가능하고 너무 높은 경우에는 필요한 충격치 확보가 불가능하므로 탄소 함량은 0.20∼0.40%로 제한하는 것이 바람직하다.Carbon (C) is an element necessary for increasing the strength of steel. If the carbon content is too low it is impossible to secure the required strength, if too high it is impossible to secure the required impact value, it is preferable to limit the carbon content to 0.20 to 0.40%.

규소(Si)는 고용강화에 의한 강도 증가 효과를 얻기위해 0.60% 까지 첨가하나 그 이상 첨가되면 오히려 인성을 해치게 된다. 첨가량이 적으면 충분한 탈산 및 필요강도 확보가 곤란하므로 0.10%이상 첨가되는 것이 바람직 하다.Silicon (Si) is added up to 0.60% in order to increase the strength by solid solution strengthening, but if added above, the toughness is rather impaired. If the addition amount is small, it is preferable to add 0.10% or more because it is difficult to secure sufficient deoxidation and required strength.

망간(Mn)은 소입성 증가 및 고용강화 효과에 의하여 강의 강도를 증가시키기 위해 첨가한다. 그러나 2.0% 이상 첨가될 경우 인성을 감소시킨다. 따라서 인성을 크게 저하시키지 않고 필요강도를 얻기 위해서 망간의 함량은 0.70∼2.0%로 한정하는 것이 바람직하다.Manganese (Mn) is added to increase the strength of the steel by increasing the hardenability and enhancing the solid solution. However, addition of more than 2.0% reduces toughness. Therefore, the content of manganese is preferably limited to 0.70 to 2.0% in order to obtain the required strength without significantly reducing the toughness.

크롬(Cr)은 소입성을 증가시켜 빠른 냉강속도역에서 강의 강도를 증가시키기 위해 첨가한다. 그러나 1.0%이상 첨가될 경우 소입성이 지나치게 증가되어 베이나이트(Bainite)가 아닌 마르텐사이트(Martensite)가 생성되어 강의 충격인성을 지나치게 떨어뜨릴 수가 있다. 첨가량이 적으면 필요한 소입성 확보가 곤란하므로0.25%이상 첨가하는 것이 바람직하다.Chromium (Cr) is added to increase the hardenability and increase the strength of the steel in the fast cold rate range. However, when added more than 1.0%, the hardenability is excessively increased to produce martensite rather than bainite, which may degrade the impact toughness of the steel excessively. If the amount is small, it is difficult to secure necessary quenchability, so it is preferable to add 0.25% or more.

니켈(Ni)은 소입성 증가 및 고용 강화 효과에 의하여 강의 강도를 증가시키기 위해 첨가한다. 그러나 니켈은 고가의 원소이며 지나치게 많이 첨가되면 강도가 과도히 증가되므로 상한을 0.5%로 제한하는 것이 바람직하다. 첨가량이 0.1%미만이 되면 필요 강도 확보가 곤란하므로 니켈의 함량은 0.1∼0.5%로 한정하는 것이 바람직하다.Nickel (Ni) is added to increase the strength of the steel by increasing the hardenability and strengthening the solid solution. However, nickel is an expensive element and if it is added too much, the strength is excessively increased, so it is preferable to limit the upper limit to 0.5%. If the added amount is less than 0.1%, it is difficult to secure the required strength, so the content of nickel is preferably limited to 0.1 to 0.5%.

바나듐(V)은 냉각속도를 적절히 조정해 주면 냉각과정에서 미세한 질화물 및 탄질화물을 석출시켜 강의 경도를 효과적으로 높인다. 다량첨가시키는 경우 인성을 해치고 강의 가격이 비싸지고, 또 첨가량이 적으면 석출강화 효과가 미미하므로 첨가범위를 0.05∼0.20%로 한정하는 것이 바람직하다.Vanadium (V) effectively increases the hardness of the steel by depositing fine nitrides and carbonitrides during the cooling process if the cooling rate is properly adjusted. In the case of adding a large amount, it is preferable to limit the addition range to 0.05 to 0.20% because the toughness is reduced, the price of steel is high, and the addition amount is small, so that the precipitation strengthening effect is insignificant.

질소(N)는 바나듐 및/또는 결합하여 바나듐질화물 및/또는 바나듐탄질화물을 형성해서 강의 조직을 미세화시켜 강을 강화시킨다. 그러나, 다량 첨가되면 강이 취약하게 되므로 그 첨가범위를 0.0050∼0.020%로 한정하는 것이 바람직하다.Nitrogen (N) combines with vanadium and / or forms vanadium nitride and / or vanadium carbonitride to refine the structure of the steel to strengthen the steel. However, since the steel becomes brittle when a large amount is added, it is preferable to limit the addition range to 0.0050 to 0.020%.

인(P)은 오스테나이트 결정입계에 편석되어 인성을 저하시키므로 그 상한을 0.030%로 제한하는 것이 바람직하다.Phosphorus (P) is segregated at the austenite grain boundary and degrades toughness, so the upper limit is preferably limited to 0.030%.

황(S)은 편석이 잘되는 원소로써 강의 인성을 저하시키므로 첨가량을 0.030%이하로 제한하는 것이 바람직하다.Sulfur (S) is an element segregated well and lowers the toughness of the steel, so it is preferable to limit the addition amount to 0.030% or less.

되는 강을 봉상으로 열간압연하여 주조조직을 파괴한 후, 다시 재가열 후 열간에서 단조를 실시한다. 열간단조 후는 자연방냉 혹은 강제공냉시킨다.Hot-rolled steel is rod-shaped to break the cast structure, and then reheated and forged in hot. After hot forging, natural cooling or forced air cooling.

또한, 본 발명에 따르면, 열간단조용 비조질강의 제조방법은 상술된 조성의강을 주조한 다음 재가열하고 봉상 형태로 열간압연을 한다. 이 과정에서 주조조직을 파괴하기 위해서 압하비는 클수록 좋다. 열간압연을 마친 소재는 다시 1100 ∼1300℃로 재가열하고 가열된 상태에서 다양한 형태의 부품으로 단조를 실시한다.Further, according to the present invention, the method for producing hot forged steel is cast and then reheated and hot rolled in the form of a rod. The larger the reduction ratio is, the better it is to destroy the casting structure in this process. The hot rolled material is reheated to 1100 ~ 1300 ℃ and forged with various types of parts in the heated state.

이때, 열간단조작업을 수행하기 위해 재가열하는 온도가 1300℃보다 높으면 오스테나이트 입자가 과도히 성장하게 되어 강의 인성을 떨어뜨리는 반면에 1100℃보다 낮으면 단조온도가 낮아지게 되어 다이스의 수명을 현저히 감소시킨다. 따라서 단조 전 재가열 온도는 1100∼1300℃가 적절하다.At this time, when the reheating temperature for performing the hot forging operation is higher than 1300 ℃, the austenite grains are excessively grown to reduce the toughness of the steel, while if lower than 1100 ℃, the forging temperature is lowered significantly reducing the die life. Let's do it. Therefore, the reheating temperature before forging is appropriately 1100 to 1300 ° C.

그리고, 열간 단조시 단조온도는 오스테나이트 영역범위에서는 낮을수록 충격인성을 향상시키나 너무 낮으면 다이스 수명이 심하게 단축되므로 900∼1100℃범위가 바람직하다.In addition, when the forging temperature during hot forging is lower in the austenite range, the impact toughness is improved, but when it is too low, the die life is severely shortened, so the range of 900 to 1100 ° C. is preferable.

단조 후에는 대기중에서 자연 공냉시키거나 공기를 강제적으로 불어주는 형태의 강제 공냉을 시킨다. 강제공냉 정도의 빠른 냉각속도에서는 소입성 강화원소인 크롬과 니켈의 영향으로 강의 내부 조직은 베이나이트(Bainite)가 포함된 페라이트(Ferrite)와 펄라이트(Pearlite)의 혼합조직으로 되고, 이 때는 주로 베이나이트 조직에 의해 강화가 이루어진다. 중량이 큰 단조품을 자연 공냉시키는 정도의 느린 냉각속도에서는 페라이트와 펄라이트의 혼합조직에 미세한 바나듐 탄질화물이 석출된 상태가 되며, 이 경우는 석출강화에 의해 강도가 증가된다.After forging, forced air cooling in the form of natural air cooling in the atmosphere or forced air blowing. At fast cooling rates such as forced air cooling, the internal structure of the steel becomes a mixed structure of ferrite and pearlite containing bainite due to the influence of quenching hardening elements chromium and nickel. Strengthening is accomplished by knight organization. At a slow cooling rate such that the heavy forged product is naturally air cooled, fine vanadium carbonitride precipitates in the mixed structure of ferrite and pearlite, and in this case, the strength is increased by precipitation strengthening.

지금까지 설명한 강화기구를 다시 요약하면, 냉각속도가 빠른 경우에는 저온 경(敬)조직인 베이나이트가 생성되어 강도가 증가하며 냉각속도가 느려지면 베이나이트 조직이 감소하는 반면 바나듐 탄질화물의 석출이 늘어나서 강도가 증가된다.따라서, 어느 정도의 냉각속도 범위에서는 냉각속도 변화에 상관없이 강도는 일정하게 유지된다.In summary, the reinforcing mechanism described so far shows that when the cooling rate is high, bainite, which is a low temperature hard tissue, is formed, and the strength is increased, and when the cooling rate is slowed, the bainite structure decreases while precipitation of vanadium carbonitride increases. The strength is increased. Thus, in a certain cooling rate range, the strength remains constant regardless of the cooling rate change.

이하 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.The present invention will be described in more detail with reference to the following Examples.

[실시예]EXAMPLE

하기 표 2의 성분과 같은 발명강과 비교강을 소형강괴(160mm ×160mm ×L)로 제작한 후 1200℃에서 2시간 가열 후 열간에서 압연하여 두께 60mm판으로 제조하였다. 이 후 단조공정을 모사하기 위하여 시편을 다시 1100℃로 재가열한 후 여러 가지 냉각속도 (1℃/분 ∼ 1000℃/분)로 상온까지 냉각시켰다.Inventive steels and comparative steels, such as the components shown in Table 2 below, were made of small ingots (160 mm × 160 mm × L), and then heated at 1200 ° C. for 2 hours and then rolled hot to prepare 60 mm thick plates. Thereafter, the specimen was reheated to 1100 ° C. to simulate the forging process, and then cooled to room temperature at various cooling rates (1 ° C./min to 1000 ° C./min).

[표 2]TABLE 2

상기와 같이 제조한 발명강 및 비교강에 대하여 미세조직을 관찰하고 기계적 성질을 조사하였다.The microstructures of the inventive steels and the comparative steels prepared as described above were observed and their mechanical properties were investigated.

도 2(a)는 냉각속도 10℃/분으로 냉각하였을 때 조대한 페라이트와 펄라이트로 구성되어 있는 본 발명강의 미세조직이고, 도 2(b)는 냉각속도 100℃/분으로 냉각하였을 때 미세한 페라이트와 펄라이트 조직에 저온변태 조직인 베이나이트가 일부 혼재되어 있는 본 발명강의 미세조직이다.Figure 2 (a) is a microstructure of the present invention steel is composed of coarse ferrite and pearlite when cooled at a cooling rate 10 ℃ / min, Figure 2 (b) is a fine ferrite when cooled at a cooling rate 100 ℃ / min It is a microstructure of the present invention in which bainite, which is a low temperature transformation structure, is mixed in the pearlite structure.

하기의 표 3에 본 발명강과 비교강의 기계적 성질을 냉각속도별로 수록하였다.Table 3 below lists the mechanical properties of the inventive steel and the comparative steel for each cooling rate.

[표 3]TABLE 3

비교강의 경우, 냉각속도가 증가할수록 경도도 비례적으로 증가함을 알 수 있다. 이는 냉각속도가 증가함에 따라 미세조직이 페라이트 + 펄라이트 --> 베이나이트 -->마르텐사이트로 순차적으로 변화되기 때문이다. 이와는 달리 본 발명강의 경우는 냉각속도가 증가함에 따라 전체적으로 경도는 증가하는 경향을 보이고 있지만, 냉각속도가 증가하여도 경도가 증가되지 않고 거의 일정한 경도값을 보이는 구간이 있다. 즉, 냉각속도 10℃/분에서 100℃/분 구간은 경도가 280∼290Hv 내외로 일정한 값을 나타내고 있다. 이는 10℃/분 근처의 냉각속도에서 페라이트+펄라이트 조직에 바나듐 탄질화물이 미세하게 석출되어 석출강화 효과를 나타내고 있고, 100℃/분 구간에서는 바나듐 탄질화물이 거의 석출되지 않은 반면에 경(硬)조직인 베이나이트 조직이 페라이트+펄라이트 조직에 일부 형성되어 강을 강화시키기 때문이다.In the case of the comparative steel, the hardness increases proportionally as the cooling rate increases. This is because the microstructure is sequentially changed to ferrite + pearlite-> bainite-> martensite as the cooling rate increases. In contrast, in the case of the present invention, although the hardness tends to increase as the cooling rate increases, there is a section showing an almost constant hardness value without increasing the hardness even when the cooling rate increases. That is, in the cooling rate of 10 ° C / min and 100 ° C / min section, the hardness is a constant value of about 280 ~ 290Hv. This shows the precipitation strengthening effect of fine precipitation of vanadium carbonitride in the ferrite + pearlite structure at a cooling rate of about 10 ° C / min, and hardly the vanadium carbonitride was hardly precipitated at 100 ° C / min. This is because the bainite structure, which is a structure, is partially formed in the ferrite + pearlite structure to strengthen the steel.

따라서 본 발명강을 사용하는 경우, 열간단조 후 10∼100℃/분 정도의 범위내에서 냉각속도를 어떻게 변화시켜도 균질한 기계적 성질을 얻을 수 있다.Therefore, in the case of using the inventive steel, even if the cooling rate is changed within the range of about 10 to 100 ° C / min after hot forging, homogeneous mechanical properties can be obtained.

본 발명에 따르면, 강종 성분을 적절히 조정함으로써 냉각속도 변화에 따른 기계적 성질 변화를 극소화시켜 특별한 균일 냉각설비를 설치하지 않고서도 재질편차가 거의없는 자동차부품 혹은 산업기계부품을 제조할 수 있는 열간단조용 비조질강을 생산할 수 있는 효과가 있다.According to the present invention, by appropriately adjusting the steel grade component to minimize the change in mechanical properties according to the change of cooling rate for hot forging that can produce automobile parts or industrial machinery parts with little material deviation without installing a special uniform cooling equipment It is effective to produce non-crude steel.

Claims (2)

중량%로, C : 0.20∼0.40%, Si : 0.10∼0.60%, Mn : 0.70∼2.0%, Cr : 0.25∼1.0%, Ni : 0.1∼0.5%, V : 0.05∼0.20%, N : 0.005∼0.020%, P : 0.030%이하, S : 0.030%이하, 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성되고,By weight%, C: 0.20 to 0.40%, Si: 0.10 to 0.60%, Mn: 0.70 to 2.0%, Cr: 0.25 to 1.0%, Ni: 0.1 to 0.5%, V: 0.05 to 0.20%, N: 0.005 to 0.020%, P: 0.030% or less, S: 0.030% or less, balance Fe and other inevitable impurities 페라이트+펄라이트의 조직에 바나듐 탄질화물이 석출되어 있거나 또는 베이나이트 조직이 혼재되어 있는 결정구조를 갖는 것을 특징으로 하는 재질편차가 적은 열간단조용 비조질강.A non-alloyed steel for hot forging with low material deviation, characterized in that it has a crystal structure in which vanadium carbonitride is precipitated in ferrite + pearlite structure or bainite structure is mixed. 중량%로, C: 0.20∼0.40%, Si: 0.10∼0.60%, Mn: 0.70∼2.0%, Cr: 0.25∼1.0%, Ni: 0.1∼0.5%, V: 0.05∼0.20%, N: 0.005∼0.020%, P: 0.030%이하, S: 0.030% 이하, 잔부 Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 강을 봉상으로 열간압연하여 주조조직을 파괴하는 단계와,By weight%, C: 0.20 to 0.40%, Si: 0.10 to 0.60%, Mn: 0.70 to 2.0%, Cr: 0.25 to 1.0%, Ni: 0.1 to 0.5%, V: 0.05 to 0.20%, N: 0.005 to 0.020%, P: 0.030% or less, S: 0.030% or less, hot-rolling steel composed of residual Fe and other inevitable impurities to form a rod to break the cast structure; 1100∼1300℃로 재가열된 가열상태에서 열간단조를 실시하는 단계와,Performing hot forging in a reheated state at 1100 to 1300 ° C., 열간단조 후에 10∼100℃/분의 냉각속도로 냉각시키는 단계로 이루어지고,After hot forging, the step of cooling at a cooling rate of 10 ~ 100 ℃ / min, 페라이트+펄라이트의 조직에 바나듐 탄질화물이 석출되어 있거나 또는 베이나이트 조직이 혼재되어 있는 결정구조를 갖는 것을 특징으로 하는 재질편차가 적은 열간단조용 비조질강의 제조방법.A method for producing hot forged steel with low material deviation, characterized in that it has a crystal structure in which vanadium carbonitride is precipitated in ferrite + pearlite structure or bainite structure is mixed.
KR10-1998-0038328A 1998-09-16 1998-09-16 Hot forged steel with low material deviation and its manufacturing method Expired - Lifetime KR100368552B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0038328A KR100368552B1 (en) 1998-09-16 1998-09-16 Hot forged steel with low material deviation and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0038328A KR100368552B1 (en) 1998-09-16 1998-09-16 Hot forged steel with low material deviation and its manufacturing method

Publications (2)

Publication Number Publication Date
KR20000019964A KR20000019964A (en) 2000-04-15
KR100368552B1 true KR100368552B1 (en) 2003-05-09

Family

ID=19550858

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0038328A Expired - Lifetime KR100368552B1 (en) 1998-09-16 1998-09-16 Hot forged steel with low material deviation and its manufacturing method

Country Status (1)

Country Link
KR (1) KR100368552B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102728754A (en) * 2011-04-07 2012-10-17 江铃汽车股份有限公司 Reinforced control cooling method for non-tempered steel forging
KR102166601B1 (en) * 2018-11-26 2020-10-16 현대제철 주식회사 Hot forming part and manufacturing method thereof
CN113957321A (en) * 2021-10-14 2022-01-21 中天钢铁集团有限公司 Non-quenched and tempered steel for transmission shaft and preparation method of forging of non-quenched and tempered steel
CN115537663B (en) * 2022-10-13 2023-06-02 宝武杰富意特殊钢有限公司 High-silicon high-nitrogen non-quenched and tempered steel and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61279656A (en) * 1985-06-05 1986-12-10 Daido Steel Co Ltd Non-thermal steel for hot forging

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61279656A (en) * 1985-06-05 1986-12-10 Daido Steel Co Ltd Non-thermal steel for hot forging

Also Published As

Publication number Publication date
KR20000019964A (en) 2000-04-15

Similar Documents

Publication Publication Date Title
CA2341667C (en) Cold workable steel bar or wire and process
US8382918B2 (en) Steel wire material for spring and its producing method
RU2201468C2 (en) Steel for manufacture of part by cold plastic deformation and method of manufacture of such part
WO2009082091A1 (en) Hot rolled steel sheet having superior hot press forming property and high tensile strength, formed article using the steel sheet and method for manufacturing the steel sheet and the formed article
CN112877591B (en) High-strength and high-toughness hardware tool and steel for chain and manufacturing method thereof
WO2018215923A1 (en) Method for producing a steel part and corresponding steel part
KR100428581B1 (en) A non qt steel having superior strength and toughness and a method for manufacturing wire rod by using it
JPH11507103A (en) Method of producing hot-rolled high-strength steel containing copper and containing easy transformation-induced plasticity
KR102396706B1 (en) High carbon hot-rolled steel sheet and manufacturing method thereof
JP2004204263A (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing and its manufacturing method
KR101300158B1 (en) High carbon steel sheet superior in tensile strength and toughness and method for manufacturing the same
KR100368552B1 (en) Hot forged steel with low material deviation and its manufacturing method
KR100536660B1 (en) Steel wire with superior impact absorption energy at law temperature and the method of making the same
KR100403963B1 (en) Manufacturing method of high strength spring wire rod
KR950009168B1 (en) Making method of non-heat-treatment steel with hot forging
JPH0949065A (en) Wear resistant hot rolled steel sheet excellent in stretch-flanging property and its production
KR100903642B1 (en) High carbon steel sheet with excellent strength and toughness and manufacturing method
KR960006455B1 (en) Manufacturing method of non-coated steel for high strength, high toughness hot forging
KR20010060753A (en) Method for manufacturing low alloy type spring having high strength
KR100352607B1 (en) Manufacturing method of high stress spring steel wire
KR100256360B1 (en) The manufacturing method for non quenched and tempered with excellent impact toughness
KR100401571B1 (en) High strength microalloyed steel having bainite structure for hot forging and manufacturing method therefor
KR100232722B1 (en) Manufacturing method of high tension nut by hot forging
JPH07173531A (en) Production of high strength, high toughness non-heat treated steel for hot forging excellent in yield ratio
KR100415653B1 (en) Method for manufacturing micro-alloyed steel sheet having high strength and high ductility for hot-forging

Legal Events

Date Code Title Description
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

A201 Request for examination
PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

PN2301 Change of applicant

St.27 status event code: A-3-3-R10-R13-asn-PN2301

St.27 status event code: A-3-3-R10-R11-asn-PN2301

R18-X000 Changes to party contact information recorded

St.27 status event code: A-3-3-R10-R18-oth-X000

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 5

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 6

R17-X000 Change to representative recorded

St.27 status event code: A-5-5-R10-R17-oth-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 7

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 8

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 9

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 10

FPAY Annual fee payment

Payment date: 20121220

Year of fee payment: 11

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 11

R17-X000 Change to representative recorded

St.27 status event code: A-5-5-R10-R17-oth-X000

FPAY Annual fee payment

Payment date: 20140102

Year of fee payment: 12

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 12

FPAY Annual fee payment

Payment date: 20141219

Year of fee payment: 13

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 13

FPAY Annual fee payment

Payment date: 20160104

Year of fee payment: 14

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 14

FPAY Annual fee payment

Payment date: 20161219

Year of fee payment: 15

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 15

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

FPAY Annual fee payment

Payment date: 20180108

Year of fee payment: 16

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 16

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

EXPY Expiration of term
PC1801 Expiration of term

St.27 status event code: N-4-6-H10-H14-oth-PC1801

Not in force date: 20180917

Ip right cessation event data comment text: Termination Category : EXPIRATION_OF_DURATION

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18 Changes to party contact information recorded

Free format text: ST27 STATUS EVENT CODE: A-5-5-R10-R18-OTH-X000 (AS PROVIDED BY THE NATIONAL OFFICE)

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000