JPS58126051A - Compound rotary type surface grinder - Google Patents

Compound rotary type surface grinder

Info

Publication number
JPS58126051A
JPS58126051A JP539482A JP539482A JPS58126051A JP S58126051 A JPS58126051 A JP S58126051A JP 539482 A JP539482 A JP 539482A JP 539482 A JP539482 A JP 539482A JP S58126051 A JPS58126051 A JP S58126051A
Authority
JP
Japan
Prior art keywords
grinding
rotary
workpiece
rotating
grindstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP539482A
Other languages
Japanese (ja)
Inventor
Muneyo Komino
小美野 楝四
Toshio Shimada
島田 壽雄
Nobutome Miyazaki
宮崎 信止
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO SEIKI KOSAKUSHO KK
Original Assignee
TOKYO SEIKI KOSAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO SEIKI KOSAKUSHO KK filed Critical TOKYO SEIKI KOSAKUSHO KK
Priority to JP539482A priority Critical patent/JPS58126051A/en
Publication of JPS58126051A publication Critical patent/JPS58126051A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/04Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor involving a rotary work-table

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

PURPOSE:To improve a working accuracy as well as a surface roughness by a method wherein a work is applied with rotation, in the surface grinder grinding the upper surface of the work chucked to the upper surface of a rotary table with a vertical shaft grinding stone. CONSTITUTION:The big table 4, supported to a base 8 by a bearing, is driven to rotate by a motor 13 through a reduction gear 12 and a belt 11. A plurality of small tables 5 are supported by the bearings on the circumference of the big talbe 4 and are driven to rotate by the motor 15 through another reduction gear 16, belt 17, gears 19, 20 and another belts 22. The works are attached to the upper surfaces of the small tables 5 through chucks 14 and the upper surface thereof are ground by the grinding stones arranged on the vertical shafts while being rotated and revolved.

Description

【発明の詳細な説明】 本発明は、回転テーブル上にチャックした被加工物の上
面を室軸回転砥石によって研削する平面研削盤に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface grinding machine that grinds the upper surface of a workpiece chucked on a rotary table using a chamber-axis rotary grindstone.

第1図は従来一般に用いられている回転テーブル式室軸
砥石型の平面研削盤の一例を原理的に示した斜視図であ
る。回転テーブル1の上に複数個(本例においては4個
)のチャック手段2.2が設けられている。説明の便宜
上、上記4個のチャック手段の位置をそれぞれA位置、
B位置、C位置、及びD位置と名付ける。
FIG. 1 is a perspective view showing the principle of an example of a rotary table-type, chamber-axis grindstone type surface grinder that has been commonly used in the past. A plurality of (four in this example) chuck means 2.2 are provided on the rotary table 1. For convenience of explanation, the positions of the four chuck means are respectively referred to as A position,
Name them B position, C position, and D position.

A位置にあるチャック手段2の上方に室軸型の回転砥石
3が設けられている。
A chamber shaft type rotary grindstone 3 is provided above the chuck means 2 at position A.

被加工物をチャック手段2.2の上にそれぞれチャック
して回転テーブル1を一定角度(本例においては90°
)ずつ間欠的に回転させると、被加工物(図示せず)は
順次に砥石3の下方に当たるA位置に送りこまれ、支軸
型回転砥石3によって研削される。
The workpieces are each chucked onto the chuck means 2.2, and the rotary table 1 is rotated at a fixed angle (90° in this example).
), the workpieces (not shown) are sequentially sent to position A below the grindstone 3 and are ground by the spindle-type rotary grindstone 3.

第2図は上述の室軸型の回転砥石′t−2個設けた例で
ある。このように構成すると、回転テーブル1を間欠的
に90°ずつ左回り方向に回転させながら、例えばD位
置のチャック手段2に被加工物(図示せず)を取付け、
上記の被加工物がA位置に送られたとき回転砥石3aで
粗研削し、次いでB位置に送られたとき回転砥石3bで
仕上研削し、仕上げ研削を終えてC位置に送られたとき
チャック手段2から被加工物を取外すというように用い
て、多数の被加工物を連続的に平面研削することができ
る。また、第2図に示すように回転テーブル1?矢印E
、Fのごとく水平方向に往復させるように構成し、チャ
ック手段2,2にチャックした被加工物(図示せず)K
対して回転砥石5a、5bが相対的に水平直線運動する
ように構成した平面研削盤も実用化されている。
FIG. 2 shows an example in which two of the above-mentioned chamber shaft type rotary grindstones 't- are provided. With this configuration, the workpiece (not shown) is mounted on the chuck means 2 at the D position, for example, while the rotary table 1 is rotated counterclockwise intermittently by 90 degrees.
When the workpiece mentioned above is sent to position A, it is roughly ground by the rotary grindstone 3a, then when it is sent to the B position, it is finished ground by the rotary grindstone 3b, and when it is sent to the C position after finishing the finish grinding, it is chucked. By removing the workpiece from the means 2, a large number of workpieces can be surface ground continuously. Moreover, as shown in FIG. 2, the rotary table 1? Arrow E
, F, the workpiece (not shown) K is configured to be reciprocated in the horizontal direction and chucked by the chuck means 2, 2.
On the other hand, a surface grinding machine in which the rotary grindstones 5a and 5b are configured to move relatively horizontally and linearly has also been put into practical use.

上述のような従来形の平面研削盤においては、チャック
手段を介して回転テーブル1上に取付けた被加工物が砥
石5a、 3bに摺触して研削を受けている期間中、被
加工物は停止しているか又は直線運動しているだけであ
るから、その研削仕上面に第3図に示すごとくほぼ平行
な目を生じる。以上のような研削機構であるため、欠配
の理由により研削精度が損われている。
In the conventional surface grinding machine as described above, during the period when the workpiece mounted on the rotary table 1 via the chuck means is being ground by sliding on the grindstones 5a and 3b, the workpiece is Since it is stationary or only moving in a straight line, almost parallel eyes are produced on the ground surface as shown in FIG. Since the grinding mechanism is as described above, the grinding accuracy is impaired due to the lack of parts.

(i)  周知のでとく、研削精度をサブミクロンオー
ダーで論する場合、研削機を構成する部材の極めて僅か
な形状誤差、撓み、熱変形などによって個々の研削機特
有の精度個性が表われる。そして第3図に示したように
tlぼ平行な研削の目を残して方向性を有する研削面を
作り出した場合には上述の精度個性はそのtま研削誤差
となって研削面に表われる。
(i) As is well known, when discussing grinding accuracy on the submicron order, the unique accuracy characteristics of each grinding machine are revealed due to extremely slight shape errors, bending, thermal deformation, etc. of the members that make up the grinding machine. As shown in FIG. 3, when a directional grinding surface is created by leaving tl parallel grinding marks, the above-mentioned accuracy characteristics appear on the ground surface as grinding errors up to t.

(iD  前記の研削の目は即ち微細な凹凸であり、こ
のような凹凸が有ることは表面あらさの良くないことを
意味する。
(iD) The above-mentioned grinding marks are fine irregularities, and the presence of such irregularities means that the surface roughness is not good.

本発明は以上の事情に鑑みて為され、被加工物に2次元
平面内における方向性の無い研削を施すことにより前記
の精度個性を相殺し、かつ、研削砥石の粒度によってお
のずから定まる表面ららさよシも格段に高品質の表面あ
らさに仕上げることのできる平面研削盤を提供しようと
するものである。
The present invention has been made in view of the above circumstances, and by performing non-directional grinding on a workpiece in a two-dimensional plane, the above-mentioned accuracy characteristics can be offset, and the surface roughness, which is naturally determined by the grain size of the grinding wheel, can be improved. Another object of the present invention is to provide a surface grinding machine that can finish the surface with extremely high quality surface roughness.

本発明の原理は、方向性の無い研削を行なうため、被加
工物から離れた位置にある垂直な軸の回りに該被加工物
を連続的に回転(以下、公転と言う)させ、同時に被加
工物の被加工面を通る垂直な軸若しくは被加工面から直
近の位置にある垂直な軸の回りに該被加工物を回転(以
下、自転と言う)させなから室軸型回転砥石の下方に摺
触しつつその下方を一定の公転周速で通過させることに
より、2次元的にあらゆる方向の研削目が網目状に平均
して交錯する形に研削し得る装置を構成して精度個性を
相殺させ、かつ、研削目の凹凸を平坦化するものである
The principle of the present invention is to continuously rotate the workpiece (hereinafter referred to as revolution) around a vertical axis located at a distance from the workpiece, and simultaneously rotate the workpiece around a vertical axis located at a distance from the workpiece in order to perform non-directional grinding. The workpiece is rotated (hereinafter referred to as "autorotation") around a vertical axis that passes through the surface of the workpiece or a vertical axis that is closest to the surface of the workpiece. By slidingly touching the surface and passing under it at a constant revolving circumferential speed, we constructed a device that can perform two-dimensional grinding in which the grinding lines in all directions are averaged and intersected in a mesh pattern, thereby achieving individual accuracy. This offsets the unevenness of the grinding marks and flattens them.

第4図は本発明に係暮平面研削盤の一例を模式的に描い
た原理説明図である。
FIG. 4 is a principle explanatory diagram schematically depicting an example of a surface grinder according to the present invention.

粗研削用の室軸型回転砥石3a及び仕上研削用の室軸型
回転砥石3bは第2図に示し九従来形の研削機における
と同様の構成部材である。
The chamber-shaft rotary grindstone 3a for rough grinding and the chamber-shaft rotary grindstone 3b for finish grinding are the same components as those in the conventional grinding machine shown in FIG.

4は回転テーブルであって第2図に示した従来形の研削
機における回転テーブル1と類似の構成部材であり、本
発明装置においては後述の如く被加工物に公転を与える
役目を持っている。説明の都合上、以下仁れを大テーブ
ル4と言う。この大テーブル4を矢印G方向に連続的に
回転せしめる。
Reference numeral 4 denotes a rotary table, which is a component similar to the rotary table 1 in the conventional grinding machine shown in FIG. . For convenience of explanation, Jinre will hereinafter be referred to as large table 4. This large table 4 is continuously rotated in the direction of arrow G.

上記の大テーブル40円周に沿って、複数個(本例にお
いては6個)の回転小テーブル5,5・・・を設置する
A plurality of (six in this example) small rotary tables 5, 5, . . . are installed along the circumference of the large table 40.

上記の回転小テーブル5.5・・・の上面にそれぞれ被
加工物をチャックする手R(共に図示せず)を設け、か
つ、上記の回転小テーブル5,5・・・をそれぞれ矢印
H,H方向に回転せしめる。
A hand R (both not shown) for chucking the workpiece is provided on the upper surface of each of the small rotary tables 5,5..., and the small rotary tables 5,5... Rotate it in the H direction.

これKよシ、回転小テーブル5の上面の任意の各点はサ
イクロイドカーブを描いて運動する。
In this case, each arbitrary point on the upper surface of the small rotary table 5 moves in a cycloidal curve.

従って、回転小テーブル5の上面にチャックした被加工
物(図示せず)を基準にとって見ると、室軸型の回転砥
石3m、3bの軸心I、Jは渦巻状に運動しつつ接近し
、通過してゆき、このとき被加工物の上面を研削する。
Therefore, when looking at the workpiece (not shown) chucked on the upper surface of the small rotary table 5 as a reference, the axes I and J of the chamber-shaft type rotary grindstones 3m and 3b approach each other while moving in a spiral, As it passes, the upper surface of the workpiece is ground.

第5図は回転砥石の軸心が被加工物に接近する初期にお
いて被加工物表面を研削したときの研削目を模式的に示
した図で、読図を容易にするため、研削目を実際よりも
荒く表わしである。
Figure 5 is a diagram schematically showing the grinding marks when grinding the surface of the workpiece at the initial stage when the axis of the rotary grindstone approaches the workpiece. It is also a rough expression.

図の点には回転砥石が接近して被加工物6に接触した最
初の点である。点りは研削を中断した時点において回転
砥石の外周が被研削面に最も入り込んでいた点である。
The point in the figure is the first point at which the rotary grindstone approaches and contacts the workpiece 6. The point is the point at which the outer periphery of the rotary grindstone penetrates the most into the surface to be ground at the time when grinding is interrupted.

回転砥石の外周の最前部の点の軌跡は点Kから出発し、
大テーブル4の公転によって次第に被研削面の中央に接
近するが、これと同時に回転小テーブル5の自転によっ
て研削目を形成する円弧状の擦痕7の方向が変化してゆ
く。これにより、前記の最前部の点はKからLまで矢印
で示した渦巻状の軌跡を描く。
The trajectory of the foremost point on the outer periphery of the whetstone starts from point K,
As the large table 4 revolves, it gradually approaches the center of the surface to be ground, but at the same time, as the small rotary table 5 rotates, the direction of the arc-shaped scratches 7 forming the grinding marks changes. As a result, the frontmost point draws a spiral trajectory from K to L as indicated by the arrow.

このようにして研削を続け、被加工物が自転及び公転し
つつ回転砥石の下方を通過し終ると、第6図に示すよう
に円弧状の個々の研削目が研削面内であらゆる方向に均
等に細かく交錯して分布している。
Grinding continues in this way, and when the workpiece finishes passing under the rotary grindstone while rotating and revolving, individual arc-shaped grinding marks are distributed evenly in all directions within the grinding surface, as shown in Figure 6. It is distributed in a finely intertwined manner.

例えば、第3図のように回転砥石の軸心が矢印Mのごと
く図示の水平方向に被研削面を通過した結果円弧状の研
削目が縦方向に揃っているときに、上記の矢印Mの線と
対称に凹形に歪むような精度個性を持っているものと想
定した場合、第6図のように円弧状の研削目が均等に交
錯して密に分布していると精度個性が相殺されるので歪
として表われない。
For example, as shown in Figure 3, when the axis of the rotary grindstone passes through the surface to be ground in the horizontal direction as shown by arrow M, and the arc-shaped grinding marks are aligned vertically, Assuming that it has a precision characteristic that is concavely distorted symmetrically with a line, if the arc-shaped grinding marks are evenly intersected and densely distributed as shown in Figure 6, the precision characteristic will be canceled out. It does not appear as distortion.

また、研削目の凹凸が相互に均し合うため表面あらさが
格段に向上する。
In addition, since the unevenness of the grinding marks is evened out, the surface roughness is significantly improved.

第4図に示したように、自転と公転との複合回転を行な
わせる機械装置の具体的な実施例を第7図及び第8図に
示す。
As shown in FIG. 4, a concrete example of a mechanical device that performs a composite rotation of autorotation and revolution is shown in FIGS. 7 and 8.

第7図は、発明者らが完成した実用機の断面図であり、
第8図は第7図の中から複合回転の伝動部材のみを抽出
して描いた図である。
Figure 7 is a cross-sectional view of the practical machine completed by the inventors.
FIG. 8 is a diagram depicting only the complex rotation transmission member extracted from FIG. 7.

第8図において8は装置のペース、4は上記のベースに
対してベアリング9t−介して回転自在に支承した大テ
ーブルである。
In FIG. 8, 8 is the pace of the apparatus, and 4 is a large table rotatably supported on the base via a bearing 9t.

上記の大テーブル4にプーリ溝10ヲ形成し、■ベルト
11.及び減速機12ヲ介して公転駆動モータ16によ
って回転させる。
A pulley groove 10 is formed on the large table 4 described above, and a belt 11 is formed. and is rotated by a revolution drive motor 16 via a reduction gear 12.

回転小テーブル5,5を大テーブル4に対して回転自在
に支承し、その上面にチャック手段14゜14ヲ設ける
。上記のチャック手段14は電磁チャック、真空チャッ
クなど任意のものを用いることができる。
Small rotary tables 5, 5 are rotatably supported on a large table 4, and chuck means 14.14 are provided on the upper surface thereof. As the chuck means 14, any one such as an electromagnetic chuck or a vacuum chuck can be used.

15は自転駆動用のモータである。その回転出力は減速
機16.■ベルト17、同心軸18ヲ介して自転駆動歯
車19に伝えられ、これに噛合する自転伝動歯車20 
、20 ’!l−介して自転伝動プーリ21 、21 
t−回転させる。上記の自転伝動ブーIJ21,21は
コグペル)22.22及び自転被動プーリ25 、25
 t−介して回転小テーブル5,5を自転させる。
15 is a motor for rotational driving. Its rotational output is the speed reducer 16. ■Transmission is transmitted to the rotating drive gear 19 via the belt 17 and the concentric shaft 18, and the rotating transmission gear 20 meshes with the rotating drive gear 19.
, 20'! l - Rotating transmission pulleys 21, 21 through
T-Rotate. The above-mentioned rotating transmission booleans IJ21, 21 are Cogpel) 22.22 and rotating driven pulleys 25, 25
The small rotary tables 5, 5 are rotated through the t-t.

本実施例は、以上のようにして連続的に回転する大テー
ブルの上に、被加工物をチャックする手段を備えた複数
個の回転小テーブルを、上記の大テーブルの円周に沿っ
て配列することにより、前記の回転小テーブル上にチャ
ックされた被加工物が回転小テーブルと共に回転しなが
ら大テーブルの回転に伴って室軸回転砥石に摺触しつつ
その下方を通過するように構成しである。
In this embodiment, on top of the large table that rotates continuously as described above, a plurality of rotating small tables equipped with means for chucking the workpiece are arranged along the circumference of the large table. By doing so, the workpiece chucked on the small rotary table rotates together with the small rotary table, and as the large table rotates, the workpiece is configured to slide under the chamber shaft rotary grindstone and pass under it. It is.

第7図において、大テーブル4、回転小テーブル5、減
速機12,16、公転駆動モータ16、チャック手#1
14、自転駆動モータ15、同心軸18、自転駆動歯車
19、自転伝動歯車20、自転伝動プーリ21、自転伝
動コグベルト22、及び自転被動プーリ23は第8図に
ついて説明した構成部材である。
In FIG. 7, a large table 4, a small rotary table 5, reducers 12, 16, a revolution drive motor 16, and a chuck hand #1.
14, the rotation drive motor 15, the concentric shaft 18, the rotation drive gear 19, the rotation transmission gear 20, the rotation transmission pulley 21, the rotation transmission cog belt 22, and the rotation driven pulley 23 are the components described with reference to FIG.

前記の回転小テーブル5に固着した小テーブル軸5aと
自転被動プーリ23との間に電磁クラッチ24を介装接
続して回転小テーブル5の自転伝動を接の断操作自在な
らしめる。電磁クラッチ用の電線25はスリップリング
26ヲ介して引き出し、同心軸18に形成した中空部1
8a t−通して操作盤(図示せず)に接続する。
An electromagnetic clutch 24 is interposed and connected between the small table shaft 5a fixed to the small rotary table 5 and the rotating driven pulley 23, so that the rotation transmission of the small rotating table 5 can be freely connected/disconnected. The electric wire 25 for the electromagnetic clutch is pulled out through the slip ring 26 and inserted into the hollow part 1 formed in the concentric shaft 18.
Connect to the operation panel (not shown) through the 8a t-.

本実施例においてはチャック手段14として電磁チャッ
クを用い、励磁用の電流はスリップリング27、および
同28t−介して供給する。
In this embodiment, an electromagnetic chuck is used as the chuck means 14, and excitation current is supplied through the slip rings 27 and 28t.

本実施例において、大テーブル40回転速度は0.2〜
2r、p、m、の範囲内で調整可能であり、回転小テー
ブル5の回転速度は30〜150 r、p、zの範囲内
で調整可能である。本発明を実地に適用する場合、本実
施例のごとく自転速度を公転速度よりも大きく(10倍
以上)することが望ましい。これによシ、w、6図につ
いて説明したように研削の目に関して完全な等方性が得
られる。
In this embodiment, the rotation speed of the large table 40 is 0.2~
The rotation speed of the small rotary table 5 can be adjusted within the range of 30 to 150 r, p, z. When the present invention is actually applied, it is desirable that the rotation speed is higher than the revolution speed (10 times or more) as in this embodiment. This results in perfect isotropy with respect to the grinding pattern, as explained for Figure 6.

(第4図参照)本実施例における室軸回転砥石3a 、
 5bの径は205111.回転速度は1900 r、
 p、m、と380Or、p、m、  との2段切換で
ある。また、上下方向の送りはステップモータ(図示せ
ず)で行ない、1ステツプの送り量は0.25μmであ
る。
(See Fig. 4) Chamber shaft rotary grindstone 3a in this embodiment,
The diameter of 5b is 205111. The rotation speed is 1900 r,
It is a two-stage switching between p, m, and 380Or, p, m. Further, vertical feeding is performed by a step motor (not shown), and the feeding amount per step is 0.25 μm.

本実施例の平面研削盤?用いる場合、欠配のととく1パ
ス研削若しくは多バス研削のいずれか任意の操作方法が
可能である。
The surface grinder of this example? If used, any method of operation is possible, either single-pass grinding or multi-pass grinding.

1パス研削を行う際は回転小テーブル5の上面にチャッ
クした被加工物を前述のようにして矢印H方向に自転さ
せながら矢印G方向に公転させ、公転によって粗研削用
砥石3aの下を通過させ、次いでそのまま仕上研削用砥
石3bの下を通過させる。
When performing one-pass grinding, the workpiece chucked onto the upper surface of the small rotary table 5 is rotated in the direction of the arrow H and revolved in the direction of the arrow G as described above, and as it revolves, it passes under the rough grinding wheel 3a. Then, it is passed under the finish grinding wheel 3b as it is.

このような操作方法によれば多数の被加工物を順次に流
れ作業で粗研削・仕上研削できるので高能率が得られ、
かつ粗研削終了から仕上研削開始までの間にチャックを
解かないので誤差流入のチャンスが減るという長所もあ
る。ただし、サブミクロンオーダーの精度で研削を行な
うためには2個の立型回転砥石5* 、 3bの送り方
向(上下方向)の位置を超高精度で整合しなければなら
ないという技術的困難がある。この問題の解消について
は後述する。
With this operating method, a large number of workpieces can be rough-ground and finished-ground in sequence in assembly line operations, resulting in high efficiency.
Another advantage is that since the chuck is not released between the end of rough grinding and the start of finish grinding, there is less chance of error inflow. However, in order to perform grinding with submicron-order precision, there is a technical difficulty in that the positions of the two vertical rotary grindstones 5* and 3b in the feeding direction (vertical direction) must be aligned with ultra-high precision. . A solution to this problem will be described later.

多パス研削を行なう場合は、最初は仕上研削用の回転砥
石6bの送りを後退(上昇)させておき、被加工物をチ
ャックした回転小テーブル5.5t−自転させながら公
転させ、公転によシ粗研削用の回転砥石6aの下を複数
回繰返して通過させて粗研削する。次に粗研削用の回転
砥石5a ’に送り方向に後退(上昇)させ、仕上研削
用の回転砥石5bk送り方向に前進(下降)させ、被加
工物を自転させながら仕上研削用回転砥石3bの下面に
摺触しながら複数回繰返し通過させて仕上研削する。上
述の多パス研削全行なう場合も、当初退避させておいた
仕上研削用の回転砥石3bを正しい研削位置まで送り出
さねばならないので、粗、仕上両砥石5a、3bの送り
方向(上下)の位置交替を超高精度で整合して連動させ
ねばならないという技術的−難がある。
When performing multi-pass grinding, first the feed of the rotary grindstone 6b for finish grinding is set backward (increased), and the small rotary table 5.5t that chucks the workpiece is rotated and revolved. Rough grinding is performed by repeatedly passing under the rotary grindstone 6a for rough grinding a plurality of times. Next, the rotary grindstone 5a' for rough grinding is moved backward (raised) in the feed direction, and the rotary grindstone 5bk for finish grinding is moved forward (lowered) in the feed direction, and while the workpiece is rotating, the rotary grindstone 3b for finish grinding is Finish grinding is performed by repeatedly passing the material several times while sliding it on the bottom surface. Even when performing all of the multi-pass grinding described above, the rotary grindstone 3b for finish grinding that was initially evacuated must be sent to the correct grinding position, so the positions of both the rough and finish grindstones 5a and 3b in the feed direction (up and down) are changed. There is a technical difficulty in that they must be aligned and interlocked with ultra-high precision.

本実施例においては上記の両砥石5a 、 Sbの整合
を超高精度で行なうため、両砥石3a 、 !ibの送
シ手段(図示せず)を同一ベース(図示せず)に一体的
に固定することによシ両砥石3a 、 3b t−厳密
に一体的に上下方向の送り作動を可能ならしめ、更に個
々の砥石5a 、 5b f上記のベースに対して送り
方向に前後進せしめ得るように構成する。
In this embodiment, in order to align the above-mentioned two grinding wheels 5a, Sb with ultra-high precision, both grinding wheels 3a, ! By integrally fixing the feeding means (not shown) of the ib to the same base (not shown), both grinding wheels 3a and 3b can be strictly integrally fed in the vertical direction, Further, the individual grindstones 5a, 5bf are constructed so as to be able to move forward and backward in the feeding direction with respect to the above-mentioned base.

これにより、両砥石は前記のベース(図示せず)を介し
て一体的に結合され、該ベースを送り方向に前後進せし
めると整合を保ったtま一体的に前後進する。従って個
々の砥石5h 、 3b fベースに対して微小量だけ
前後進せしめ上記のベースを基準として両砥石の交替使
用を超高精度で行なうことができる。
As a result, both grindstones are integrally connected via the base (not shown), and when the base is moved back and forth in the feeding direction, they move back and forth as one unit while maintaining alignment. Therefore, the individual grinding wheels 5h and 3b can be moved forward and backward by a minute amount with respect to the base, and the two grinding wheels can be used alternately with extremely high precision using the above-mentioned base as a reference.

前記のベースは剛性の大きいスライドベースであっても
良く、若しくは両砥石3a、3bの電磁駆動送り装置を
電気的に連動せしめて同様の機能を果たせることもでき
る。
The base may be a highly rigid slide base, or the electromagnetic drive feeding devices of both grinding wheels 3a, 3b may be electrically interlocked to perform the same function.

本実施例のごとく複数個の研削用回転砥石を設けると前
述の1パス研削若しくは多パス研削のいずれか任意の研
削操作を行って高能率で平面研削をすることができる。
By providing a plurality of rotary grinding wheels as in this embodiment, it is possible to carry out any one of the above-described one-pass grinding or multi-pass grinding operations to perform surface grinding with high efficiency.

また、本実施例のごとく、前記複数個の研削用回転砥石
を機械的に若しくは電磁操作的に連結して一体的に上下
方向の送シ作動をすること、並びに個別的に上下方向の
送シ作動をすることができるように構成すると、前記複
数個の研削用回転砥石の送り作動を相互に超高精度で整
合せしめ、多数個の被加工物を連続的な流れ作業で平面
研削することができる。
Further, as in this embodiment, the plurality of rotary grindstones for grinding may be connected mechanically or electromagnetically to perform an integral vertical feeding operation, or individually. If configured so as to be able to operate, the feed operations of the plurality of rotary grinding wheels can be aligned with each other with ultra-high precision, and a large number of workpieces can be surface ground in a continuous flow operation. can.

上述のように複数個の回転砥石を連結して一体的に送り
作動せしめる場合、個々の砥石が不均一に減耗すると整
合が狂うので、減耗率の極微小な回転砥石(例えばダイ
ヤモンドグラインダ)を使用することが望ましい。
As mentioned above, when multiple rotating grindstones are connected and fed in an integrated manner, if the individual grindstones wear unevenly, alignment will be disrupted, so use a rotating grindstone with an extremely low wear rate (such as a diamond grinder). It is desirable to do so.

以上説明したように、本発明は、回転テーブルの上面に
チャックした被加工物の上面を支軸型の回転砥石によっ
て研削する平面研削盤において、連続的に回転する大テ
ーブルの上に、被加工物をチャックする手段を備えた複
数個の回転小テーブルを、前記の大テーブルの円周に沿
って配列し、前記の回転小テーブル上にチャックされた
被加工物が回転小テーブルと共に自転しながら大テーブ
ルの公転に伴って室軸回転砥石に摺触しつつその下方を
連続的に通過するように構成することにより、被加工物
の研削面に2次元的に等方の研削を施して研削f#度個
性を相殺せしめることができ、かつ、研削砥石の粒度に
よっておのずから定まる表面あらさよりも格段に高品質
の表面めらさに仕上げることができるという優れた実用
的効果を奏する。
As explained above, the present invention provides a surface grinding machine in which the upper surface of a workpiece chucked onto the upper surface of a rotary table is ground using a spindle-type rotary grindstone. A plurality of small rotary tables equipped with means for chucking objects are arranged along the circumference of the large table, and the workpieces chucked on the small rotary tables are rotated together with the small rotary tables. As the large table revolves, it slides against the chamber-axis rotary grindstone and continuously passes under it, thereby applying two-dimensional isotropic grinding to the grinding surface of the workpiece. It has an excellent practical effect of being able to offset the f# degree characteristics and finishing with a surface roughness of much higher quality than the surface roughness naturally determined by the grain size of the grinding wheel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ従来形の平面研削盤の各−
例の原理を模式的に表わした斜視図、第6図は従来形の
平面研削盤による研削面の模式図、第4図は本発明に係
る複合回転型平面研削盤の一実施例の原理を模式的に表
わした斜視図、第5図及び第6図は上記の実施例による
研削面を示し、第5図は研削初期における研削の目の分
布状態の模式図、第6図は研削終了時における研削の目
の分布状態の模式図である。第7図は本発明に係る複合
回転型の平面研削盤の一実施例の断面図である。第8図
は第7図の内、複合回転の伝動部材を抽出して描いた説
明図である。 3a・・・粗研削用の室軸回転砥石、3b・・・仕上研
削用の室軸回転砥石、4・・・大テーブル、5・・・回
転小テーブル、6・・・被加工物、7・・・円弧状の停
機、8・・・ベース、9・・・プーリ溝、11,17・
・・Vベルト、12.16・・・減速機、13・・・公
転駆動モータ、14・・・チャック手段、15・・・自
転駆動モータ、18・・・同心軸、19・・・自転駆動
歯車、20・・・自転伝動歯車、21・・・自転伝動プ
ーリ、22・・・コグベルト、23・・・自転被動プー
リ、24・・・電磁クラッチ、25・・・電磁クラッチ
用の電線、26,27゜28・・・スリップリング。 特許出願人 株式会社東京精機工作所 代理人 弁理士  秋  本   正  実第1図 第2図 第3図 33 第4図 第5図 第6図
Figures 1 and 2 are each of a conventional surface grinder.
FIG. 6 is a schematic diagram of a grinding surface by a conventional surface grinder, and FIG. 4 is a perspective view schematically showing the principle of an embodiment of a compound rotary surface grinder according to the present invention. A schematic perspective view, and FIGS. 5 and 6 show the ground surface according to the above embodiment, FIG. 5 is a schematic diagram of the distribution of grinding holes at the initial stage of grinding, and FIG. 6 is a diagram at the end of grinding. FIG. FIG. 7 is a sectional view of an embodiment of a compound rotary type surface grinder according to the present invention. FIG. 8 is an explanatory diagram depicting a compound rotation transmission member extracted from FIG. 7. 3a... Chamber shaft rotary grindstone for rough grinding, 3b... Chamber shaft rotary grindstone for finish grinding, 4... Large table, 5... Rotating small table, 6... Workpiece, 7 ...Arc-shaped stop, 8...Base, 9...Pulley groove, 11, 17.
...V belt, 12.16...Reducer, 13...Revolution drive motor, 14...Chuck means, 15...Rotation drive motor, 18...Concentric shaft, 19...Rotation drive Gear, 20... Rotating transmission gear, 21... Rotating transmission pulley, 22... Cog belt, 23... Rotating driven pulley, 24... Electromagnetic clutch, 25... Electric wire for electromagnetic clutch, 26 ,27°28...Slip ring. Patent applicant Tokyo Seiki Kosakusho Co., Ltd. Agent Patent attorney Tadashi Akimoto Figure 1 Figure 2 Figure 3 33 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、 回転テーブルの上面にチャックした被加工物の上
面全室軸回転砥石によって研削する平面研削盤において
、連続的に回転する大テーブルの上に、被加工物をチャ
ックする手段を備えた複数個の回転小テーブルを設置し
て、前記の回転小テーブル上にチャックされた被加工物
が回転小テーブルと共に回転しながら大テーブルの回転
に伴って室軸回転砥石に摺触しつつその下方を通過する
ように構成したことを特徴とする複合回転型の平面研削
盤。 2、前記の回転砥石は、これを複数個設けたことを特徴
とする特許請求の範囲第1項に記載の複合回転型の平面
研削盤。 五 前記の複数個の回転砥石は、相互に連結して一体的
に上下方向の送り作動をさせることができ、かつ、個別
に上下方向の送り作動をさせることもできる構造である
ことを特徴とする特許請求の範囲第2項に記載の複合回
転型の平面研削盤。
[Claims] 1. In a surface grinding machine that grinds the upper surface of a workpiece chucked onto the upper surface of a rotary table using a rotary grindstone with an axis in all chambers, the workpiece is chucked onto a continuously rotating large table. A plurality of small rotary tables equipped with means are installed, and the workpiece chucked on the small rotary tables is rotated together with the small rotary tables and comes into contact with the chamber-axis rotating grindstone as the large table rotates. A compound rotary type surface grinding machine characterized by being configured so that the machine passes under the machine while rotating the machine. 2. The compound rotary type surface grinding machine according to claim 1, wherein a plurality of said rotary grindstones are provided. (v) The plurality of rotating grindstones are characterized by having a structure in which they can be interconnected and integrally fed in the vertical direction, and can also be fed individually in the vertical direction. A compound rotary surface grinder according to claim 2.
JP539482A 1982-01-19 1982-01-19 Compound rotary type surface grinder Pending JPS58126051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP539482A JPS58126051A (en) 1982-01-19 1982-01-19 Compound rotary type surface grinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP539482A JPS58126051A (en) 1982-01-19 1982-01-19 Compound rotary type surface grinder

Publications (1)

Publication Number Publication Date
JPS58126051A true JPS58126051A (en) 1983-07-27

Family

ID=11609937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP539482A Pending JPS58126051A (en) 1982-01-19 1982-01-19 Compound rotary type surface grinder

Country Status (1)

Country Link
JP (1) JPS58126051A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178843A2 (en) * 1984-10-15 1986-04-23 Nissei Industrial Co., Ltd. Surface grinding machine
EP0180175A2 (en) * 1984-10-30 1986-05-07 Disco Abrasive Systems, Ltd. Surface grinding apparatus
JPS62152661A (en) * 1985-12-25 1987-07-07 Hitachi Seiko Ltd Flat surface grinding and device therefor
JPS63288655A (en) * 1987-05-19 1988-11-25 Nisshin Kogyo Kk Method and device for grinding ceramics
JP2006341354A (en) * 2005-06-10 2006-12-21 Denso Corp Machining device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178843A2 (en) * 1984-10-15 1986-04-23 Nissei Industrial Co., Ltd. Surface grinding machine
EP0178843B1 (en) * 1984-10-15 1992-01-15 Nissei Industrial Co., Ltd. Surface grinding machine
EP0180175A2 (en) * 1984-10-30 1986-05-07 Disco Abrasive Systems, Ltd. Surface grinding apparatus
JPS61109656A (en) * 1984-10-30 1986-05-28 Disco Abrasive Sys Ltd Surface grinding apparatus
EP0180175A3 (en) * 1984-10-30 1987-10-14 Disco Abrasive Systems, Ltd. Surface grinding apparatus
JPS62152661A (en) * 1985-12-25 1987-07-07 Hitachi Seiko Ltd Flat surface grinding and device therefor
JPS63288655A (en) * 1987-05-19 1988-11-25 Nisshin Kogyo Kk Method and device for grinding ceramics
JP2006341354A (en) * 2005-06-10 2006-12-21 Denso Corp Machining device
JP4622687B2 (en) * 2005-06-10 2011-02-02 株式会社デンソー Processing equipment

Similar Documents

Publication Publication Date Title
US6089959A (en) Polishing method and polishing apparatus
US6478660B2 (en) Apparatus of and method for polishing the outer circumferential portions of a circular plate-shaped work
US3745715A (en) Honing apparatus
JPH1133886A (en) Method and device for polishing inside surface of glass disc
JPS58126051A (en) Compound rotary type surface grinder
EP0722810A1 (en) Compression spring grinding machine
JP3355290B2 (en) Glass disk polishing machine
JP4250594B2 (en) Moving device and plane polishing machine using planetary gear mechanism
JP2003145349A (en) Gear tooth surface machining method and device
JPH0752009A (en) Rotary grinding machine
JPS61209874A (en) Spherical body working device
US2309936A (en) Lens grinding and polishing machine
CA1055254A (en) Abrasive machine for stones
JPS58132449A (en) Polisher
JP4425240B2 (en) Moving device and plane polishing machine using planetary gear mechanism
RU2215634C2 (en) Method and apparatus for working annular surfaces
JP2005014119A (en) High flatness processing method and high flatness processing device
JP2003170339A (en) Method and device for chamfering
JPS62213954A (en) Method and device for grinding peripheral surface of hard and brittle material
US4164828A (en) Abrasive machine for stones
JPH01210313A (en) Slicing device for wafer
US1635339A (en) Centerless grinding machine
JPS63300848A (en) Grinding working machine
SU558782A1 (en) Planetary grinding head
KR101537157B1 (en) Dressing apparatus of polishing pad