JPS58123429A - Mass flowmeter - Google Patents

Mass flowmeter

Info

Publication number
JPS58123429A
JPS58123429A JP653082A JP653082A JPS58123429A JP S58123429 A JPS58123429 A JP S58123429A JP 653082 A JP653082 A JP 653082A JP 653082 A JP653082 A JP 653082A JP S58123429 A JPS58123429 A JP S58123429A
Authority
JP
Japan
Prior art keywords
vibration
pipe
legs
magnetic field
short circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP653082A
Other languages
Japanese (ja)
Inventor
Kyoichi Ikeda
恭一 池田
Takaharu Matsumoto
松本 高治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Hokushin Electric Corp
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Hokushin Electric Corp, Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Corp
Priority to JP653082A priority Critical patent/JPS58123429A/en
Publication of JPS58123429A publication Critical patent/JPS58123429A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • G01F1/8477Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane with multiple measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits
    • G01F1/8495Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits with multiple measuring conduits

Abstract

PURPOSE:To form the vibration type mass flowmeter, which is hard to be subjected to vibration noises, has stable operating property, and can obtain high resolution. CONSTITUTION:Magnets 7 and 8 form a magnetic field generating means and are provided in the inside of a pipe 1 constituted by a conductor so that the different poles face the pipe. When the U shaped pipe 1 is excited by a driving means, the pipe is vibrated in a driving mode (symmetrical deflecting vibration). The legs of the pipe 1 are interlinked with the magnetic fields generated by the magnets 7 and 8. Therefore electromotive forces are generated in the legs of the pipe 1 due to the vibration described above. When the U shaped pipe is vibrated in the driving mode, currents i1 and i2 induced in the legs of the U shaped pipe 1 become opposite to each other and are offset. Therefore the vibration of the pipe 1 is not affected. On the contrary, when the U shaped pipe 1 is vibrated in a Coriolis vibration mode (asymmetrical deflecting vibration), the vibrating directions of the legs of the U shaped pipe 1 are opposite to each other, and the current i3 and i4 induced in the legs flow in the same direction. As a result, the asymmetrical deflecting energy is converted into Joule loss in a short circuit formed by a base 3 and the U shaped pipe and attenuated.

Description

【発明の詳細な説明】 本発明は、コリオリの力を利用した質量流量計の改Jl
lLK関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an improved mass flow meter using the Coriolis force.
This is related to lLK.

第1図はコリオリ流量計の動作原理を説明するための構
成説明図である。1は測定流体の流れるU字管で、その
先端中央部には永久磁石2が固定され、U字管10両端
はベース5に固定されている。4はU字管1に対向して
設置された電磁駆動・検出用コイル、5はこの電磁駆動
・検出用コイルをその先端において支持する支持ビーム
で、他端はベース5に固定されている。U字管1と支持
ビーム5とは互に音叉構造を形成している。即ち、U字
管1とビーム5は丁度音叉の歯が振動するように互いに
相対向して振動し、かつ音叉のようにベース30部分が
振動の節点となシ振動エネルギーを失うことが少ない構
成となっている。61.62はU字管1の両脚の変位を
検出するための変位検出器である。
FIG. 1 is a configuration explanatory diagram for explaining the operating principle of a Coriolis flowmeter. Reference numeral 1 denotes a U-shaped tube through which a measuring fluid flows, a permanent magnet 2 is fixed at the center of the tip thereof, and both ends of the U-shaped tube 10 are fixed to a base 5. 4 is an electromagnetic drive/detection coil installed opposite to the U-shaped tube 1; 5 is a support beam that supports this electromagnetic drive/detection coil at its tip; the other end is fixed to the base 5. The U-shaped tube 1 and the support beam 5 mutually form a tuning fork structure. That is, the U-shaped tube 1 and the beam 5 vibrate opposite each other, just like the teeth of a tuning fork vibrate, and like a tuning fork, the base 30 is a nodal point of vibration, so that less vibrational energy is lost. It becomes. 61 and 62 are displacement detectors for detecting the displacement of both legs of the U-shaped tube 1.

駆動コイル4とこれに対抗するU字管1に固定された永
久磁石2の間に働く電磁力で、8字管1をその固有振動
数で励振すると(縦振動(対称たわみ振動):籐2図囚
のMl、 M2. M3は各瞬間のパター7を示す)、
U字管1内を流れる流体にコリオリの力が発生する。こ
のコリオリカの大きさは、U字管1内を流れる流体の質
量に比例し、力の方向は流体の運動方向と8字管1を励
振する角速度のくクトル積の方向に一致する。また8字
管1の入力側と出力側では流体の方向が逆になるので、
両脚側のコリオリカによって、8字管1にねじ9(非対
称たわみ)のトルクが発生する。このトルクは、励振周
波数と同一な周波数で変化し、その振幅値は流体の質量
流量に比例する。第2図■)はこのねじりトルクによっ
て表われる振動モード(コリオリ振動モード)を示し、
M4. M5. Meは各瞬間の振動パターンを示す。
When the 8-shaped tube 1 is excited at its natural frequency by the electromagnetic force acting between the drive coil 4 and the permanent magnet 2 fixed to the opposing U-shaped tube 1 (longitudinal vibration (symmetrical flexural vibration): rattan 2 (Ml, M2 and M3 in the figure indicate putter 7 at each moment),
Coriolis force is generated in the fluid flowing inside the U-shaped tube 1. The size of this Coriolis is proportional to the mass of the fluid flowing in the U-shaped tube 1, and the direction of the force corresponds to the direction of the kutor product of the moving direction of the fluid and the angular velocity that excites the U-shaped tube 1. Also, since the direction of the fluid is opposite on the input side and output side of the 8-shaped tube 1,
Coriolis on both leg sides generates a torque of screw 9 (asymmetrical deflection) in the figure-8 tube 1. This torque varies with the same frequency as the excitation frequency, and its amplitude value is proportional to the mass flow rate of the fluid. Figure 2 ■) shows the vibration mode (Coriolis vibration mode) caused by this torsional torque.
M4. M5. Me indicates the vibration pattern at each moment.

したがって、このねじり振動(非対称たわみ振動)トル
クの振幅を、変位検出器61.62によって、例えばパ
ルス幅4どの形で検出すれば、質量流量を知ることがで
きる。
Therefore, by detecting the amplitude of this torsional vibration (asymmetrical flexural vibration) torque using the displacement detectors 61, 62, for example, with a pulse width of 4, the mass flow rate can be determined.

上記の様な原理を用いた質量流量計は従来から公知であ
る(例えば特開F@54−52570号)が、この場合
に下記の様な問題点がある。即ち、管路にエネルギーロ
ス少なく回転振動を与えかつ振動周波数の安定度を高め
るために一般に管路のQを高く設計するが、このために
駆動周波数と異なるねじり振動(非対称たわみ振動)モ
ードのQも高くなってしまい、外部振動ノイズを拾いや
すく出力振幅が不安定になり、質量流量計としての分解
能が低下するという欠点を生ずる。
Mass flowmeters using the above-mentioned principle have been conventionally known (for example, Japanese Patent Application Laid-Open No. F@54-52570), but there are the following problems in this case. In other words, the Q of a conduit is generally designed to be high in order to give the conduit rotational vibration with less energy loss and to increase the stability of the vibration frequency. This results in a drawback that the output amplitude becomes unstable because external vibration noise is easily picked up, and the resolution of the mass flowmeter is reduced.

本発明は上記の欠点を解消するためになされたもので、
振動ノイズの影響を受けK〈く、動作が安定で、高分解
能が得られる振動式の質量流量計を実現することを目的
とする。
The present invention has been made to solve the above-mentioned drawbacks.
The purpose of the present invention is to realize a vibrating mass flowmeter that is not affected by vibration noise, has stable operation, and can obtain high resolution.

以下図面にもとすいて本発明を説明する。The present invention will be explained below with reference to the drawings.

fs3図は、本発明に係る装置の要部を示す構成斜視図
である。本装置は0字管の振動に含まれる不要なねじり
(非対称たわみ)振動成分を、磁界と短絡回路との相互
作用にもとすいてジュール損に変換することにより、減
衰させることを特徴とする。図において、磁石7,8は
磁界発・生手段全形成し、導体で構成された管路1の内
側に互に異なった極を管に面して設置されている。導体
で構成されたベース3と8字管1とは電気的に短絡回路
を形成してりる。8字管1が駆動手段により励振される
と駆動モード(対称たわみ振動)で振動する。管路1の
各脚は磁石7,8がつくる磁界と鎖交しているので゛、
上記の振動により管路1の各脚には起電力が発生する。
Figure fs3 is a structural perspective view showing the main parts of the device according to the present invention. This device is characterized by attenuating the unnecessary torsional (asymmetrical deflection) vibration component included in the vibration of the zero-shaped tube by converting it into Joule loss based on the interaction between the magnetic field and the short circuit. . In the figure, magnets 7 and 8 form a magnetic field generating means and are installed inside a conduit 1 made of a conductor with different poles facing the tube. The base 3 made of a conductor and the 8-shaped tube 1 form an electrical short circuit. When the figure-8 tube 1 is excited by the driving means, it vibrates in a driving mode (symmetrical flexural vibration). Since each leg of the conduit 1 is interlinked with the magnetic field created by the magnets 7 and 8,
The vibrations described above generate an electromotive force in each leg of the conduit 1.

この起電力によシ前記短絡回路中には閉回路電流が流れ
る。8字管1が駆動モード(対称たわみ振動)で振動し
ている場合は、8字管1の各脚に誘起する電流1□、1
□紘互に逆向きとなるので相殺し合い、管1の振動に影
響を与えない。これに対して第4図に関係を示したよう
に(V工s V2は両脚の振動速度)、8字管1がコリ
オリ振動モード(非対称たわみ振動)で振動している場
合には、8字管1の各脚の振動方向は互いに逆向きにな
るので、各脚に誘起する電流13と1゜は同じ方向に流
れる。この結果、非対称たわみ振動エネルギーは、前記
短絡回路内でジ轟−ル損に変換される。実際の使用状態
では、コリオリ振動モード(非対称たわみ振動)と駆動
モード(対称たわみ振動)とが重畳しているが、このう
ちコリオリ振動(非対称たわみ振動)成分のみが制動を
受は減衰する。
Due to this electromotive force, a closed circuit current flows in the short circuit. When the figure-8 tube 1 is vibrating in the drive mode (symmetrical flexural vibration), the currents induced in each leg of the figure-8 tube 1 are 1□, 1
□ Since the directions are opposite to each other, they cancel each other out and do not affect the vibration of the tube 1. On the other hand, as shown in Fig. 4 (where V s V2 is the vibration velocity of both legs), if the figure-8 tube 1 is vibrating in the Coriolis vibration mode (asymmetrical flexural vibration), the figure-8 Since the directions of vibration of each leg of the tube 1 are opposite to each other, the currents 13 and 1° induced in each leg flow in the same direction. As a result, asymmetrical deflection vibrational energy is converted into di-route losses within the short circuit. In actual use, the Coriolis vibration mode (asymmetrical flexural vibration) and the drive mode (symmetrical flexural vibration) are superimposed, but only the Coriolis vibration (asymmetrical flexural vibration) component is damped by braking.

8字管1の駆動力に対して管路振動の変位は、共振点に
おいて位相が90″遅れる。前記誘起電流は振動速度と
磁束密度(一定)・の積に比例しているので、振動変位
の位相よfi 90’進む。したがって、前記誘起電流
の位相は共振点において駆動力の位相と一致し、駆動力
を打ち消す方向の力を発生する。この結果、コリオリ振
動モード(非対称九わみ振動)の振動成分に対する前記
の制動力は、8字管1の共振点において選択的に働くこ
とになる。
The phase of the displacement of the pipe vibration lags behind the driving force of the 8-shaped pipe 1 by 90'' at the resonance point.Since the induced current is proportional to the product of the vibration speed and the magnetic flux density (constant), the vibration displacement Therefore, the phase of the induced current coincides with the phase of the driving force at the resonance point, generating a force that cancels out the driving force.As a result, Coriolis vibration mode (asymmetric nine-deflection vibration) ) will act selectively at the resonance point of the 8-shaped tube 1.

8字管1は、共振点の1つである駆動周波数において駆
動モード(対称たわみ振動)で励振されておシ、管1の
中を流体が流れることによって生じるコリオリ振動モー
ド(非対称たわみ振動)の周波数は前記駆動周波数と等
しい。一般にコリオリ振動モード(非対称たわみ振動)
の共振点は前記駆動周波数とは異なった(一般に高い)
周波数となる。したがって、コリオリカによって表れる
コリオリ振動モード(非対称たわみ振動)はその共振点
からはずれたところで振動しているので、前記説明の選
択的制動を受けない。これに対して、外部ノイズ等によ
り生じ、U字管の共振点において起こる非対称たわみ振
動に対しては、選択的にfbll動力が働籾減衰するこ
とになるので、誤差や出力振幅の不安定さをともなわな
ず、高分解能の質量流量出力を得ることができる。
The figure-8 tube 1 is excited in a drive mode (symmetrical flexural vibration) at a driving frequency that is one of the resonance points, and the Coriolis vibration mode (asymmetrical flexural vibration) caused by fluid flowing through the tube 1 is excited. The frequency is equal to the driving frequency. Generally Coriolis vibration mode (asymmetrical flexural vibration)
The resonance point of is different from the driving frequency (generally higher)
becomes the frequency. Therefore, the Coriolis vibration mode (asymmetrical flexural vibration) exhibited by Coriolis vibrates away from its resonance point, and therefore is not subject to the selective damping described above. On the other hand, for asymmetrical flexural vibrations that occur at the resonance point of the U-shaped tube due to external noise, etc., the fbll power is selectively attenuated, resulting in errors and instability of the output amplitude. High-resolution mass flow output can be obtained without the need for

また外部ノイズ等による非対称九わみ振動を減らすため
に対称たわみ振動モードのQを下げる必要もなくなるの
で、駆動振動(対称たわみ振動)モードの周波数の安定
度も十分上げられるようになる。
Furthermore, since it is no longer necessary to lower the Q of the symmetrical flexural vibration mode in order to reduce asymmetrical 9-flexural vibrations caused by external noise, etc., the stability of the frequency of the drive vibration (symmetrical flexural vibration) mode can be sufficiently increased.

なお第3図では0字管路1の駆動用の励振手段及び振動
検出手段は図示して茫いが公知のものが用いられている
ものとする。
In FIG. 3, it is assumed that the excitation means and vibration detection means for driving the O-shaped conduit 1 are of known dampness.

また第3図において磁石7,8は管路の内側に設置した
が、これを管路の外側に設置してもよい。
Further, although the magnets 7 and 8 are installed inside the conduit in FIG. 3, they may be installed outside the conduit.

また第5図において磁石7,80代わりに、電磁石等間
等の効果をもつもので置き換えてもよい。
Furthermore, in FIG. 5, the magnets 7 and 80 may be replaced with electromagnets or other effective magnets.

第5図は本発明に係る装置の他の実施例を示す要部構成
斜視図である。この実施例は、2つの管1.2を互に音
叉の形に構成したもので、感度、安定性に優れており、
管1と管2を適当に接続するととKより、和や差の流量
針としても構成できる。
FIG. 5 is a perspective view showing a main part configuration of another embodiment of the device according to the present invention. In this embodiment, two tubes 1.2 are configured in the shape of a tuning fork, and have excellent sensitivity and stability.
By appropriately connecting tubes 1 and 2, it can be configured as a sum or difference flow rate needle.

磁石7.8は磁界発生手段を構成し、制動トルクが2管
1,2に同時に働くように配置されている。その他の構
成、効果は第3図の場合と同じである。
The magnets 7.8 constitute magnetic field generating means and are arranged so that braking torque acts on the two pipes 1 and 2 simultaneously. Other configurations and effects are the same as those in FIG. 3.

第6図は本発明に係る装置の他の実施例を示す要部構成
平面図、第7図は籐6図におけるX−X断面図である。
FIG. 6 is a plan view showing the main part configuration of another embodiment of the device according to the present invention, and FIG. 7 is a cross-sectional view taken along line XX in FIG.

本実施例はU字管の代わりに直管を用い、この直管1を
、磁石10.110間に設置するとともに、直管1と磁
石との間に’・8゛の字形状の短絡回路9を設置して質
量流量針を構成しえものである。いま、管路、1 fC
励振電流15を流すと、第:・ニ ア図に示す様に磁石10.11がつくる静磁界との相互
作用によシ管1は前記電流15と前記静磁界の双方に直
角の方向にカを受は励振される。管路1を流れる前記励
振電流15は磁界発生手段としても働自、電流15の磁
界中に設けられたu B ++の字形の短絡回路9(交
点において2本の線は互に絶縁吉れている)との間で以
下に述べるような制動トルクを発生する。すなわち、管
路1が駆動モードて励損されていると、管路1は対称た
わみ振動(第6図のM7)を行うので管路1が発生する
磁界の変化も、第6図の“8“°の字を含む平面と同一
平面内の、8°Vの字の交点を通り管路1に垂直な対称
軸に関し、左右が対称となり、短絡回路9中の各ループ
部分に誘起する電流の和16+1□はゼロになる。これ
に対して、管路1が直管内を流れる流体に作用するコリ
オリカによシコリオリ振動モードで振動している場合は
管路1が非対称たわみ振動(第6図のM8)を行うので
、管路1が発生する磁界の変化も前記対称軸に関し左右
が非対称となる。この結果前記各ループ部分に誘起する
電流の方向は互に加算される方向となシ、両者の和is
 + i、が短絡回路9中を流れる。この結果、振動エ
ルネギ−中の非対称たわみ振動成分は前記短絡回路9中
においてジュール損に変換される。したがって、短絡回
路の電気抵抗を小さくしておけば、十分カ制動力が得ら
れる。この制動力が、外部ノイズ等によシ直管の共振点
で発生する非対称たわみ振動に対して選択的に作用する
点やその他の効果は第3図のU字管の場合と同じである
In this embodiment, a straight pipe is used instead of a U-shaped pipe, and the straight pipe 1 is installed between the magnets 10 and 110, and a short circuit in the shape of an '.8' is connected between the straight pipe 1 and the magnet. 9 can be installed to form a mass flow needle. Now, conduit, 1 fC
When the excitation current 15 is applied, the tube 1 exerts force in a direction perpendicular to both the current 15 and the static magnetic field due to the interaction with the static magnetic field created by the magnet 10.11, as shown in the near diagram. The receiver is excited. The excitation current 15 flowing through the conduit 1 also acts as a magnetic field generating means. The braking torque described below is generated between the That is, when the conduit 1 is excited in the drive mode, the conduit 1 performs symmetrical flexural vibration (M7 in FIG. 6), so the change in the magnetic field generated by the conduit 1 also changes as shown in "8" in FIG. The left and right sides are symmetrical with respect to the axis of symmetry that passes through the intersection of the 8° V and is perpendicular to the conduit 1 in the same plane as the plane containing the ``°'', and the current induced in each loop in the short circuit 9 is The sum 16+1□ becomes zero. On the other hand, if the pipe line 1 is vibrating in the Cicoriolis vibration mode due to Coriolis acting on the fluid flowing inside the straight pipe, the pipe line 1 will perform asymmetrical flexural vibration (M8 in Figure 6). The change in the magnetic field generated by the magnet 1 is also asymmetrical with respect to the axis of symmetry. As a result, the direction of the current induced in each loop portion is the direction in which they are added together, and the sum of both is
+i, flows through the short circuit 9. As a result, the asymmetric deflection vibration component in the vibration energy is converted into Joule loss in the short circuit 9. Therefore, if the electrical resistance of the short circuit is kept small, sufficient braking force can be obtained. The braking force selectively acts on asymmetrical deflection vibrations generated at the resonance point of the straight pipe due to external noise, etc., and other effects are the same as in the case of the U-shaped pipe shown in FIG.

第8図は本発明に係る俟置O他の実施例を示す要部構成
斜視図である。本実施例は2本の直管1゜2を互に音叉
の形に構成したもので、感度、安定性に優れており、第
5図の場合と同様、管1と管2を適当に接続することに
よシ、和や差の流量針としても構成できる。短絡回路9
1.92が6管の制動に用いられているほかに、構成、
効果共第6図の場合と同じである。
FIG. 8 is a perspective view showing a main part configuration of another embodiment of the present invention. In this example, two straight tubes 1°2 are mutually configured in the shape of a tuning fork, and it has excellent sensitivity and stability.As in the case of Fig. 5, tubes 1 and 2 can be connected appropriately. By doing so, it can also be configured as a sum or difference flow rate needle. short circuit 9
In addition to 1.92 being used for 6-pipe braking, the configuration,
The effect is the same as in the case of FIG.

第6図、第8図の直管方式特有の刹点として、製作が容
易で、構成が簡単、目づまりしKくい等の点があげられ
る。
The unique features of the straight pipe system shown in FIGS. 6 and 8 include the fact that it is easy to manufacture, has a simple structure, and prevents clogging.

なお、第3図、第5図、第6図、第8図の実施例におけ
る振動管路として、管路が複数の独立した流路からなる
複合管路を用いることにより、各波路に流す流体の向き
に応じて各流量の和や差を得ることも可能である。
In addition, by using a composite pipe line consisting of a plurality of independent flow paths as the vibrating pipe line in the embodiments shown in FIGS. 3, 5, 6, and 8, the fluid flowing through each wave path can be It is also possible to obtain the sum or difference of each flow rate depending on the direction of the flow rate.

また 第3図、第5図の実施例においてU字管に対して
用いた、静止固定した磁界発生手段と、振動する短絡回
路部分との組み合わせによる方法を第6図、第8図の実
施例における直管の場合に適用することもできる。これ
と逆に、第6図、第f317の実施例において用いた、
固定短絡回路と振動する磁界発生手段との組み合わせに
よる方法を第3図、第5図の実施例に適用することもで
きる。
In addition, the method using the combination of the stationary magnetic field generating means used for the U-shaped tube in the embodiments of FIGS. 3 and 5 and the vibrating short circuit part is explained in the embodiments of FIGS. 6 and 8. It can also be applied to straight pipes. On the contrary, used in the embodiment of Fig. 6, f317,
The combination of a fixed short circuit and an oscillating magnetic field generating means can also be applied to the embodiments of FIGS. 3 and 5.

以上述べたように、本発明によれば振動ノイズの影響を
受けに<<、動作が安定で、高分解能が得られる質量流
量針を簡単な構成で実現で自る。
As described above, according to the present invention, it is possible to realize a mass flow needle with a simple configuration that is not affected by vibration noise, has stable operation, and can obtain high resolution.

また駆動モードのQを下げる必要がないので、駆動周波
数の安定度を十分上げられるという利点もある。
Furthermore, since there is no need to lower the Q of the drive mode, there is also the advantage that the stability of the drive frequency can be sufficiently increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第゛図竺、・リオリ流量針の動作原理図、第2図(A)
 (B)は第1図の動作説明図、第3図は本発明の一実
施例の要部斜視図 第4図は第s面の動作説明図、第5
図は本発明の他の実施例の要部斜視図、fs6図は本発
明の他の実施例の要部平面図、第7図は第6図における
X−X断面図、第8図は本発明の他の実施例の要部斜視
図である。 1.2・・・管路、5・・・ベース、7.8・・・磁石
、9.91゜92・・・短絡回路。 M1図 消2図 M3図 M4図 W!J7図 10 第8図
Fig. 2: Diagram of the operating principle of Rioli flow rate needle, Fig. 2 (A)
(B) is an explanatory diagram of the operation of FIG. 1, FIG. 3 is a perspective view of the main part of an embodiment of the present invention, and FIG.
The figure is a perspective view of a main part of another embodiment of the present invention, the fs6 figure is a plan view of a main part of another embodiment of the present invention, FIG. 7 is a sectional view taken along line XX in FIG. FIG. 7 is a perspective view of main parts of another embodiment of the invention. 1.2...Pipeline, 5...Base, 7.8...Magnet, 9.91°92...Short circuit. M1 figure erased 2 figure M3 figure M4 figure W! J7 Figure 10 Figure 8

Claims (1)

【特許請求の範囲】 (1)振動する管路内に流体を流し、その流れと管の角
振動によって生じるコリオリの力により、管路を変形振
動させる構成の質量流量針において、磁界発生手段と、
これが発生する磁界と鎖交する短絡回路とを設け、前記
管路が振動するとき、前記磁界発生手段と前記短絡回路
の間に働く制動力によシ前配管路に発生する特定の振動
成分を減衰させるようにしたことを特徴とする質量流量
針。 (2)磁界発生手段として磁石を用い、管路を短絡回路
の一部とした特許請求の範囲第1項記載の質量流量針。 (5)短絡回路を管路に近接して設置したループ状導体
とし、管路に電流を流すことによって、この管路を磁界
発生手段の一部とじた特許請求の範囲第1項記載の質量
流量針。
[Scope of Claims] (1) A mass flow needle configured to cause a fluid to flow through a vibrating pipe and cause the pipe to deform and vibrate due to the Coriolis force generated by the flow and the angular vibration of the pipe, including a magnetic field generating means. ,
A short circuit is provided that interlinks with the magnetic field generated by this, and when the pipe line vibrates, a specific vibration component generated in the front pipe line is suppressed by the braking force acting between the magnetic field generating means and the short circuit. A mass flow rate needle characterized by being attenuated. (2) The mass flow needle according to claim 1, in which a magnet is used as the magnetic field generating means and the pipe line is part of a short circuit. (5) The mass according to claim 1, in which the short circuit is a loop-shaped conductor installed close to the conduit, and by passing a current through the conduit, this conduit is made a part of the magnetic field generating means. flow needle.
JP653082A 1982-01-19 1982-01-19 Mass flowmeter Pending JPS58123429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP653082A JPS58123429A (en) 1982-01-19 1982-01-19 Mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP653082A JPS58123429A (en) 1982-01-19 1982-01-19 Mass flowmeter

Publications (1)

Publication Number Publication Date
JPS58123429A true JPS58123429A (en) 1983-07-22

Family

ID=11640906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP653082A Pending JPS58123429A (en) 1982-01-19 1982-01-19 Mass flowmeter

Country Status (1)

Country Link
JP (1) JPS58123429A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4435809A1 (en) * 1994-10-07 1996-04-11 Krohne Messtechnik Kg Measuring device for flowing media
DE19605923A1 (en) * 1996-02-17 1997-08-21 Danfoss As Flowmeter with tube driven by excitation unit at right angles to linear direction
WO2019110353A1 (en) * 2017-12-07 2019-06-13 Heinrichs Messtechnik Gmbh Coriolis mass flow meter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4435809A1 (en) * 1994-10-07 1996-04-11 Krohne Messtechnik Kg Measuring device for flowing media
US5747704A (en) * 1994-10-07 1998-05-05 Krohne Messtechnik Gmbh & Co., Kg Meter for flowing media
DE19605923A1 (en) * 1996-02-17 1997-08-21 Danfoss As Flowmeter with tube driven by excitation unit at right angles to linear direction
DE19605923C2 (en) * 1996-02-17 2001-09-13 Danfoss As Flow meter
WO2019110353A1 (en) * 2017-12-07 2019-06-13 Heinrichs Messtechnik Gmbh Coriolis mass flow meter
US11391612B2 (en) 2017-12-07 2022-07-19 Heinrichs Messtechnik Gmbh Coriolis mass flow meter

Similar Documents

Publication Publication Date Title
US7143655B2 (en) Magnetic circuit arrangement for a transducer
US4756198A (en) Sensor apparatus for mass flow rate measurement system
US4777833A (en) Ferromagnetic drive and velocity sensors for a coriolis mass flow rate meter
US4934195A (en) Coriolis mass flowmeter
JP3242112B2 (en) Fixed coil for Coriolis effect mass flowmeter
JPH0337127B2 (en)
JP2654341B2 (en) Mass flow meter based on Coriolis principle
JPS58123429A (en) Mass flowmeter
JPH04291119A (en) Colioris mass flowmeter
JPS58206926A (en) Mass flowmeter
JPH0341319A (en) Coriolis mass flowmeter
JPS61283827A (en) Mass flowmeter
JPS58117416A (en) Flowmeter
JPS58153121A (en) Mass flowmeter
JPS58178218A (en) Mass flowmeter
JPS58120122A (en) Mass flowmeter
JPS58165016A (en) Mass flow meter
RU2037782C1 (en) Method and device for measuring mass flow rate of fluid
JP2984134B2 (en) Coriolis flow meter
JPS58174814A (en) Mass flowmeter
JPS58206925A (en) Mass flowmeter
JP2003177048A (en) Coriolis flowmeter
JP2951460B2 (en) Coriolis mass flowmeter
JPS58211606A (en) Mass flowmeter
JPH06258115A (en) Coriolis mass flowmeter