JPH0388378A - Gas laser device - Google Patents

Gas laser device

Info

Publication number
JPH0388378A
JPH0388378A JP22544189A JP22544189A JPH0388378A JP H0388378 A JPH0388378 A JP H0388378A JP 22544189 A JP22544189 A JP 22544189A JP 22544189 A JP22544189 A JP 22544189A JP H0388378 A JPH0388378 A JP H0388378A
Authority
JP
Japan
Prior art keywords
discharge
gas laser
cathode
anode
discharge space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22544189A
Other languages
Japanese (ja)
Inventor
Shigeyuki Takagi
茂行 高木
Tatsumi Goto
後藤 達美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22544189A priority Critical patent/JPH0388378A/en
Publication of JPH0388378A publication Critical patent/JPH0388378A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To eliminate an object generated due to main discharge and increase the number of repetitions of the main discharge for achieving a high laser output by a multi-stage axial flow fan as a blasting means for circulating gas laser medium at a discharge space part between a cathode and an anode. CONSTITUTION:The title item has a laser tube 1, a main electrode consisting of a cathode 2 and an anode 3, and a blasting means for circulating a gas laser medium between the cathode 2 and the anode 3. This blasting means consists of a multi-stage axial flow fan 31 and the multi-stage axis flow fan 31 has a property that the jetting-out pressure reaches the maximum in the process where the flow increases. Thus, when pressure at the discharge space part is reduced to the maximum point of jetting-out pressure of the multi-stage axial flow fan 31, it becomes possible to enable a large number of gas laser media to flow to the discharge space part, thus enabling an object generated at the discharge space part to be eliminated relatively in a short time and increasing the number of repetitions of main discharge.

Description

【発明の詳細な説明】 【発明の目的】 (産業上の利用分野) この発明はレーザ管内に封入されたガスレーザ媒質を陰
極と陽極とからなる主電極で発生する主放電によって励
起してレーザ光を出力させるガスレーザ装置に関する。 (従来の技術) 一般に、TEA CO2レーザやエキシマレーザなどの
ガスレーザ装置はガスレーザ媒質が封入されたレーザ管
内に主電極を構成する陰極と陽極とが離間対向して配設
され、これらの間に主放電を発生させることによって上
記ガスレーザ媒質を励起してレーザ光を放出するように
なっている。 第6図は一般的な構成のガスレーザ装置を示す。 すなわち、同図中1はガスレーザ媒質が封入されたレー
ザ管である。このレーザ管1内には主電極を構成する陰
極2と陽極3とが離間対向して配設されている。上記陰
極2は上部取付板4の下面に取付けられ、上記陽極3は
下部取付板5の上面に取付けられている。上記陰極2の
両側には予備電離電極としての上部ビン電極7が配設さ
れ、上記陽極5の両側には同じく予備電離電極としての
下部ピン電極8が下部取付板5に下端を固定して配設さ
れている。上記上部ピン電極7はピーキングコンデンサ
9を介して上記上部取付板4に固定され、この上部ビン
電極7の下端と上記下部ピン電極8の上端とは所定間隔
で離間対向している。 上記陰極2と上部ビン電極7とは上記上部取付板4とピ
ーキングコンデンサ9を介して電気的に導通され、上記
陽極3は上記下部取付板5と電気的に導通されている。 そして、上記上部取付板4は高圧電源11のマイナス側
に接続され、上記下部取付板5はプラス側に接続されて
いる。 さらに、上記レーザ管1内にはガスレーザ媒質を矢印方
向に循環させる送風手段12と、ガスレーザ媒質を所定
温度に維持するための熱交換器13とが配設され、上記
送風手段12から吐出されたガスレーザ媒質はガイド体
14によって上記放電空間部に導かれるようになってい
る。 このような構成のガスレーザ装置においては、高圧電源
11が作動して電気エネルギが供給されると、まず上部
ビン電極7と下部ビン電極8との対向する端面間で放電
が生じ、UV光(紫外光)が発生する。そのUV光は陰
極2と陽極3との間の放電空間部を予備電離する。放電
空間部の予備電離が進み、陰極2と陽極3との間の電圧
が高くなると、これら電極2.3間で主放電が発生し、
レーザ光が放電方向と直交する方向に出力されることに
なる。 一方、高いレーザ出力を得るためには、主放電の繰り返
し周波数を高くしなければならない。そのためには、陰
極2と陽極3との間の放電空間部に上記送風手段12に
よって循環させられるガスレーザの流量を大きくし、主
放電によって生じる蒸発金属などの主放電を不安定にさ
せる原因となる生成物をつぎの主放電が点弧されるまで
に放電空間部から除去しなければならない。 従来、上記送風手段12としてはクロスフローファンが
用いられていた。このクロスフローファンは第4図に曲
線Aで示すように流量が増大するにしたがって吐出圧力
が低下する特性を有していた。 一方、陰極2と陽極3とに瞬時に多量のエネルギが供給
されてこれらの間の放電空間部に主放電が生じると、放
電空間部のガス圧は熱によって一時的に高くなり、やが
て時間とともに低下する。 そのため、主放電が点弧しないときのクロスフローファ
ンの動作点aは第4図に示すように流量は多いが、吐出
圧力P、は低い状態にあり、主放電が点弧すると、放電
空間部にクロスフローファンの吐出圧力よりも高い圧力
の圧力波が発生するから、クロスフローファンは一時的
に放電空間部にガスレーザ媒質を流すことができなくな
る。そして、時間の経過とともに主放電部のガス圧が低
下し、その圧力が第4図にP2で示すクロスフローファ
ンの最高吐出圧力よりも低い圧力まで低下すれば、ガス
レーザ媒質が放電空間部に徐々に流れ始め、やがてもと
の流量に戻ることになる。 しかしながら、クロスフローファンではガスレーザ媒質
が流れ始める圧力P2が比較的低いばかりか、その圧力
P2の所では流量が非常に少ない。 したがって、主放電が点弧されたのちに放電空間部がク
ロスフローファンの最高吐出圧力P2に低下して放電空
間部にガスレーザ媒質が流れ始めるとともに、流量が十
分に増大するまでにかなりの時間が掛かることになる。 そのため、高いレーザ出力を得るために主放電の繰り返
し数を上げると、放電空間部にガスレーザ媒質が十分に
流れずに放電生成物が除去されない状態でつぎの主放電
が点弧されることになるから、主放電が不安定となり、
第5図に曲線Xで示すようにあまり返し数を上げないう
ちにレーザ出力が低下してしまうことになる。 (発明が解決しようとする課題) このように、従来のガスレーザ装置は送風手段にクロス
フローファンを用いていたので、主放電が点弧されて放
電空間部の圧力が上昇すると、ガスレーザ媒質が流れ始
めて放電空間部から生成物が除去されるまでにかなりの
時間が掛かることになる。そのため、主放電の繰返し数
を十分に上げて高いレーザ出力を得ることができないと
いうことがあった。 この発明は上記事情にもとずきなされたもので、その目
的とするところは、主放電によって放電空間部の圧力が
上昇しても、高い繰返し数で主放電を点弧してレーザ出
力を増大させることができるようにしたガスレーザ装置
を提供することにある。 [発明の構成] (課題を解決するための手段及び作用)上記課題を解決
するためにこの発明は、内部にガスレーザ媒質が封入さ
れたレーザ管と、このレーザ管内に離間対向して配設さ
れた陰極と陽極とからなる主電極と、この主電極に電気
エネルギを供給して上記陰極と陽極との間に主放電を発
生させる高圧電源と、上記ガスレーザ媒質を上記陰極と
陽極との間の放電空間部に循環させる送風手段とを具備
し、上記送風手段は多段軸流ファンからなる。 上記多段軸流ファンは流量が増大する過程で吐出圧力が
最大になる特性を持つ。したがって、放電空間部の圧力
が上記多段軸流ファンの吐出圧力の最高点まで下がると
、多くのガスレーザ媒質を放電空間部に流すことができ
るから、主放電によって放電空間部に生じた生成物を比
較的短時間で除去することができ、それによって主放電
の繰返し数を上げることができる。 (実施例) 以下、この発明の第1の実施例を第1図乃至第3図を参
照して説明する。なお、第6図に示す構成と同一部分に
は同一記号を付して説明を省略する。 すなわち、この発明は第6図に示す構成と送風手段が異
なり、この発明の送風手段は3段軸流ファン31からな
る。この3段軸流ファン31はケーシング32と、この
ケーシング32内に回転自在に収容された回転体33と
から構成されている。 ケーシング32は第3図に示すように内面に静翼34が
設けられたケーシング片32gを結合して筒状に形成さ
れてなり、上記回転体33は外周面に上記ケーシング3
2の静@34間に入り込むよう動翼35が設けられてい
る。 上記ケーシング32の一端面には吸引口36が形成され
、他端面には吐出口37が形成されていて、この吐出口
37をガイド体14の一端に対向させている。また、上
記回転体33の・一端面には駆動軸38の一端が連結さ
れ、この他端はレーザ管1の外部に気密に導出されてい
る。そして、駆動軸38の他端には駆動源39が連結さ
れ、この駆動源39によって上記回転体33が回転駆動
されるようになっている。回転体33が回転駆動されれ
ば、その動TjIX35とケーシング32に設けられた
静翼34とで加圧されたレーザ管1内のガスレーザ媒質
がケーシング32の吐出口37からガイド体14へ吐出
され、放電空間部へ流入するようになっている。 上記3段軸流ファン31の特性曲線は、第4図に曲線B
で示すようになっている。つまり、曲線Aで示すクロス
フローファンに比べて広い流量範囲で高い吐出圧力で作
動するばかりでなく、流量がSと比較的多いところで吐
出圧力P、が最高となる。また、主放電が点弧しない静
的状態では上記クロスフローファンの動作点aとほぼ同
じ流量と吐出圧力で作動するようになっている。 上記構成の3段軸流ファン31を作動させたのち、陰極
2と陽極3との間で主放電を点弧させれば、その主放電
の熱的影響で放電空間部の圧力が上昇する。放電空間部
の圧力が上昇しても、その放電空間部の圧力が3段軸流
ファン31の最高吐出圧力P、まで下がると、放電空間
部には吐出圧力P3における流量Sでガスレーザ媒質が
流入する。つまり、3段軸流ファン31の最高吐出圧力
P3は、クロスフローファンの最高吐出圧力P2に比べ
て十分に高いから、主放電が点弧されて放電空間部の圧
力が上昇したのち、この放電空間部の圧力が下がり始め
てガスレーザ媒質が流れるまでの時間が短くなる。しか
も、圧力P3でガスレーザ媒質が流れ始めたときの流f
f1sは比較的多い。 したがって、これらのことにより放電空間部が比較的短
い時間で新たなガスレーザ媒質に置換される。つまり、
主放電によって放電空間部に生じた生成物が短時間で除
去されることになるから、第5図に曲線Yで示すように
高いレーザ出力を得るため主放電の繰り返し数をクロス
フローファンを用いた曲線Xで示す従来に比べて十分に
高くすることができる。 なお、上記一実施例では3段式の軸流ファを用いたが、
2段式あるいは4段式以上の軸流ファンを用いてもなん
ら差し支えない。 [発明の効果] 以上述べたようにこの発明によれば、陰極と陽極との間
の放電空間部にガスレーザ媒質を循環させるための送風
手段として多段軸流ファンを用いるようにした。多段軸
流ファンは流量が増大する過程で吐出圧力の最高値を有
する。したがって、陰極と陽極との間に主放電が点弧さ
れて放電空間部の圧力が上昇したのち、比較的早い時間
にたくさんのガスレーザ媒質が流れて放電空間部から主
放電によって発生した生成物が除去されるから、主放電
の繰返し数を上げて高いレーザ出力を得ることができる
Detailed Description of the Invention [Purpose of the Invention] (Industrial Application Field) This invention excites a gas laser medium sealed in a laser tube by a main discharge generated at a main electrode consisting of a cathode and an anode to emit laser light. The present invention relates to a gas laser device that outputs. (Prior Art) In general, in a gas laser device such as a TEA CO2 laser or an excimer laser, a cathode and an anode, which constitute a main electrode, are arranged spaced apart and facing each other in a laser tube in which a gas laser medium is sealed. By generating a discharge, the gas laser medium is excited to emit laser light. FIG. 6 shows a gas laser device with a general configuration. That is, numeral 1 in the figure is a laser tube in which a gas laser medium is sealed. Inside the laser tube 1, a cathode 2 and an anode 3, which constitute a main electrode, are arranged facing each other and separated from each other. The cathode 2 is attached to the lower surface of the upper mounting plate 4, and the anode 3 is attached to the upper surface of the lower mounting plate 5. Upper pin electrodes 7 as pre-ionization electrodes are disposed on both sides of the cathode 2, and lower pin electrodes 8, also serving as pre-ionization electrodes, are disposed on both sides of the anode 5 with their lower ends fixed to the lower mounting plate 5. It is set up. The upper pin electrode 7 is fixed to the upper mounting plate 4 via a peaking capacitor 9, and the lower end of the upper pin electrode 7 and the upper end of the lower pin electrode 8 are opposed to each other with a predetermined distance apart. The cathode 2 and the upper bin electrode 7 are electrically connected to each other via the upper mounting plate 4 and the peaking capacitor 9, and the anode 3 is electrically connected to the lower mounting plate 5. The upper mounting plate 4 is connected to the negative side of the high voltage power source 11, and the lower mounting plate 5 is connected to the positive side. Furthermore, a blowing means 12 for circulating the gas laser medium in the direction of the arrow, and a heat exchanger 13 for maintaining the gas laser medium at a predetermined temperature are disposed in the laser tube 1, and the gas is discharged from the blowing means 12. The gas laser medium is guided into the discharge space by a guide body 14. In the gas laser device having such a configuration, when the high-voltage power supply 11 is activated and electrical energy is supplied, a discharge occurs between the opposing end surfaces of the upper bin electrode 7 and the lower bin electrode 8, and UV light (ultraviolet light) is generated. light) is generated. The UV light preionizes the discharge space between the cathode 2 and anode 3. As the preliminary ionization in the discharge space progresses and the voltage between the cathode 2 and anode 3 increases, a main discharge occurs between these electrodes 2.3,
Laser light is output in a direction perpendicular to the discharge direction. On the other hand, in order to obtain high laser output, the repetition frequency of the main discharge must be increased. In order to do this, the flow rate of the gas laser circulated by the blowing means 12 in the discharge space between the cathode 2 and the anode 3 is increased, which causes the vaporized metal generated by the main discharge to become unstable. The products must be removed from the discharge space before the next main discharge is ignited. Conventionally, a cross flow fan has been used as the air blowing means 12. This cross flow fan had a characteristic in which the discharge pressure decreased as the flow rate increased, as shown by curve A in FIG. On the other hand, when a large amount of energy is instantaneously supplied to the cathode 2 and anode 3 and a main discharge occurs in the discharge space between them, the gas pressure in the discharge space temporarily increases due to heat, and eventually descend. Therefore, at the operating point a of the crossflow fan when the main discharge is not ignited, the flow rate is high as shown in Figure 4, but the discharge pressure P is low, and when the main discharge is ignited, the discharge space Since a pressure wave with a pressure higher than the discharge pressure of the cross-flow fan is generated, the cross-flow fan is temporarily unable to flow the gas laser medium into the discharge space. Then, as time passes, the gas pressure in the main discharge section decreases, and if the pressure decreases to a pressure lower than the maximum discharge pressure of the crossflow fan shown at P2 in Fig. 4, the gas laser medium gradually enters the discharge space. The flow will begin to flow, and will eventually return to its original flow rate. However, in the cross-flow fan, not only is the pressure P2 at which the gas laser medium begins to flow relatively low, but also the flow rate is very low at that pressure P2. Therefore, after the main discharge is ignited, the discharge space decreases to the maximum discharge pressure P2 of the cross flow fan and the gas laser medium begins to flow into the discharge space, and it takes a considerable amount of time until the flow rate increases sufficiently. It will take a while. Therefore, if the number of repetitions of the main discharge is increased in order to obtain a high laser output, the gas laser medium will not flow sufficiently into the discharge space, and the next main discharge will be ignited before the discharge products are removed. As a result, the main discharge becomes unstable,
As shown by curve X in FIG. 5, the laser output will drop before the number of turns is increased too much. (Problem to be Solved by the Invention) As described above, since the conventional gas laser device uses a cross-flow fan as a blowing means, when the main discharge is ignited and the pressure in the discharge space rises, the gas laser medium flows. It takes a considerable amount of time until the products are removed from the discharge space for the first time. Therefore, it has been impossible to sufficiently increase the number of repetitions of the main discharge to obtain a high laser output. This invention was made based on the above circumstances, and its purpose is to ignite the main discharge at a high repetition rate to increase the laser output even if the pressure in the discharge space increases due to the main discharge. An object of the present invention is to provide a gas laser device that can be increased in size. [Structure of the Invention] (Means and Effects for Solving the Problems) In order to solve the above problems, the present invention provides a laser tube in which a gas laser medium is sealed, and a laser tube arranged in a spaced manner facing each other in the laser tube. a main electrode consisting of a cathode and an anode; a high-voltage power supply that supplies electrical energy to the main electrode to generate a main discharge between the cathode and anode; A blowing means for circulating air into the discharge space is provided, and the blowing means is composed of a multi-stage axial fan. The above multi-stage axial fan has a characteristic that the discharge pressure is maximized in the process of increasing the flow rate. Therefore, when the pressure in the discharge space decreases to the highest point of the discharge pressure of the multi-stage axial flow fan, a large amount of gas laser medium can be flowed into the discharge space, so that the products generated in the discharge space due to the main discharge can be reduced. It can be removed in a relatively short time, thereby increasing the number of main discharge repetitions. (Example) Hereinafter, a first example of the present invention will be described with reference to FIGS. 1 to 3. Incidentally, the same parts as those in the configuration shown in FIG. 6 are given the same symbols, and the explanation will be omitted. That is, this invention differs from the configuration shown in FIG. 6 in the air blowing means, and the air blowing means of this invention consists of a three-stage axial fan 31. The three-stage axial flow fan 31 includes a casing 32 and a rotating body 33 rotatably housed within the casing 32. As shown in FIG. 3, the casing 32 is formed into a cylindrical shape by combining casing pieces 32g each having a stator vane 34 on its inner surface.
A rotor blade 35 is provided so as to fit between the two rotors 34. A suction port 36 is formed on one end surface of the casing 32, and a discharge port 37 is formed on the other end surface, and this discharge port 37 is opposed to one end of the guide body 14. Further, one end of a drive shaft 38 is connected to one end surface of the rotating body 33, and the other end is led out to the outside of the laser tube 1 in an airtight manner. A drive source 39 is connected to the other end of the drive shaft 38, and the rotating body 33 is rotationally driven by this drive source 39. When the rotating body 33 is rotationally driven, the gas laser medium in the laser tube 1 pressurized by the movable TjIX 35 and the stationary blades 34 provided in the casing 32 is discharged from the discharge port 37 of the casing 32 to the guide body 14. , so as to flow into the discharge space. The characteristic curve of the three-stage axial fan 31 is shown in curve B in FIG.
It is shown as follows. In other words, not only does it operate at a higher discharge pressure over a wider flow rate range than the cross flow fan shown by curve A, but the discharge pressure P is at its highest when the flow rate is relatively large (S). Further, in a static state in which the main discharge is not ignited, the cross flow fan operates at approximately the same flow rate and discharge pressure as the operating point a of the cross flow fan. After operating the three-stage axial fan 31 configured as described above, if a main discharge is ignited between the cathode 2 and anode 3, the pressure in the discharge space increases due to the thermal influence of the main discharge. Even if the pressure in the discharge space increases, when the pressure in the discharge space decreases to the maximum discharge pressure P of the three-stage axial fan 31, the gas laser medium flows into the discharge space at a flow rate S at the discharge pressure P3. do. In other words, since the maximum discharge pressure P3 of the three-stage axial flow fan 31 is sufficiently higher than the maximum discharge pressure P2 of the crossflow fan, after the main discharge is ignited and the pressure in the discharge space increases, this discharge The time required for the gas laser medium to flow after the pressure in the space begins to decrease becomes shorter. Moreover, the flow f when the gas laser medium starts flowing at the pressure P3
There are relatively many f1s. Therefore, due to these things, the discharge space is replaced with a new gas laser medium in a relatively short time. In other words,
Since the products generated in the discharge space due to the main discharge are removed in a short time, a cross-flow fan is used to reduce the number of repetitions of the main discharge in order to obtain a high laser output, as shown by curve Y in Figure 5. This can be made sufficiently higher than the conventional curve shown by curve X. In addition, although a three-stage axial flow fan was used in the above example,
There is no problem in using a two-stage or four-stage or more axial fan. [Effects of the Invention] As described above, according to the present invention, a multi-stage axial fan is used as the blowing means for circulating the gas laser medium in the discharge space between the cathode and the anode. A multi-stage axial flow fan has a maximum discharge pressure in the process of increasing flow rate. Therefore, after the main discharge is ignited between the cathode and the anode and the pressure in the discharge space increases, a large amount of gas laser medium flows relatively quickly and the products generated by the main discharge are removed from the discharge space. Since it is removed, it is possible to increase the number of repetitions of the main discharge and obtain high laser output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すガスレーザ装置の断
面図、第2図は同じく多段軸流ファンの回転体の斜視図
、第3図は同じくケーシングの一部分の斜視図、第4図
はクロスフローファンと多段軸流ファンとのガス流量と
圧力との関係を示す説明図、第5図は同じく主放電の繰
返し数とレーザ出力との関係を示す説明図、第6図は従
来のガスレーザ装置の断面図である。 1・・・レーザ管、2・・・陰極、3・・・陽極、11
・・・高圧電源、31・・・3段軸流ファン(送風手段
)。
FIG. 1 is a cross-sectional view of a gas laser device showing an embodiment of the present invention, FIG. 2 is a perspective view of a rotating body of a multistage axial fan, FIG. 3 is a perspective view of a portion of the casing, and FIG. An explanatory diagram showing the relationship between gas flow rate and pressure between a cross flow fan and a multi-stage axial fan, Fig. 5 is an explanatory diagram showing the relationship between the number of main discharge repetitions and laser output, and Fig. 6 is an explanatory diagram showing the relationship between the number of main discharge repetitions and the laser output. FIG. 2 is a cross-sectional view of the device. 1... Laser tube, 2... Cathode, 3... Anode, 11
...High voltage power supply, 31...Three-stage axial fan (air blowing means).

Claims (1)

【特許請求の範囲】[Claims] ガスレーザ媒質が封入されたレーザ管と、このレーザ管
内に離間対向して配設された陰極と陽極とからなる主電
極と、この主電極に電気エネルギを供給して上記陰極と
陽極との間に主放電を発生させる高圧電源と、上記ガス
レーザ媒質を上記陰極と陽極との間の放電空間部に循環
させる送風手段とを具備し、上記送風手段は流量が増大
する過程で吐出圧力が最大になる多段軸流ファンからな
ることを特徴とするガスレーザ装置。
A main electrode consisting of a laser tube in which a gas laser medium is sealed, a cathode and an anode arranged spaced apart from each other in the laser tube, and an electric energy supplied to the main electrode to create a gap between the cathode and the anode. It is equipped with a high-voltage power supply that generates a main discharge, and a blowing means that circulates the gas laser medium in the discharge space between the cathode and the anode, and the blowing means has a discharge pressure that reaches a maximum in the process of increasing the flow rate. A gas laser device characterized by comprising a multi-stage axial fan.
JP22544189A 1989-08-31 1989-08-31 Gas laser device Pending JPH0388378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22544189A JPH0388378A (en) 1989-08-31 1989-08-31 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22544189A JPH0388378A (en) 1989-08-31 1989-08-31 Gas laser device

Publications (1)

Publication Number Publication Date
JPH0388378A true JPH0388378A (en) 1991-04-12

Family

ID=16829415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22544189A Pending JPH0388378A (en) 1989-08-31 1989-08-31 Gas laser device

Country Status (1)

Country Link
JP (1) JPH0388378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093076A1 (en) * 2013-12-17 2015-06-25 三菱電機株式会社 Orthogonal excitation-type gas laser oscillation device
CN110999044A (en) * 2017-08-01 2020-04-10 三菱电机株式会社 Rotation drive device, method for assembling rotation drive device, axial flow blower, method for assembling axial flow blower, and laser oscillation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127991B2 (en) * 1980-04-22 1986-06-27 Sanken Electric Co Ltd
JPS6210288B2 (en) * 1983-07-05 1987-03-05 Tatsuta Densen Kk
JPS63228692A (en) * 1987-03-18 1988-09-22 Toshiba Corp Highly repetitive pulsed laser oscillation device
JPS63228690A (en) * 1987-03-18 1988-09-22 Toshiba Corp Highly repetitive pulsed laser oscillation device
JPS6361169B2 (en) * 1980-07-23 1988-11-28

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127991B2 (en) * 1980-04-22 1986-06-27 Sanken Electric Co Ltd
JPS6361169B2 (en) * 1980-07-23 1988-11-28
JPS6210288B2 (en) * 1983-07-05 1987-03-05 Tatsuta Densen Kk
JPS63228692A (en) * 1987-03-18 1988-09-22 Toshiba Corp Highly repetitive pulsed laser oscillation device
JPS63228690A (en) * 1987-03-18 1988-09-22 Toshiba Corp Highly repetitive pulsed laser oscillation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093076A1 (en) * 2013-12-17 2015-06-25 三菱電機株式会社 Orthogonal excitation-type gas laser oscillation device
US9634456B2 (en) 2013-12-17 2017-04-25 Mitsubishi Electric Cororation Gas laser oscillation apparatus of orthogonal excitation type
CN110999044A (en) * 2017-08-01 2020-04-10 三菱电机株式会社 Rotation drive device, method for assembling rotation drive device, axial flow blower, method for assembling axial flow blower, and laser oscillation device

Similar Documents

Publication Publication Date Title
JPH10223955A (en) Design of aerodynamic chamber for high pulse repetition rate excimer laser
US4504954A (en) Laser apparatus
EP0015297B1 (en) Gas laser
US4755719A (en) Spark gap switch with jet pump driven gas flow
JPH0388378A (en) Gas laser device
EP0135701A3 (en) Forced transport molecular gas laser
US6188709B1 (en) Aerodynamic electrode support bar
US8814522B2 (en) Cross-flow fan impeller for a transversley excited, pulsed, gas discharge laser
US20010033593A1 (en) Cross-flow fan for discharge excited gas laser
Osipov et al. Highly efficient repetitively pulsed electric-discharge industrial CO2 laser
JP3171899B2 (en) Gas laser equipment
US3795838A (en) Aerodynamic large volume gaseous electric discharge system
US3982209A (en) Combustion-electric laser
US4753778A (en) Apparatus for conducting a gas mixture in a closed circuit
RU2812411C1 (en) Axial-flow gas laser with raman excitation
JP2693004B2 (en) Gas laser oscillation device
JP2680441B2 (en) Gas laser device
Lacour et al. High average power XeCl excimer laser
JPS6420682A (en) Gas laser apparatus excited by high frequency discharge
JPS6235588A (en) Laser oscillator
Olson et al. Closed‐cycle annular‐flow‐return laser
JPS6218781A (en) Laser oscillator
JPH05167141A (en) Gas laser equipment
JPH04245689A (en) Gas laser
JP2001267663A (en) Discharge excitation gas laser device