JPS58124284A - Gas laser excited in lateral direction - Google Patents

Gas laser excited in lateral direction

Info

Publication number
JPS58124284A
JPS58124284A JP698482A JP698482A JPS58124284A JP S58124284 A JPS58124284 A JP S58124284A JP 698482 A JP698482 A JP 698482A JP 698482 A JP698482 A JP 698482A JP S58124284 A JPS58124284 A JP S58124284A
Authority
JP
Japan
Prior art keywords
pressure
compressor
gas
laser head
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP698482A
Other languages
Japanese (ja)
Inventor
Jiro Toyama
外山 二郎
Noriji Kariya
教治 苅谷
Shigeru Masuda
茂 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP698482A priority Critical patent/JPS58124284A/en
Publication of JPS58124284A publication Critical patent/JPS58124284A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0979Gas dynamic lasers, i.e. with expansion of the laser gas medium to supersonic flow speeds

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain a required wind speed and to make the laser device compact, by making the pressure on air blowing side high and the pressure on air exchausting side low by using a principle of jet. CONSTITUTION:A medium gas, which is highly pressurized by a compressor 8, is jetted through a minute opening in a duct connected to a laser head 6. At the contact surface of a duct 11 on the air blowing side and a the laser head 6, the minute opening comprising a slit 12 or hole is provided. The medium gas is sent to the gap between discharge electrode 1 at a supersonic speed or at the required speed under the pressure in the duct 11 on the air blowing side owing to the width of the slit 12. Meanwhile the gas on the exhausting side is sucked by the compressor and the pressure is reduced. The wind speed corresponds to a ratio P1/P2, where P1 is a pressure from the minute opening part provided at the laser head part to the compressor and P2 is a pressure at the laser head part where the discharge electrodes are provided. The magnitudes of P1 and P2 depend on the capacity of the compressor, the size of the minute opening part, and the volume of the duct to which the laser head is connected.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は循環ガスの風速を高めることによシレーザ性能
を向上させる横方向励起ガスレーザの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to the structure of a laterally pumped gas laser that improves laser performance by increasing the wind speed of circulating gas.

(b)  技術の背景 直方向に放電を行い、レーザ媒体のガスを励起してレー
ザ発光を行う装置である。
(b) Background of the Technology This is a device that generates a discharge in the perpendicular direction to excite the gas in the laser medium to emit laser light.

こ\で励起効率を向上させるためには放電により励起し
た媒体ガスのエネルギー準位間に反転分布の状態を維持
することが必要でそのためには媒体ガスを冷却してガス
の下位準位の分子密度を下げること\レーザ発光を行っ
た媒体ガスを速かに移動させることが必要であり、その
ために媒体ガスを循環させる方法がとられている。
In order to improve the excitation efficiency, it is necessary to maintain a state of population inversion between the energy levels of the medium gas excited by the discharge.To do this, the medium gas is cooled and the molecules in the lower levels of the gas are It is necessary to lower the density and quickly move the medium gas that has emitted laser light, and for this purpose a method of circulating the medium gas is used.

こ\で光軸に垂直な放電を行う電極にはモリブデン(M
o)、  タングステン(W)などからなる針状電極或
はと汎と銅(Cu )などからなる水冷′14極とを対
向させたものが用いられており、外部電源よシ各針状電
極あたり数百mAの放電々流が流れている。
In this case, molybdenum (M
o) A needle-like electrode made of tungsten (W) or the like is used, with a water-cooled electrode made of copper (Cu) facing each other, and an external power source is used for each needle-like electrode. A discharge current of several hundred mA is flowing.

本発明Fi媒体ガスを放電々極部に高速で送風させるレ
ーザ装置の構成についてのものである。
This figure relates to the configuration of a laser device that blows the Fi medium gas of the present invention to the discharge electrode portion at high speed.

(c)  従来技術と問題点 横方向励起ガスレーザの代表的なものとして炭図は従来
構成をとるCO,レーザの斜視図、第2図はとのレーザ
において媒体ガスの循環ループの構成図また第3図は放
電々極部の断面構造の説明図である。第1図において放
電々極1はW或はM。
(c) Prior art and problems As a typical example of a horizontally pumped gas laser, Charcoal diagram is a perspective view of a CO laser with a conventional configuration, and Figure 2 is a configuration diagram of the circulation loop of the medium gas in the laser. FIG. 3 is an explanatory diagram of the cross-sectional structure of the discharge electrode portion. In FIG. 1, the discharge electrode 1 is W or M.

からなる数10本の針状電極が2〜5crnの放電間隙
を距て\−列に対向し乍ら配列している陽極および陰極
よりなυ、これは電流制限抵抗を通じて図示されていな
い高圧電源に結線されて放電路を形成している。
An anode and a cathode are arranged in rows with several tens of needle-like electrodes separated by a discharge gap of 2 to 5 crn. This is connected to a high-voltage power supply (not shown) through a current limiting resistor. are connected to form a discharge path.

次に放電々極1および媒体ガス流2と直交して放電々極
部の側面にはレーザ窓3が設けてあり、この延長線上に
は全反射ミラーと透視ミラーからなる光共振器があり、
透視ミラーを通じてレーザ出力がとり出される。
Next, a laser window 3 is provided on the side surface of the discharge pole part perpendicularly to the discharge pole 1 and the medium gas flow 2, and an optical resonator consisting of a total reflection mirror and a see-through mirror is located on the extension of this window.
Laser output is extracted through a see-through mirror.

こ\でCO,レーザの媒体ガスはC02,窒素(N゛り
およびヘリウム(He)よりなるが、放電に際してはそ
れぞれの針状′#L極あた#)数百mAの電流が流れる
ので、媒体ガスの温度上昇は甚しく、そのため放電々極
を狭京都に設け、強制送風方式金とって冷却が行われて
いる。
In this case, CO, the laser medium gas consists of CO2, nitrogen (N), and helium (He), but during discharge, a current of several hundred mA flows between each needle-shaped L pole. The temperature of the medium gas rises significantly, so the discharge electrodes are placed in a narrow space and a forced air method is used for cooling.

第3図は狭゛q部に設けられている3に篭々極1の一面
構造であるが、放電々極部においては冷却のために毎秒
20〜50mの流速が必嶽である。
FIG. 3 shows a one-sided structure with a cathode pole 1 installed in the narrow q part, and the discharge pole part requires a flow rate of 20 to 50 m/sec for cooling.

一方循環する媒体ガスは冷却とともに放電の際に解離し
たガスの後光および反応生成物の除去が必要でそのため
媒体ガスは熱交換器およびガス純化器を通す必要がある
On the other hand, the circulating medium gas needs to be cooled and the halo of gas dissociated during discharge and the reaction products removed, and therefore the medium gas must be passed through a heat exchanger and a gas purifier.

第2図は従来の媒体ガスの循環ループを示したもので軸
流ファン或はターボファンからなる送風機4により媒体
ガスをガス純化器5を刈って放電々極を狭窄部にもつレ
ーザヘッド6に送風し、放電領域を通過する際加熱され
た媒体ガスは熱交換器7において冷却されている。然し
この循環ループにおいて熱交換器7、ガス純化器5およ
び放電々極の狭窄部の存在は何れも媒体カスの送風を妨
けており、か\る循環ループで毎秒20〜59 mの流
速を得るためには口径60〜80αの大型送風機或は特
別に設計された^速回転ファンを使用すると共にターク
トも大型のものを使用する必要がある。また円形の送風
機ダクトから短冊形のレー3− ザヘッド6への接続を行うため複雑なダクト形状となり
また大型送風機の騒音も間腕とされていた。
Fig. 2 shows a conventional medium gas circulation loop, in which a blower 4 consisting of an axial fan or a turbo fan blows the medium gas through a gas purifier 5 and passes it through a laser head 6 having discharge poles in the constricted part. The medium gas that is blown and heated while passing through the discharge area is cooled in the heat exchanger 7. However, in this circulation loop, the presence of the heat exchanger 7, the gas purifier 5, and the constricted portion of the discharge electrode all impede the blowing of the media scum, and the flow rate of 20 to 59 m/s in this circulation loop is reduced. In order to obtain this, it is necessary to use a large blower with a diameter of 60 to 80α or a specially designed ^ speed rotation fan, and a large turret. In addition, since the circular blower duct is connected to the rectangular laser head 6, the duct has a complicated shape, and the noise of the large blower is also a problem.

(d)  琵明の目的 木兄り1は噴流の原理を用いて送風側を高圧にまた排気
側を低圧にすることにょシ必要な風速を得ると共にレー
ザ装置を小型化することを目的とするものである。
(d) Purpose of BimeiKiori 1 uses the principle of jet flow to obtain the necessary wind speed to create high pressure on the blowing side and low pressure on the exhaust side, and to miniaturize the laser device. It is something.

(e)  発明の構成 木兄りJは送風機に代えてガス圧縮機音用いると共に放
電々極の送風側に微小開口を設けて高圧とし、一方放電
々鞄の排風側を充分に犬きくして低圧にすることによシ
必要な風速を得るものである。
(e) Structure of the Invention Kieri J uses gas compressor sound instead of a blower, and creates a high pressure by providing a small opening on the blowing side of the discharge pole, and on the other hand, makes the exhaust side of the discharge pole sufficiently loud. By lowering the pressure, the required wind speed can be obtained.

第4図は本発明にか\る横方向励起ガスレーザの斜視図
、第5図は媒体ガスの循環ループの構成図また第6図は
放電々極部の断面構造である。
FIG. 4 is a perspective view of a laterally excited gas laser according to the present invention, FIG. 5 is a configuration diagram of a medium gas circulation loop, and FIG. 6 is a cross-sectional structure of a discharge electrode portion.

本先明は第5図に示すように媒体ガスの循環ループが圧
縮機8、ガス純化器5、レーザヘッド6および熱交換機
7から構成されるもので、圧縮機8で高圧化した媒体ガ
スをレーザヘッド6に接続されているダクトの微小し1
0よシ噴出きせること4− を本旨とするものであり、ガス純化器5は画用側、低圧
側の何れに接続されていても差支えない。
In the present invention, as shown in Fig. 5, the medium gas circulation loop is composed of a compressor 8, a gas purifier 5, a laser head 6, and a heat exchanger 7. Microscopic duct 1 connected to laser head 6
The main purpose is to emit gas from zero to zero, and the gas purifier 5 may be connected to either the gas side or the low pressure side.

第4図はガス純化器5が高圧側に設けらitている場合
であり本実施例の場合、熱交換器は排風側ダクト9の中
に圧縮機8に隣接して設けられている。
FIG. 4 shows a case where the gas purifier 5 is installed on the high pressure side, and in this embodiment, the heat exchanger is installed adjacent to the compressor 8 in the exhaust side duct 9.

すなわち媒体ガスはモータ10によ、!lll駆動され
る圧縮器8により加圧されるが、この場合送風側ダクト
11は従来構造と違って大口径のものを用いる必要はな
い。
In other words, the medium gas is transferred to the motor 10! The pressure is applied by the compressor 8 driven by the compressor 8, but in this case, unlike the conventional structure, there is no need to use a large diameter duct 11 on the blowing side.

次に送風側ダクト11のレーザヘッド6への接触面では
、スリット或は孔などよシなる微小開口が設けられでい
て、放電々極の間隙部に送風されるよう設計式れている
Next, the contact surface of the air-blowing duct 11 with the laser head 6 is provided with a minute opening such as a slit or a hole, and is designed to blow air into the gap between the discharge electrodes.

第6図はスリット12を設けた実施例の断面図でスリッ
ト12の幅および送風側ダク)11の圧力により媒体ガ
スは超音速乃至必要な風速で放電々極1の間隙に送風さ
れ、一方排風側は圧縮機により吸引され減圧されている
。すなわち本発明は噴流の原理を用いて大きなに速を得
る本のであって、風速はレーザヘッドに設けられている
微小開口部と圧縮機までの圧力P、と放電々極が存在す
るレーザヘッド部の圧力P、の比PI/P2によるもの
で、とのP、およびP2の大きさは圧縮機の能力、微小
開口部の大きさおよびレーザヘッドが接続しているダク
トの容積に依存するものである。
Figure 6 is a cross-sectional view of an embodiment in which a slit 12 is provided, and the medium gas is blown into the gap between the discharge electrodes 1 at supersonic speed or at a necessary wind speed depending on the width of the slit 12 and the pressure of the duct 11 on the blowing side. The wind side is suctioned and depressurized by a compressor. In other words, the present invention is a book that uses the principle of jet flow to obtain a large speed, and the wind speed is determined by the pressure P between the small opening provided in the laser head and the compressor, and the laser head portion where the discharge pole is present. The pressure P is determined by the ratio PI/P2, and the size of P and P2 depends on the capacity of the compressor, the size of the minute opening, and the volume of the duct to which the laser head is connected. be.

(f)$発明の効果 本発明はレーザ性能の向上を目的としてなされたもので
、圧縮機ヲ用いることによシ効率化はれると共に放電々
極の送風側ダクト径を従来のように大口径のもの全使用
する必要がなくそのため装置自体を小型化することがで
きた。
(f) $ Effects of the Invention The present invention was made for the purpose of improving laser performance, and by using a compressor, efficiency can be increased and the diameter of the duct on the blowing side of the discharge electrode can be made larger than in the past. It was not necessary to use all of the components, which made it possible to downsize the device itself.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の横方向励起ガスレーザを説明するための
炭酸ガスレーザの斜視図、第2図は媒体ガスの循環ルー
プ、第3図は放電々極部の断面構造、第4図は本発明に
係る横方向励起ガスレーザの実施例の斜視図、第5図は
本発明に係る媒体ガスの循環ループ、第6図は放電々極
部の断面構造である。 し1において、1は放電々極、2は媒体ガス流、4は送
風機、5はガス細化器、6はレーザヘッド、7は熱交換
器、8は圧縮機、9は排風側ダクト、11は送風側ダク
ト。 7− 第1図 第3図 =8= 第4図 1′δ 第6I21I
Fig. 1 is a perspective view of a carbon dioxide laser to explain a conventional horizontally excited gas laser, Fig. 2 is a medium gas circulation loop, Fig. 3 is a cross-sectional structure of a discharge electrode, and Fig. 4 is a perspective view of a carbon dioxide laser according to the present invention. A perspective view of an embodiment of such a horizontally excited gas laser, FIG. 5 shows a circulation loop of a medium gas according to the present invention, and FIG. 6 shows a cross-sectional structure of a discharge electrode portion. In 1, 1 is a discharge electrode, 2 is a medium gas flow, 4 is a blower, 5 is a gas attenuator, 6 is a laser head, 7 is a heat exchanger, 8 is a compressor, 9 is an exhaust side duct, 11 is the ventilation side duct. 7- Figure 1 Figure 3 = 8 = Figure 4 1'δ 6I21I

Claims (1)

【特許請求の範囲】[Claims] 強制循環式横方向励起ガスレーザにおいて、レーザヘッ
ドの電極部送風側に微少開口をまた電極部排風側に比較
的大口径の排気口を設け、これを圧縮機で結合して循環
ループを構成し、該圧縮機によって圧縮機から電極部排
風側を減圧すると共に送風微少開口間を高圧力とし、こ
の圧力差で循環ガスを微少開口から放電々極部へ局部的
に送風し冷却することを特徴とする横方向励起ガスレー
ザ。
In a forced circulation type horizontally excited gas laser, a small opening is provided on the blowing side of the electrode section of the laser head, and a relatively large-diameter exhaust port is provided on the blowing side of the electrode section, and these are connected by a compressor to form a circulation loop. The compressor reduces the pressure on the discharge side of the electrode part from the compressor and creates a high pressure between the small ventilation openings, and with this pressure difference, the circulating gas is locally blown from the small openings to the discharge electrode part for cooling. Characteristics of horizontally pumped gas laser.
JP698482A 1982-01-20 1982-01-20 Gas laser excited in lateral direction Pending JPS58124284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP698482A JPS58124284A (en) 1982-01-20 1982-01-20 Gas laser excited in lateral direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP698482A JPS58124284A (en) 1982-01-20 1982-01-20 Gas laser excited in lateral direction

Publications (1)

Publication Number Publication Date
JPS58124284A true JPS58124284A (en) 1983-07-23

Family

ID=11653426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP698482A Pending JPS58124284A (en) 1982-01-20 1982-01-20 Gas laser excited in lateral direction

Country Status (1)

Country Link
JP (1) JPS58124284A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500070A (en) * 1986-03-12 1989-01-12 ピーアールシー コーポレーション Axial gas laser operation stabilization method and axial gas laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500070A (en) * 1986-03-12 1989-01-12 ピーアールシー コーポレーション Axial gas laser operation stabilization method and axial gas laser

Similar Documents

Publication Publication Date Title
US3946332A (en) High power density continuous wave plasma glow jet laser system
JP3524367B2 (en) Aerodynamic chamber design for high pulse repetition rate excimer laser
US20020097767A1 (en) Supersonic and subsonic laser with radio frequency excitation
JPS59152680A (en) Crossflow type laser device
JPS58124284A (en) Gas laser excited in lateral direction
US20050123011A1 (en) Method and apparatus for cooling a laser
WO2012035953A1 (en) Gas laser device and laser processing device
US4550409A (en) Induced flow gas transport laser
CA1232052A (en) Forced transport molecular gas laser and method
US9614342B2 (en) Air-cooled carbon-dioxide laser
US8814522B2 (en) Cross-flow fan impeller for a transversley excited, pulsed, gas discharge laser
KR20010076310A (en) Cross flow fan for discharge excitation gas laser device
US4058778A (en) High power gas transport laser
JPS5976164A (en) Linear motor
JPH10242547A (en) Gas laser device
JP2001274486A (en) Cross flow fan for discharge stimulation gas laser device
US20170179668A1 (en) Gas Flow Laser
JP2735339B2 (en) Gas laser oscillation device
JP3389912B2 (en) Gas laser device
JPH04305987A (en) Gas laser oscillator
TW385581B (en) CO2 gas laser oscillator and gas laser processing machine
CN2837285Y (en) Open type double-air-cooling tubular ozonizer
JPH05121798A (en) Gas laser oscillation device
JP2001267663A (en) Discharge excitation gas laser device
JPH0388378A (en) Gas laser device