US3795838A - Aerodynamic large volume gaseous electric discharge system - Google Patents

Aerodynamic large volume gaseous electric discharge system Download PDF

Info

Publication number
US3795838A
US3795838A US00266813A US3795838DA US3795838A US 3795838 A US3795838 A US 3795838A US 00266813 A US00266813 A US 00266813A US 3795838D A US3795838D A US 3795838DA US 3795838 A US3795838 A US 3795838A
Authority
US
United States
Prior art keywords
chamber
channel
electrodes
providing
discharges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00266813A
Inventor
A Hill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3795838A publication Critical patent/US3795838A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0979Gas dynamic lasers, i.e. with expansion of the laser gas medium to supersonic flow speeds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser

Definitions

  • the geometry of the system and velocity of the stream are made such that the transit time between the plurality of electrodes at one end of the channel, and an electrode at the other end of the channel, is of the order of the diffusion time from one current stream and the next.
  • rods are positioned to rapidly diffuse the plasma with UNITED STATES PATENTS nozzles provided to further aid in the mixing.
  • 331/945 verse folded optical path is used for laser operation.
  • Gaseous discharges in high pressure gases greater than 25 Torr normally form a column .of finite cross sectional area when placed in containers which generally exceed the mean free path for molecular collisions.
  • an individually, ballasted anode array is placed upstream in laminar flow.
  • Anode spacing d, flow velocity V ⁇ , and discharge length l are arranged such that the ions are swept through the channel before they diffuse from one column into an adjacent column, i.e., ri /7C z 173;.
  • the cathode surface area is chosen such that a normal cathode glow region distributes throughout its cross section. No external cathode ballast is requirled? This technique produces multiple column discharges of limited stability.
  • a single column diffuse discharge is provided.
  • the latter has been achieved by placing rods upstream of the anodes which shed vorticies around each anode in order to rapidly diffuse the plasma, thusminimizing thermal gradients.
  • a nozzle spray placed downstream of the anodes further enhances mixing by driving the flow supersonic, then shocking it back to subsonic.
  • the nozzles are nonconducting so that the individual plasmas are electrically isolated during mixing.
  • After mixing,'merger of the individual plasmas produces a single uniform, large volume discharge.
  • the shock produces sufficient plasma uniformity that input power may be increased with pressure or mass flowrate without loss of stability. Following the shock, the discharge remains diffuse during a flow traversal time up to Zmsec, without dependence on further turbulence in this region.
  • Ballast for the separate current discharge streams may be provided by means of the device Ballast for a Plurality of Parallel Gaseous Discharges. described in inventors copending application, Ser. No. 845,808, filed July 29, 1969 now U.S. Pat. No. 3,581,146.
  • a laser is provided wherein a transverse folded optical path is also used which makes the use of extremely long laser tubes unnecessary. Thus, lasers with large power outputs and small space requirements are possible.
  • FIG. 1 is a front elevation of an aerodynamic gas laser according to the invention
  • FIG. 2 is a partially schematic sectional view of the device of FIG. 1 along the line 2--2;
  • FIG. 3 is a partially schematic section view of the device of FIG. 11 along the line 33;
  • FIG. 4 is a sectional view of the device of FIG. 1 along the line 4-4 of FIG. 2;
  • FIG. 5 shows a modified anode structure for the device of FIG. 1;
  • FIG. 6 is a sectional view of the device of FIG. 5 along the line 66;
  • FIG. 7 shows a modified cathode structure for the device of FIG. 1;
  • FIG. 8 is a sectional view of the device of FIG. 7 along the line 88;
  • FIG. 9 is a partially schematic view of a second embodiment of the invention wherein the gas makes a single pass through the laser chamber.
  • FIG. 10 shows a partially schematic view of another embodiment of the invention with A. C. excitation
  • FIG. ll is a schematic illustration of another embodimerit of the invention.
  • FIG. 12 is a schematic isometric view of the device of FIG. 11.
  • FIG. 1 of the drawing shows a gas laser 10 having the structure as shown in greater detail in FIGS. 2-4.
  • the gas laser 10 has a laser channel 12 and a heat exchanger. section 14. Circulation of a gas through the laser channel is provided by means of four compressor fans 18, two of which are shown schematically in FIG. 2. The fans 18 are driven by motors 20. Guide vanes 23 are positioned adjacent to the output of the heat exchanger to provide substantially laminar flow through the channel 12. Controlled low turbulence conditions may sometimes be permitted in the channel 12, and in some cases it might be preferred.
  • a plurality of anodes 24 are positioned at one end of the laser channel 12 and a cathode 29 is positioned at the other end of the channel 12. The cathode should be designed to provide a grid of cathode glow-which substantially covers the entire cross-sectional area of the laser channel.
  • the electrodes 24 and 29 are energized by a power supply 27 with individual current-limiting'ballast resistors 28 being provided for the separate discharge paths.
  • the distance 2d between the electrodes, the gas flow velocity V, and the distance are selected according to the'following relation:
  • w here X is the average molecular mean free path
  • C,' is the mean molecular velocity
  • K is a geometrical constant depending upon the particular configuration of the apparatus and its value
  • the optical system for the laser is shown in FIG. 3.
  • a transverse folded optical path is provided as shown.
  • Flat mirrors 34 and 35 are positioned on opposite sides of the discharge path with a totally reflecting mirror 36 positioned at one end of the folded optical path, and a partially reflective mirror 37 provided at the output end of the optical path. While five crossings are shown in the folded path, the mirrors 36 and 37 may be positioned to provide a different number of crossings, for example, seven or nine.
  • Nonreflecting areas 39 are provided on the mirrors to prevent internal parasitic oscillations or stray reflections. This may also be prevented by locating reflecting mirrors only in areas indicated at 38.
  • the anode structure may be made up of a plurality of tapered channels 40 in an insulator 41 with anodes 24 projecting into the channels 40 as shown in FIGS. and 6 wherein the flow velocity is increased at the anodes by reducing the cross-sectional area and then expanding into the laser channel, thus requiring fewer electrodes and permitting more complete volume filling in the laser channel.
  • Tapered openings 45 may be provided in an insulating sheet 47 with cathode material 49 located in each of the openings.
  • channel configurations other than that shown may be provided, for example, the channel can be rectangular, as shown, or it can be cylindrical or it can have an annular shape.
  • the folded path would be in the direction of flow.
  • two annular rows of mirrors could be used with the outer mirror at the first end directing the beam to the inner mirror at the second end with the beam then being directed to the inner mirror at the first end, and then to the next outer mirror at the second end so on around the annular channel to the output in the same manner as in the system as described above.
  • the annular gaseous discharge channel could also be used to test equip ment within a uniform plasma discharge, such as might be used for reentry simulation.
  • a tapered channel may be used to keep the velocity constant as heat is added so that subsonic flow approaching Mach 1 can be used in the laser channel.
  • the compressor fan establishes a gas flow below Mach 1 in the closed system. Ions produced in the space between the anodes and the cathodes are swept toward the cathode by the gas flow. The distance between the anode electrodes is selected such that the diffusion time from one stream to the next is of the order of the transit time from the anodes to the cathode.
  • the device may be operated either as a laser oscillator or a laser amplifier. When operated as an oscillator, stimulated emission is reinforced in the optical cavity by internal feedback with aligned mirrors in a manner well known in the laser art, or with an external optical feedback system. Amplifier operation could be in the manner known in the laser art. Also, the device may be operated either as a pulsed laser or as a continuous wave laser.
  • FIG. 9 The laser channel 12 is substantially as described in FIGS. 1--4. Individual cathodes 29 may be provided,
  • the cathodes 29 and the anodes 24' may beof the type previously described with respect to FIGS. 5 and 7.
  • the optical system, not shown, would be as in FIG. 3.
  • the laser gas would be admitted at input 51, drawn through the system at the desired velocity by means of a pump 52, and released to the atmosphere at outlet 53.
  • Outlet 53 may lead to a gas recovery system, if desired.
  • the gas could be supplied under pressure at 51 and expanded to a lower pressure in a nozzle before entering the channel 12'.
  • the gas would then be released to the atmosphere through a diffuser in the normal manner.
  • the operation would be substantially as described above except that the gas would not pass through an internal heat exchanger, and supersonic flow may be used.
  • Alternating current excitation may be provided in a device such as shown in FIG. 10, with a laser channel 12" similar to that shown in FIG. 9. In this device, separate electrodes are provided at both ends of the laser channel 12". Gas flow through the channel would be as in FIG. 9. A feedback current control circuit 60 would be provided for each pair of electrodes to limit the current in the different discharge paths.
  • Uniform large volume gaseous discharges such as may be used in lasers, may be provided as shown in FIG. 11.
  • horizontal rods are placed upstream of anodes 82 which are secured to vertical rods 84.
  • Rods 80 and 84 shed vortices to rapidly diffuse the plasma. Further mixing then takes place in the nozzle array 86.
  • the flow upstream of the nozzles can be driven supersonic with the pressure ratio across the nozzles selected to shock it back to subsonic.
  • the pressure ratio, to provide shocking can be provided either by increasing the pressure upstream or by decreasing the pressure downstream of the nozzles, or a combination of both, by use of a pump.
  • the nozzle structure 86 is made of nonconducting material, such as a plastic so that the plasmas in the separate nozzles are electrically isolated during mixing.
  • a screen 88 may be provided downstream of the nozzles to provide more uniform optical properties in the discharge column.
  • a transverse folded path described with respect to FIG. 3, maybe provided, as shown schematically in FIG. 12. In the growth region of the beam for amplifier operation the mirrors can be located closer together, as illustrated. Input light beam 89 will be amplified within the system in the conventional manner.
  • the nozzles by themselves act to provide a more univided between existing electrodes, or special electrodes for this purpose could be provided. These electrodes need not be aligned in the same direction as the existing electrode configuration. This device can then be used as a rapid pulse laser or a single pulse laser.
  • the gas used in the system may be, for example, a mixture of He, N and CO as described in the article High-Power Carbon Dioxide Lasers, pages 23-33, of Scientific American, August 1968. However, other known laser gas may also be used.
  • Torr means, including a plurality of electrodes at one end of said chamber and at least one electrode at the 6 other end of said chamber for establishing a plurality of separate discharges within said chamber; said means, for establishing separate discharges within said chamber, including means for providing an individual ballast for each of said discharges; means for aerodynamically controlling the spacial distribution of charge and temperature within the chamber; said last named means including means for providing a flow of said gaseous medium through substantially the entire cross section of said channel.
  • a system for providing a large volume discharge comprising: means, for forming an at least partially enclosed chamber having a gaseous medium therein; means, including a plurality of electrodes at one end of said chamber and at least one electrode at the other end of said chamber for establishing a plurality of separate discharges within said chamber; said means, for establishing separate discharges within said chamber, including means for providing an individual ballast for each of said discharges; means for aerodynamically controlling the spacial distribution of charge and temperature within the chamber; said last named means including means for providing a flow of said gaseous medium through said channel; means upstream of said plurality of electrodes for creating vortices adjacent the plurality of electrodes to rapidly diffuse the plasma and an array of converging diverging nozzles downstream of said anodes to further provide a homogeneous discharge plasma.
  • the device as recited in claim 2 including means for providing shocking in the nozzles whereby mixing

Abstract

A large volume gaseous discharge system such as used in lasers has a plurality of electrodes at one end of the channel. A plurality of separate discharges are established adjacent the plurality of electrodes. A fast-moving gas stream within the channel aerodynamically controls the ion spacial distribution, and therefore indirectly the electron spacial distribution within the channel. In one system the geometry of the system and velocity of the stream are made such that the transit time between the plurality of electrodes at one end of the channel, and an electrode at the other end of the channel, is of the order of the diffusion time from one current stream and the next. In another embodiment rods are positioned to rapidly diffuse the plasma with nozzles provided to further aid in the mixing. A transverse folded optical path is used for laser operation.

Description

[ AERODY NAMIC LARGE VOLUME GASEOUS ELECTRIC DISCHARGE SYSTEM [76] Inventor: Alan E. Hill, Box 544 A Rt. 5,
Albuquerque, N. Mex. 87112 [22] Filed: June 27, 1972 [21] Appl. No.: 266,813
Related US. Application Data [60'] Division of Ser. No. 128,845, March 29, 1971, Pat. No. 3,735,284, Continuation-impart of Ser. No. 7,935, Feb. 2, 1970, abandoned.
[52] US. Cl. 315/111, 313/309 [51] Int. Cl...... 1101] 7/24 [58] Field of Search 313/231, 309, 351;
331/945 PE, 94.5 G, 94.5 D; 315/111 56] I References Cited 2,765,975 10/1956 Lindenblad ..3l3/309 Primary Examiner-Palmer C. Demeo [7 ABSTRACT A large volume gaseous discharge system such as used in lasers has a plurality of electrodes at one end of the channel. A plurality of separate discharges are established adjacent the plurality of electrodes. A fast moving gas stream within the channel aerodynamically controls the ion spacial distribution, and therefore indirectly the electron spacial distribution within the channel. In one system the geometry of the system and velocity of the stream are made such that the transit time between the plurality of electrodes at one end of the channel, and an electrode at the other end of the channel, is of the order of the diffusion time from one current stream and the next. In another embodiment rods are positioned to rapidly diffuse the plasma with UNITED STATES PATENTS nozzles provided to further aid in the mixing. A trans- 3,577,096 5/1971 Bridges et a1. 331/945 verse folded optical path is used for laser operation. 3,543,179 11/1970 H Wilson 331/945 3,622,910 11/1971 Kantrowitz et a1. 331/945 3 Claims, 12 Drawing Figures i II 11114 iiiiii ii iliii llill- PATENTEUPMR 51w 3.795.838
SHEET 1 [If 7 PATENTEU 5 4 SHEEY 2 BF 7 h vmlQm AERODYNAMIIC LARGE VOLUME GASEOUS ELECTRIC DISCHARGE SYSTEM CROSS REFERENCE TO RELATED APPLICATIONS This is a division of application Ser. No. 128,845, filed Mar. 29, 1971, now U.S. Pat. No. 3,735,284, which is a continuation-in-part of application Ser. No. 7,935, filed Feb. 2, 1970, and now abandoned.
BACKGROUND OF THE INVENTION It is generally impossible to strike a large crosssectional area discharge between two parallel plates in high pressure gases. Instead, a single arc will be established. The diameter of the arc is restricted by (a) electron emission at the cathode due to bombardment of positive ions, and (b) the electrodynamics of the column; increasing current, increases ionization which decreases the potential gradient and constricts the column. Individually ballasting electrodes could result in spreading the emission at the anode electrode but the individual stream would recombine in space to-form a single channel.
Gaseous discharges in high pressure gases greater than 25 Torr normally form a column .of finite cross sectional area when placed in containers which generally exceed the mean free path for molecular collisions.
Thus, very long discharge systemssuch asused in lasers, have been required to provide high-power output.
See, for example, Scientific American" August 1968,
page 22.
BRIEF SUMMARY OF THE INVENTION According to this invention use is made of aerodynamic forces to control the ion spacial distribution, and
therefore indirectly the electron spacial distribution in large volume discharges.
In one case, an individually, ballasted anode array is placed upstream in laminar flow. Anode spacing d, flow velocity V}, and discharge length l are arranged such that the ions are swept through the channel before they diffuse from one column into an adjacent column, i.e., ri /7C z 173;. The cathode surface area is chosen such that a normal cathode glow region distributes throughout its cross section. No external cathode ballast is requirled? This technique produces multiple column discharges of limited stability.
In the'prcferred embodiment, a single column diffuse discharge is provided. The latter has been achieved by placing rods upstream of the anodes which shed vorticies around each anode in order to rapidly diffuse the plasma, thusminimizing thermal gradients. A nozzle spray placed downstream of the anodes further enhances mixing by driving the flow supersonic, then shocking it back to subsonic. The nozzles are nonconducting so that the individual plasmas are electrically isolated during mixing. After mixing,'merger of the individual plasmas produces a single uniform, large volume discharge. The shock produces sufficient plasma uniformity that input power may be increased with pressure or mass flowrate without loss of stability. Following the shock, the discharge remains diffuse during a flow traversal time up to Zmsec, without dependence on further turbulence in this region. Ballast for the separate current discharge streams may be provided by means of the device Ballast for a Plurality of Parallel Gaseous Discharges. described in inventors copending application, Ser. No. 845,808, filed July 29, 1969 now U.S. Pat. No. 3,581,146.
A laser is provided wherein a transverse folded optical path is also used which makes the use of extremely long laser tubes unnecessary. Thus, lasers with large power outputs and small space requirements are possible.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front elevation of an aerodynamic gas laser according to the invention;
FIG. 2 is a partially schematic sectional view of the device of FIG. 1 along the line 2--2;
FIG. 3 is a partially schematic section view of the device of FIG. 11 along the line 33;
FIG. 4 is a sectional view of the device of FIG. 1 along the line 4-4 of FIG. 2;
FIG. 5 shows a modified anode structure for the device of FIG. 1;
FIG. 6 is a sectional view of the device of FIG. 5 along the line 66;
FIG. 7 shows a modified cathode structure for the device of FIG. 1;
FIG. 8 is a sectional view of the device of FIG. 7 along the line 88;
FIG. 9 is a partially schematic view of a second embodiment of the invention wherein the gas makes a single pass through the laser chamber; and
FIG. 10 shows a partially schematic view of another embodiment of the invention with A. C. excitation;
FIG. llis a schematic illustration of another embodimerit of the invention;
FIG. 12 is a schematic isometric view of the device of FIG. 11.
DETAILED DESCRIPTION OF THE INVENTION I Reference is now made to FIG. 1 of the drawing which shows a gas laser 10 having the structure as shown in greater detail in FIGS. 2-4.
The gas laser 10 has a laser channel 12 and a heat exchanger. section 14. Circulation of a gas through the laser channel is provided by means of four compressor fans 18, two of which are shown schematically in FIG. 2. The fans 18 are driven by motors 20. Guide vanes 23 are positioned adjacent to the output of the heat exchanger to provide substantially laminar flow through the channel 12. Controlled low turbulence conditions may sometimes be permitted in the channel 12, and in some cases it might be preferred. A plurality of anodes 24 are positioned at one end of the laser channel 12 and a cathode 29 is positioned at the other end of the channel 12. The cathode should be designed to provide a grid of cathode glow-which substantially covers the entire cross-sectional area of the laser channel. The electrodes 24 and 29 are energized by a power supply 27 with individual current-limiting'ballast resistors 28 being provided for the separate discharge paths.
The distance 2d between the electrodes, the gas flow velocity V, and the distance are selected according to the'following relation:
w here X, is the average molecular mean free path; C,', is the mean molecular velocity; and
K is a geometrical constant depending upon the particular configuration of the apparatus and its value The optical system for the laser is shown in FIG. 3. A transverse folded optical path is provided as shown. Flat mirrors 34 and 35 are positioned on opposite sides of the discharge path with a totally reflecting mirror 36 positioned at one end of the folded optical path, and a partially reflective mirror 37 provided at the output end of the optical path. While five crossings are shown in the folded path, the mirrors 36 and 37 may be positioned to provide a different number of crossings, for example, seven or nine.
Nonreflecting areas 39 are provided on the mirrors to prevent internal parasitic oscillations or stray reflections. This may also be prevented by locating reflecting mirrors only in areas indicated at 38.
Other electrode configurations than those thus far described may be used, for example, the anode structure may be made up of a plurality of tapered channels 40 in an insulator 41 with anodes 24 projecting into the channels 40 as shown in FIGS. and 6 wherein the flow velocity is increased at the anodes by reducing the cross-sectional area and then expanding into the laser channel, thus requiring fewer electrodes and permitting more complete volume filling in the laser channel.
Various cathode structures could be used, for example, such as shown in FIGS. 7 and 8. Tapered openings 45 may be provided in an insulating sheet 47 with cathode material 49 located in each of the openings.
Also channel configurations other than that shown may be provided, for example, the channel can be rectangular, as shown, or it can be cylindrical or it can have an annular shape. With the annular channel, the folded path would be in the direction of flow. In this case, two annular rows of mirrors could be used with the outer mirror at the first end directing the beam to the inner mirror at the second end with the beam then being directed to the inner mirror at the first end, and then to the next outer mirror at the second end so on around the annular channel to the output in the same manner as in the system as described above. The annular gaseous discharge channel could also be used to test equip ment within a uniform plasma discharge, such as might be used for reentry simulation.
Also a tapered channel may be used to keep the velocity constant as heat is added so that subsonic flow approaching Mach 1 can be used in the laser channel.
pressure of 4 torr.
In the operation of the device, the compressor fan establishes a gas flow below Mach 1 in the closed system. Ions produced in the space between the anodes and the cathodes are swept toward the cathode by the gas flow. The distance between the anode electrodes is selected such that the diffusion time from one stream to the next is of the order of the transit time from the anodes to the cathode.
The device may be operated either as a laser oscillator or a laser amplifier. When operated as an oscillator, stimulated emission is reinforced in the optical cavity by internal feedback with aligned mirrors in a manner well known in the laser art, or with an external optical feedback system. Amplifier operation could be in the manner known in the laser art. Also, the device may be operated either as a pulsed laser or as a continuous wave laser.
While a closed system has thus far been described, it is possible to use a system wherein the gas makes a single pass through the laser channel, as shown in FIG. 9. The laser channel 12 is substantially as described in FIGS. 1--4. Individual cathodes 29 may be provided,
if desired. The cathodes 29 and the anodes 24' may beof the type previously described with respect to FIGS. 5 and 7. The optical system, not shown, would be as in FIG. 3. The laser gas would be admitted at input 51, drawn through the system at the desired velocity by means of a pump 52, and released to the atmosphere at outlet 53. Outlet 53 may lead to a gas recovery system, if desired. The gas could be supplied under pressure at 51 and expanded to a lower pressure in a nozzle before entering the channel 12'. The gas would then be released to the atmosphere through a diffuser in the normal manner. The operation would be substantially as described above except that the gas would not pass through an internal heat exchanger, and supersonic flow may be used.
Alternating current excitation may be provided in a device such as shown in FIG. 10, with a laser channel 12" similar to that shown in FIG. 9. In this device, separate electrodes are provided at both ends of the laser channel 12". Gas flow through the channel would be as in FIG. 9. A feedback current control circuit 60 would be provided for each pair of electrodes to limit the current in the different discharge paths.
Uniform large volume gaseous discharges, such as may be used in lasers, may be provided as shown in FIG. 11. In this device, horizontal rods are placed upstream of anodes 82 which are secured to vertical rods 84. Rods 80 and 84 shed vortices to rapidly diffuse the plasma. Further mixing then takes place in the nozzle array 86. To further aid in the mixing, the flow upstream of the nozzles can be driven supersonic with the pressure ratio across the nozzles selected to shock it back to subsonic. The pressure ratio, to provide shocking, can be provided either by increasing the pressure upstream or by decreasing the pressure downstream of the nozzles, or a combination of both, by use of a pump. The nozzle structure 86 is made of nonconducting material, such as a plastic so that the plasmas in the separate nozzles are electrically isolated during mixing. Though not needed for all applications, a screen 88 may be provided downstream of the nozzles to provide more uniform optical properties in the discharge column. For laser operation a transverse folded path, described with respect to FIG. 3, maybe provided, as shown schematically in FIG. 12. In the growth region of the beam for amplifier operation the mirrors can be located closer together, as illustrated. Input light beam 89 will be amplified within the system in the conventional manner.
Even when shocking in the nozzles is not provided,
.the nozzles by themselves act to provide a more univided between existing electrodes, or special electrodes for this purpose could be provided. These electrodes need not be aligned in the same direction as the existing electrode configuration. This device can then be used as a rapid pulse laser or a single pulse laser.
The gas used in the system may be, for example, a mixture of He, N and CO as described in the article High-Power Carbon Dioxide Lasers, pages 23-33, of Scientific American, August 1968. However, other known laser gas may also be used.
There is thus provided a high-power gaseous discharge system which is more compact than prior art systems, wherein ballast means and aerodynamic control are used to permit the excitation of a large volume.
Torr; means, including a plurality of electrodes at one end of said chamber and at least one electrode at the 6 other end of said chamber for establishing a plurality of separate discharges within said chamber; said means, for establishing separate discharges within said chamber, including means for providing an individual ballast for each of said discharges; means for aerodynamically controlling the spacial distribution of charge and temperature within the chamber; said last named means including means for providing a flow of said gaseous medium through substantially the entire cross section of said channel.
2. A system for providing a large volume discharge comprising: means, for forming an at least partially enclosed chamber having a gaseous medium therein; means, including a plurality of electrodes at one end of said chamber and at least one electrode at the other end of said chamber for establishing a plurality of separate discharges within said chamber; said means, for establishing separate discharges within said chamber, including means for providing an individual ballast for each of said discharges; means for aerodynamically controlling the spacial distribution of charge and temperature within the chamber; said last named means including means for providing a flow of said gaseous medium through said channel; means upstream of said plurality of electrodes for creating vortices adjacent the plurality of electrodes to rapidly diffuse the plasma and an array of converging diverging nozzles downstream of said anodes to further provide a homogeneous discharge plasma.
3. The device as recited in claim 2 including means for providing shocking in the nozzles whereby mixing

Claims (3)

1. A system for providing a large volumn discharge comprising: an enclosed space; a gaseous medium in said enclosed space having a pressure greater than 25 Torr; means, including a plurality of electrodes at one end of said chamber and at least one electrode at the other end of said chamber for establishing a plurality of separate discharges within said chamber; said means, for establishing separate discharges within said chamber, including means for providing an individual ballast for each of said discharges; means for aerodynamically controlling the spacial distribution of charge and temperature within the chamber; said last named means including means for providing a flow of said gaseous medium through substantially the entire cross section of said channel.
2. A system for providing a large volume discharge comprising: means, for forming an at least partially enclosed chamber having a gaseous medium therein; means, including a plurality of electrodes at one end of said chamber and at least one electrode at the other end of said chamber for establishing a plurality of separate discharges within said chamber; said means, for establishing separate discharges within said chamber, including means for providing an individual ballast for each of said discharges; means for aerodynamically controlling the spacial distribution of charge and temperature within the chamber; said last named means including means for providing a flow of said gaseous medium through said channel; means upstream of said plurality of electrodes for creating vortices adjacent the plurality of electrodes to rapidly diffuse the plasma and an array of converging diverging nozzles downstream of said anodes to further provide a homogeneous discharge plasma.
3. The device as recited in claim 2 including means for providing shocking in the nozzles whereby mixing is further enhanced.
US00266813A 1971-03-29 1972-06-27 Aerodynamic large volume gaseous electric discharge system Expired - Lifetime US3795838A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12884571A 1971-03-29 1971-03-29
US26681372A 1972-06-27 1972-06-27

Publications (1)

Publication Number Publication Date
US3795838A true US3795838A (en) 1974-03-05

Family

ID=26826997

Family Applications (1)

Application Number Title Priority Date Filing Date
US00266813A Expired - Lifetime US3795838A (en) 1971-03-29 1972-06-27 Aerodynamic large volume gaseous electric discharge system

Country Status (1)

Country Link
US (1) US3795838A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983001348A1 (en) * 1981-09-29 1983-04-14 GÜRS, Karl Laser
US5635791A (en) * 1995-08-24 1997-06-03 Texas Instruments Incorporated Field emission device with circular microtip array
US5759078A (en) * 1995-05-30 1998-06-02 Texas Instruments Incorporated Field emission device with close-packed microtip array
EP0891022A1 (en) * 1997-07-09 1999-01-13 TRW Inc. Gain generator for high-energy chemical lasers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2765975A (en) * 1952-11-29 1956-10-09 Rca Corp Ionic wind generating duct
US3543179A (en) * 1967-02-01 1970-11-24 Avco Corp Nitrogen laser action with supersonic flow
US3577096A (en) * 1967-11-01 1971-05-04 Hughes Aircraft Co Transverse discharge gas laser
US3622910A (en) * 1968-11-20 1971-11-23 Avco Corp Dynamic convective cooled laser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2765975A (en) * 1952-11-29 1956-10-09 Rca Corp Ionic wind generating duct
US3543179A (en) * 1967-02-01 1970-11-24 Avco Corp Nitrogen laser action with supersonic flow
US3577096A (en) * 1967-11-01 1971-05-04 Hughes Aircraft Co Transverse discharge gas laser
US3622910A (en) * 1968-11-20 1971-11-23 Avco Corp Dynamic convective cooled laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983001348A1 (en) * 1981-09-29 1983-04-14 GÜRS, Karl Laser
US5759078A (en) * 1995-05-30 1998-06-02 Texas Instruments Incorporated Field emission device with close-packed microtip array
US5635791A (en) * 1995-08-24 1997-06-03 Texas Instruments Incorporated Field emission device with circular microtip array
EP0891022A1 (en) * 1997-07-09 1999-01-13 TRW Inc. Gain generator for high-energy chemical lasers

Similar Documents

Publication Publication Date Title
US3721915A (en) Electrically excited flowing gas laser and method of operation
US4088966A (en) Non-equilibrium plasma glow jet
US4064465A (en) Laser cavities with gas flow through the electrodes
US3720885A (en) Transverse flow carbon dioxide laser system
US3748594A (en) Radio frequency electrically excited flowing gas laser
US3815047A (en) Transversely-excited waveguide gas laser
US3666982A (en) Distributive cathode for flowing gas electric discharge plasma
US3116433A (en) Production of neutral molecular beams
US3970962A (en) High power electrically excited flowing gas laser
US3743963A (en) Transverse gas laser
US4080578A (en) D.C. Excitation of high pressure gas lasers
US4143337A (en) Method of pumping
US3795838A (en) Aerodynamic large volume gaseous electric discharge system
US4449220A (en) Apparatus and method for deposition of electrical power in an electric discharge laser
US3735284A (en) Aerodynamic large volume gaseous electric discharge system
GB2187593A (en) Uniform ionisation of high-pressure gases
US3860887A (en) Electrically excited high power flowing gas devices such as lasers and the like
Stark et al. A sealed, UV-pre-ionisation CO2 TEA laser with high peak power output
US4077018A (en) High power gas transport laser
US3891944A (en) Gas laser generator with discharge container gas flow circulation
US3633125A (en) Gas laser with means for specifically creating and maintaining turbulence in the gaseous laser medium
US4342115A (en) Laser discharge electrode configuration
US4849984A (en) Large volume gaseous electric discharge system
US4260958A (en) Apparatus and method for deposition of electrical power in an electric discharge laser
GB1017248A (en) Improvements in or relating to lasers