JPS58125973A - Solid-state image pickup element - Google Patents

Solid-state image pickup element

Info

Publication number
JPS58125973A
JPS58125973A JP57008446A JP844682A JPS58125973A JP S58125973 A JPS58125973 A JP S58125973A JP 57008446 A JP57008446 A JP 57008446A JP 844682 A JP844682 A JP 844682A JP S58125973 A JPS58125973 A JP S58125973A
Authority
JP
Japan
Prior art keywords
film
opaque
solid
photoelectric conversion
state image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57008446A
Other languages
Japanese (ja)
Inventor
Hiroshi Tanigawa
紘 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57008446A priority Critical patent/JPS58125973A/en
Publication of JPS58125973A publication Critical patent/JPS58125973A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To improve the optical sensitivity, by providing a transparent matter having condensing function to each photoelectric converting element, and at the same time distributing an opaque matter having the light shielding function between the transparent matters. CONSTITUTION:A condensing transparent film 20 is provided on the surface of an element containing a substrate 10, a photoelectirc converting element 11 and opaque films 14 and 14'. The surface of the film 20 has approximately a projected form and functions as a lens having the condensing function and set corresponding to each element 11. While an opaque matter 21 having the light shielding function is provided on the films 14 and 14' respectively and at the middle of the film 20. In such a constitution, an optical path 22 is refracted on the interface of the film 20 and reflected on the interface of the matter 21, and is led to a photoelectric converting region. With such optical path 22, the area of the photoelectric converting region is substantially increased.

Description

【発明の詳細な説明】 本発明は固体撮像素子に関する。[Detailed description of the invention] The present invention relates to a solid-state image sensor.

近年の半一導体・集積回路技術の急速な発達を背景にし
て固体撮像素子の開発が強力に推進されてきた。固体撮
像素子では画素の走査を電子的に行ない、かつ1画素配
列が写真蝕刻技術を用いて高精度に決定されるため、被
写体操像時の画像歪が発生しにくい利点があり、撮像管
の代替として製品化が期待されている。家庭用VTRの
テレビカメラとしての応用分野に限定するならば、十分
な画素数で十分表頁生画像を提供する固体撮像素子が実
用化されつつある。しかしながら、局用テレビカメラあ
るいれ情報処理端末としてのテレビカメラを想定するな
らば、未だ十分を性能を有する素子は開発されていない
The development of solid-state image sensing devices has been strongly promoted against the backdrop of recent rapid developments in semiconductor and integrated circuit technology. In solid-state imaging devices, pixels are scanned electronically, and the pixel arrangement is determined with high precision using photolithographic technology, so it has the advantage that image distortion is less likely to occur when imaging a subject, and the imaging tube It is expected that it will be commercialized as an alternative. If the field of application is limited to television cameras for home VTRs, solid-state image pickup devices that provide a sufficient front-page raw image with a sufficient number of pixels are being put into practical use. However, if a television camera for a station or a television camera is to be used as an information processing terminal, an element with sufficient performance has not yet been developed.

第15図は従来の固体撮像素子の構造を説明する概略構
成図であり、インターライン型固体撮像素子と称される
素子である。同図においては説明の便宜上(3X3)の
画素を有する素子が示されている。同図においてlFi
光電変換素子、2は垂直レジスタ、3は水平レジスタ、
4は出力回路、5は出力端子である。インターライン型
固体撮像素子は広く周知であるので動作の詳細は省略し
て、概要のみを記述する。−垂直走査周期(フィールド
あるいはフレーム)で光電変換された信号電荷は垂直ブ
ランキング期間内で垂直レジスタ2の各対応する位置に
、並列的に移動する。第1図において社、光電変換素子
1と垂直レジスタ2との中間に設置された前記移動を制
御する転送ゲート電極および、所望の移動が達成される
ようなチャネルストッパ等が省略されている。垂直レジ
スタ2へ並列的に移動した信号電荷は、−水平走査周期
毎に下方へ順次移動する。一方、水平レジスタ3は水平
ブランキング期間内に前記垂直レジスタ2より信号電荷
を受は取り、第1図の左方向へ順次移動させる。この移
動により出力回路4に達した信号電荷は順次電圧信号に
変換され、出力端子5を介して時系列画信号が出力され
る。第1図のレジスタ2,3は電荷結合素子、あるいは
パケッリレー素子で構成されているアナレグシフトレジ
スタである。かかる動作に従って、−垂直走査周期かか
って前記信号電荷が全て読み出されている開光電変換素
子1は入射光量に応じた電荷量を蓄積することKなる。
FIG. 15 is a schematic diagram illustrating the structure of a conventional solid-state image sensor, which is called an interline solid-state image sensor. In the figure, for convenience of explanation, an element having (3×3) pixels is shown. In the same figure, lFi
Photoelectric conversion element, 2 is a vertical register, 3 is a horizontal register,
4 is an output circuit, and 5 is an output terminal. Since the interline solid-state image sensor is widely known, details of its operation will be omitted and only an outline will be described. - Signal charges photoelectrically converted in a vertical scanning period (field or frame) are moved in parallel to corresponding positions of the vertical register 2 within a vertical blanking period. In FIG. 1, a transfer gate electrode installed between the photoelectric conversion element 1 and the vertical register 2 to control the movement, a channel stopper to achieve the desired movement, etc. are omitted. The signal charges that have been moved in parallel to the vertical register 2 are sequentially moved downward every -horizontal scanning period. On the other hand, the horizontal register 3 receives and removes signal charges from the vertical register 2 during the horizontal blanking period, and sequentially moves them to the left in FIG. The signal charges reaching the output circuit 4 due to this movement are sequentially converted into voltage signals, and a time-series image signal is outputted via the output terminal 5. Registers 2 and 3 in FIG. 1 are analog shift registers composed of charge-coupled devices or packet relay devices. According to such an operation, the photoelectric conversion element 1 from which all the signal charges have been read out over a -vertical scanning period accumulates an amount of charge corresponding to the amount of incident light.

−垂直周期終了時刻に再び光電変換素子1から垂直レジ
スタ2への信号電荷の移動が達成される。このインター
ライン型素子は、光電変換素子群とレジスタ群とが空間
的に多重化されているため、チップ面積が小さくなり歩
留まり向上、低価格化が期待できる。しかし、レジスタ
群上には光遮蔽のための不透明膜を配置しない限り、信
号電荷を垂直方向に移動させている期間(即ち垂直走査
期間になる)に入射光により発生した電荷が前記信号電
荷に付加されるため、スミアと呼ばれる白線が再生画像
に現われ、画質を極度に劣化させることが知られている
。かがる理由により、不透明膜がレジスタ群上に配列さ
れなければならない。通常不透明膜はアルミニウム等の
金属電極で構成されている。第2図は第1図に一部した
A−A’部の構造断面図を示している。なお同図では、
説明の便宜上、概念的な構造断面図が示されているに過
ぎず、寸法的には実際の素子と必らずしも対応している
とは限らない。同図において10は第一の導電型(例え
ばp型)の半導体基板、11は第二の導電型(例えばn
型)の拡散層で、基板10との間にp−n接合を形成し
、光電変換素子1を構成している。12は垂直レジスタ
2を構成する一つの転送電極、13は前述した転送ゲー
ト電極、14および14’は前記不透明膜、15はチャ
ネルストッパである。転送電極12゜ゲート電極13は
図示されていない絶縁膜を介して基板10上に配置され
、さらに、不透明膜14゜14′は電極12.13とも
絶縁膜を介して配置されている。チャネルストッパ15
は、拡散層ll内に蓄積された信号電荷がゲート電極1
3の下を経由して転送電極12の下へ一方向に移動させ
るために設けられており、該信号電荷に対して紘電位障
壁として作用する。
- The movement of signal charges from the photoelectric conversion element 1 to the vertical register 2 is achieved again at the end of the vertical cycle. In this interline type element, the photoelectric conversion element group and the register group are spatially multiplexed, so the chip area is reduced, and yield improvement and cost reduction can be expected. However, unless an opaque film for light shielding is placed on the register group, the charges generated by the incident light during the period in which the signal charges are moved in the vertical direction (that is, the vertical scanning period) will be transferred to the signal charges. It is known that, as a result, a white line called smear appears on the reproduced image, severely degrading the image quality. For this reason, an opaque film must be arranged over the registers. The opaque film is usually composed of metal electrodes such as aluminum. FIG. 2 shows a structural cross-sectional view of a portion AA' shown in FIG. 1. In the same figure,
For convenience of explanation, only a conceptual structural cross-sectional view is shown, and the dimensions do not necessarily correspond to the actual elements. In the figure, 10 is a semiconductor substrate of a first conductivity type (for example, p-type), and 11 is a semiconductor substrate of a second conductivity type (for example, n-type).
A p-n junction is formed between the photoelectric conversion element 1 and the substrate 10 using a diffusion layer of the type (type), forming the photoelectric conversion element 1. 12 is one transfer electrode constituting the vertical register 2, 13 is the aforementioned transfer gate electrode, 14 and 14' are the opaque films, and 15 is a channel stopper. The transfer electrode 12 and the gate electrode 13 are arranged on the substrate 10 via an insulating film (not shown), and the opaque film 14 and 14' are arranged together with the electrodes 12 and 13 via an insulating film. Channel stopper 15
The signal charge accumulated in the diffusion layer ll is transferred to the gate electrode 1.
The signal charge is provided to move the signal charge in one direction to the bottom of the transfer electrode 12 via the bottom of the transfer electrode 12, and acts as a voltage barrier against the signal charge.

本発明によれば、−導電型を有する半導体基板に、多数
の光電変換素子が配列された園体操像素子において、当
該光電変換素子表面上に諌素子毎に設けられた分光特性
および透過特性が、前記光電変換素子の配置された領域
毎に異なっている集光機能を有する透明体と、該素子毎
に設けられた透明体の中間に遮光機能を有する不透明体
とが配置されたことを特徴とする園体操像素子が得られ
る。
According to the present invention, in an image element in which a large number of photoelectric conversion elements are arranged on a semiconductor substrate having a conductivity type, the spectral characteristics and transmission characteristics provided for each element on the surface of the photoelectric conversion element are , characterized in that a transparent body having a light gathering function that differs for each area where the photoelectric conversion elements are arranged, and an opaque body having a light blocking function are arranged between the transparent bodies provided for each of the elements. A digital image element having the following properties is obtained.

次に本発明について実施例を挙げて詳細な説明を行なう
Next, the present invention will be described in detail with reference to examples.

第3図は本発明の一実施例の断面図である。同図は第2
図に対応して描かれており、第2図と同一番号は同一構
成要素を示している。ただし、説明の便宜上構成要素の
一部は図面から削除されている。同図において20は基
板10、光電変換素子11、不透明膜14.14’から
成る素子の表面に設けられた集光用透明膜である。該層
20の材質については問わないが、後述する加工性を考
慮する樹脂であることが望ましい。この膜200表面は
大略凸型形状になる様加工されており、該20が該11
にそれぞれ対応して設けられた集光機能を有するレンズ
として作用する。21は14゜14’上に設けられた遮
光機能を有する不透明体であり、複数個配列された該2
0.の中間に配置されることになる。該不透明体21は
金属で形成され、大略凸型形状になる様加工された21
0表面で光反射が良好に行なわれることが好ましい。第
3図に示した本実施例における光感度増大の例が入射光
線22.23として例示されている022は20の界面
で屈折し、光電変換領域へ導かれる光路が、23は20
の界面で屈折し、21の界面で反射した後、光電変換領
域へ導かれる光路が示されている。かかる光路により、
本実施例が該光電変換領域の面積を実効的に増大せしめ
ていることが理解される。次に本実施例の具体的な構成
例について述べる。第2図に示された14.14’を含
む構造体は周知の技術により実現される。
FIG. 3 is a sectional view of one embodiment of the present invention. The same figure is the second
The same numbers as in FIG. 2 indicate the same components. However, for convenience of explanation, some of the constituent elements are deleted from the drawings. In the figure, reference numeral 20 denotes a light-collecting transparent film provided on the surface of the element consisting of the substrate 10, the photoelectric conversion element 11, and the opaque films 14 and 14'. The material of the layer 20 does not matter, but it is preferably a resin that takes into consideration processability, which will be described later. The surface of this film 200 is processed to have a roughly convex shape, and the 20 is shaped like the 11
It acts as a lens having a light condensing function provided correspondingly to each of the lenses. Reference numeral 21 denotes an opaque body having a light shielding function provided on 14° 14', and a plurality of opaque bodies arranged on
0. It will be placed in the middle. The opaque body 21 is made of metal and processed to have a generally convex shape.
It is preferable that light reflection is performed well on the zero surface. An example of increased photosensitivity in this embodiment shown in FIG. 3 is illustrated as incident light beam 22.
The optical path that is guided to the photoelectric conversion region after being refracted at the interface 21 and reflected at the interface 21 is shown. With such an optical path,
It is understood that this example effectively increases the area of the photoelectric conversion region. Next, a specific example of the configuration of this embodiment will be described. The structure including 14.14' shown in FIG. 2 is realized using known techniques.

14.14’の表面を機械的に保護するために、通常、
OVD技術による絶縁膜16が設けられる。
14. To mechanically protect the 14' surface, typically
An insulating film 16 is provided using OVD technology.

次に、14.14’を被うべくアルミ等の金属が全面に
蒸着され、フォトリソグラフィ技術とエツチング技術に
より21が形成される。21の表面形状、即ち、大略凸
形は、エツチング過程におけるサイドエッチ効果を用い
ることも可能であり、また、矩形状に形成された後、電
界研磨工程により、該研磨が電界の集中し易い鋭角部で
急速に進行することを利用して、凸型形状を実現しても
良い、さらに、14.14’の上部にのみ無電界鍍金に
よりニッケル・アルミ等の金属を矩形状に形成した後、
前記電界研磨工程により凸型形状を実現しても良い。ま
た、イオンエツチング、ドライエツチング等の技術によ
り該形状を実現することも可能である。一方、予め21
の如き形状に形成された該不透明体を当該構造物上に機
械的に取りつけても良い。かかる場合においては、ハイ
ブリッド集積回路、あるいは、高密度実装技術分野で用
いている、電気接続用の金属バンプが利用できる。また
、ゼpグラフィー技術で用いられるトナーや、金属膜で
被れたマイクロカプセル等も利用できる。当該物質では
、通常、球状形状であるので、14.14’上への固定
は樹脂や接着剤を用いることKなる。なお、21は14
′と16の絶縁膜を介することなく、直接接触させても
良い。
Next, a metal such as aluminum is deposited on the entire surface to cover 14 and 14', and 21 is formed using photolithography and etching techniques. The surface shape of No. 21, that is, the roughly convex shape, can be achieved by using the side etch effect in the etching process, and after being formed into a rectangular shape, the polishing can be performed by an electric field polishing process to form an acute angle where the electric field tends to concentrate. A convex shape may be achieved by taking advantage of the rapid progress at the 14.14' part.Furthermore, after forming a metal such as nickel or aluminum into a rectangular shape by electroless plating only on the upper part of 14.14',
A convex shape may be realized by the electric field polishing process. Further, it is also possible to realize this shape using techniques such as ion etching and dry etching. On the other hand, 21
The opaque body formed in the shape may be mechanically attached to the structure. In such cases, metal bumps for electrical connection, which are used in the field of hybrid integrated circuits or high-density packaging technology, can be used. Furthermore, toner used in zepography technology, microcapsules covered with a metal film, etc. can also be used. Since the material is usually spherical in shape, it can be fixed onto 14.14' using a resin or adhesive. In addition, 21 is 14
' and 16 may be brought into direct contact without intervening the insulating film.

一方、20の形成方法については、21を含む当該構造
体上に一様に塗布された樹脂、接着剤等の透明物質を、
硬、化する以前に、型押し等により当該形状を実現でき
る。より具体的には、溶剤に溶かされた透明膜20の材
料がスピンナ等により素子上に一様にコーティングされ
、所望の温度、雰囲気中で熱処理され固化される。次に
、透明膜200表面形状と逆の形状を有する母型を用い
て、透明膜20を加熱しながら上面から該母型を圧着押
圧する@この加熱温度を適当に設定するならば、透明膜
20の表面に当該形状が堀りこまれることになる。この
方法は、フレネルレンズやマイクロプリズムの製造技術
と類似しているので、当諌公費の技術者にとっては容易
な問題である。かかる方法によれば、21の上部にも、
一部の当該透明膜が存在することに表るが、本質的な問
題とはならない。勿論、上記の製造技術で用いられてい
る他の方法をも利用できることは明らかである。第3図
に示した実施例によれば、この固体撮像素子領域に入射
した光線は、不透明膜14.14’上の領域においてさ
え、光電変換素子11へ集光されるため光の利用率が天
場に上昇し、光感度の上昇が達成される。
On the other hand, regarding the method for forming 20, a transparent substance such as resin or adhesive is uniformly applied onto the structure including 21,
The shape can be achieved by embossing or the like before it hardens. More specifically, the material of the transparent film 20 dissolved in a solvent is uniformly coated onto the element using a spinner or the like, and is heat-treated and solidified at a desired temperature and atmosphere. Next, using a matrix having a shape opposite to the surface shape of the transparent film 200, press the matrix from above while heating the transparent film 20.@If this heating temperature is set appropriately, the transparent film The shape will be carved into the surface of 20. This method is similar to the manufacturing technology of Fresnel lenses and microprisms, so it is an easy problem for the public engineer. According to this method, also in the upper part of 21,
Although this is reflected in the presence of some of the transparent film, it is not an essential problem. Of course, it is clear that other methods used in the above manufacturing techniques can also be used. According to the embodiment shown in FIG. 3, the light beam incident on the solid-state image sensor area is focused on the photoelectric conversion element 11 even in the area on the opaque film 14, 14', so that the light utilization rate is reduced. Ascends to heaven and achieves an increase in light sensitivity.

第4図は本発明の他の実施例を示す断面図であり、第3
図と同一番号は同一構成要素を示している。同図におい
て、40は20と同様な集光用透明体であり、41は2
1と同様な不透明体であり40.41とで構造体42を
形成している。この実施例においては、第3図の場合と
異なり、仁はインターライン型固体撮像素子とは別個に
製造され、不透明膜14および14′の上部に密接ある
いは近接して配置されていることに特徴がある。
FIG. 4 is a sectional view showing another embodiment of the present invention;
The same numbers as in the figures indicate the same components. In the figure, 40 is a light condensing transparent body similar to 20, and 41 is 2
It is an opaque body similar to 1 and forms a structure 42 with 40 and 41. This embodiment is characterized in that, unlike the case shown in FIG. 3, the layer is manufactured separately from the interline solid-state image sensor and is disposed closely or close to the upper part of the opaque films 14 and 14'. There is.

この方法では、パッケージ内に組み立てられた素子上に
目合わせを行ないながら構造体口の位置決め、固定を行
なう必要があることは言うまでもない。しかしながら、
構造体(主を別工程にて製造できるため、該製造プロセ
スが半導体製造プロセスにより制約を受けることなく任
意に選択できる利点もある。
Needless to say, in this method, it is necessary to position and fix the structure opening while aligning the structure onto the element assembled in the package. however,
Since the structure (mainly) can be manufactured in a separate process, there is an advantage that the manufacturing process can be arbitrarily selected without being restricted by the semiconductor manufacturing process.

第5図は本発明の他の実施例を示す図であり、第3図と
同一番号は同一構成要素を示している。
FIG. 5 is a diagram showing another embodiment of the present invention, and the same numbers as in FIG. 3 indicate the same components.

同図において、50は20と同様な集光用透明膜であり
、51は不透明体である。この実施例では第3図の実施
例の場合と異なり、透明膜50の分光感度特性が一様で
ないことに特徴がある。即ち基板lO内に等間隔で配置
された光電変換素子11の各要素に対して、異なる分光
感度特性が透明膜50により決定されている。−例とし
て挙げるならば、同図の11の上部に位置する領域52
id緑を通過させる特性が、また、52(7)右側に位
置する領域■は青を通過させる特性が、1ヱの左側に位
置する領域54は赤を通過させる特性が与えられている
。かかる構成法によれば、単一の素子でカラー撮像が可
能になる。換言するならば第5図の実施例は単板カラー
撮像素子の色フィルタに集光機能を併せ持たせたことに
なる。かかる実施例においても、従来の色フィルタを有
する撮像素子の光感度特性を大幅に改善できることが可
能である。勿論第5図の実施例の透明膜50の構造を第
4図のように変更することも可能である。インターライ
ン型固体撮像素子を一例として用いたが本発明はこれに
限ることなく、−次元あるいは二次元の撮像素子および
MO8M、0IDW固体撮像素子にも広く応用できるこ
とは明らかであり、これらは全て本発明に包含されるも
のとする。また、集光用透明体および遮光用不透明体の
形状に?いて鉱−次元的な形状のみを例示したが、二次
元的な形状、即ち、ピラミッド型あるいは円錐形の逆型
が形状として採用されているものも容易に推−され、こ
れらも全て本発明に包含されるものである。
In the figure, 50 is a light condensing transparent film similar to 20, and 51 is an opaque body. This embodiment is different from the embodiment shown in FIG. 3 in that the spectral sensitivity characteristics of the transparent film 50 are not uniform. That is, different spectral sensitivity characteristics are determined by the transparent film 50 for each element of the photoelectric conversion element 11 arranged at equal intervals within the substrate IO. - For example, the area 52 located at the top of 11 in the figure
The area (2) located to the right of id 52(7) has a characteristic of passing blue, and the area 54 located to the left of 1(e) has a characteristic of passing red. According to this configuration method, color imaging is possible with a single element. In other words, in the embodiment shown in FIG. 5, the color filter of the single-chip color image sensor also has a light condensing function. Even in such an embodiment, it is possible to significantly improve the photosensitivity characteristics of an image sensor having a conventional color filter. Of course, it is also possible to change the structure of the transparent film 50 in the embodiment shown in FIG. 5 as shown in FIG. Although an interline solid-state image sensor is used as an example, it is clear that the present invention is not limited to this and can be widely applied to -dimensional or two-dimensional image sensors and MO8M, 0IDW solid-state image sensors, all of which are covered by this book. shall be covered by the invention. Also, what about the shape of the transparent body for light gathering and the opaque body for light shielding? Although only mineral-dimensional shapes are shown as examples, two-dimensional shapes, that is, pyramid-shaped or inverted conical shapes, are easily recommended, and all of these are also included in the present invention. It is included.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はインターライン型固体撮像素子の概念的な構造
平面図、第2図はそのA−A’断面図、第3図、第4図
、第5図は本発明の実施例の断面図である。 1・・・・・・光電変換素子、2・・・・・・垂直レジ
スタ、3・・・・・・水平レジスタ、4・・・・・・出
力回路、5・・・・・・出力端子、10・・・・・・基
板、11・・・・・・拡散層、12・・・・・・垂直レ
ジスタの転送電極、13・・・・・・転送ゲート電極、
14,14’・・・・・・不透明膜、20,40.50
・・・・・・透明体、21,41.51・・・・・・不
透明体、222.23・・・・・・入射光線。 代胃人弁理士内原  奸 第1回 ′$2UjJ $3図 第4図 ′$5図
FIG. 1 is a conceptual structural plan view of an interline solid-state image sensor, FIG. 2 is a sectional view taken along line AA', and FIGS. 3, 4, and 5 are sectional views of embodiments of the present invention. It is. 1...Photoelectric conversion element, 2...Vertical register, 3...Horizontal register, 4...Output circuit, 5...Output terminal , 10...substrate, 11...diffusion layer, 12...transfer electrode of vertical register, 13...transfer gate electrode,
14,14'... Opaque film, 20,40.50
...transparent body, 21,41.51...opaque body, 222.23...incident light ray. Proxy Patent Attorney Uchihara Uchihara Part 1'$2UjJ $3 Figure 4'$5 Figure

Claims (1)

【特許請求の範囲】[Claims] 一導電型を有する半導体基板に、多数の光電変換素子が
配列された固体撮像素子において、当該光電変換素子表
面上に該素子毎に設けられた分光特性および透過特性が
前記光電変換素子の配置された領域毎に異っている集光
機能を有する透明体と、骸素子毎に設けられた透明体の
中間に遮光機能を有する不透明体とが配置されたことを
特徴とする固体撮像素子。
In a solid-state image sensor in which a large number of photoelectric conversion elements are arranged on a semiconductor substrate having one conductivity type, the spectral characteristics and transmission characteristics provided for each element on the surface of the photoelectric conversion element are determined by the arrangement of the photoelectric conversion elements. What is claimed is: 1. A solid-state image sensing device comprising: a transparent body having a light condensing function that differs for each area; and an opaque body having a light blocking function disposed between the transparent body provided for each skeleton element.
JP57008446A 1982-01-22 1982-01-22 Solid-state image pickup element Pending JPS58125973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57008446A JPS58125973A (en) 1982-01-22 1982-01-22 Solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57008446A JPS58125973A (en) 1982-01-22 1982-01-22 Solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPS58125973A true JPS58125973A (en) 1983-07-27

Family

ID=11693345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57008446A Pending JPS58125973A (en) 1982-01-22 1982-01-22 Solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPS58125973A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721999A (en) * 1983-04-26 1988-01-26 Kabushiki Kaisha Toshiba Color imaging device having white, cyan and yellow convex lens filter portions
JPH0485960A (en) * 1990-07-30 1992-03-18 Toshiba Corp Solid state pickup device and manufacture thereof
JP2007173717A (en) * 2005-12-26 2007-07-05 Fujifilm Corp Solid imaging element, and method for manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138979A (en) * 1979-04-17 1980-10-30 Olympus Optical Co Ltd Solid pickup device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138979A (en) * 1979-04-17 1980-10-30 Olympus Optical Co Ltd Solid pickup device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721999A (en) * 1983-04-26 1988-01-26 Kabushiki Kaisha Toshiba Color imaging device having white, cyan and yellow convex lens filter portions
JPH0485960A (en) * 1990-07-30 1992-03-18 Toshiba Corp Solid state pickup device and manufacture thereof
JP2007173717A (en) * 2005-12-26 2007-07-05 Fujifilm Corp Solid imaging element, and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP2917920B2 (en) Solid-state imaging device and method of manufacturing the same
US7816169B2 (en) Colors only process to reduce package yield loss
JP2600250B2 (en) Solid-state imaging device and video camera
JPH10270672A (en) Solid-state image pickup element
JPH05335531A (en) Solid-state imaging device
JPH11177075A (en) Solid state image pickup device
JP2002270809A (en) Solid-state image sensor and its control method
US4148051A (en) Solid-state imaging device
JPH0964329A (en) Solid-state image pickup element
JPS58125973A (en) Solid-state image pickup element
JPH04343470A (en) Solid-state image pickup device
TWI253597B (en) Solid-state image sensor for improving sensing quality and manufacturing method thereof
JPS59122193A (en) Solid-state image pickup device
JPH069229B2 (en) Method of manufacturing solid-state imaging device
JPS61154283A (en) Solid image pick-up element
JPH0799297A (en) Solid-state image pick-up device
JPH04259256A (en) Solid state image sensor
JPH0265386A (en) Solid-state image pickup element
JPH0682813B2 (en) Method for manufacturing infrared detection solid-state imaging device
JPS58125966A (en) Solid-state image pickup device
Erhardt et al. Silicon cylindrical lens arrays for improved photoresponse in focal plane arrays
JPS5866470A (en) Solid-state image pickup device
JPH06163864A (en) Solid-state image pickup device
JPS5870685A (en) Solid-state image pickup device
JPH04348565A (en) Solid-state image pickup device