JPS58153121A - Mass flowmeter - Google Patents

Mass flowmeter

Info

Publication number
JPS58153121A
JPS58153121A JP3610782A JP3610782A JPS58153121A JP S58153121 A JPS58153121 A JP S58153121A JP 3610782 A JP3610782 A JP 3610782A JP 3610782 A JP3610782 A JP 3610782A JP S58153121 A JPS58153121 A JP S58153121A
Authority
JP
Japan
Prior art keywords
pipe
yielded
detectors
vibration
symmetrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3610782A
Other languages
Japanese (ja)
Inventor
Takaharu Matsumoto
松本 高治
Fumitaka Ohashi
大橋 章隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Hokushin Electric Corp
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Hokushin Electric Corp, Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Corp
Priority to JP3610782A priority Critical patent/JPS58153121A/en
Publication of JPS58153121A publication Critical patent/JPS58153121A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane

Abstract

PURPOSE:To improve sensitivity, stability, and resolution, by arranging detectors in the vicinity of the positions, where the ratio between an asymmetrical deflection component, which is yielded in a pipe by a Coriolis force and a symmetrical vibration component, which is yielded in the pipe by a driving force, becomes the maximum value. CONSTITUTION:Both ends of the vibrating pipe 1 are fixed to bases 3. The detectors 61 and 62 detect the vibration of the pipe 1. The output signals e1 and e2 are inputted into a phase difference operating circuit. The mass flow rate is obtained from the phase difference. When the vibrating pipe 1 is excited, the symmetrical modes M7 and M8 are yielded by the driving force and the asymmetrical modes M9 and M10 are yielded by the Corilis' force. The detectors 61 and 62 are arranged in the vicinity of the points where the ratio between the displacement components of the asymmetrical deflection vibrations M9 and M10 and the displacement component of the symmetrical deflection vibrations M7 and M8 becomes the maximum value. Thus the sensitivity, stability, and resolution of the flowmeter are improved.

Description

【発明の詳細な説明】 本発明は、コリオリの力を利用した質量流量計の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a mass flow meter that utilizes the Coriolis force.

第1図はコリオリ流量針の動作原理を説明する九めの構
成説明図である。1は測定流体の流れる0字管で、その
先端中央部には永久磁石2が固定され、0字管1の両端
はペース5に固定されている04は0字管1に対向して
設置された電磁駆動・検出用コイル、5はこの電磁駆動
・検出用コイルをその先端において支持する支持ビーム
で、他端はペースSに固定されている。υ字管1と支持
ビーム5とは互に音叉構造を形成している。即ち、0字
管1とビーム5は丁度音叉の歯が振動するように互いに
相対向して振動し、かつ音叉のようにペース5の部分が
振動の節点となり振動エネルギーを失うことが少ない構
成となっている。61.62は0字管1の雨脚の変位を
検出すゐ丸めの変位検出器である。
FIG. 1 is the ninth structural explanatory diagram illustrating the operating principle of the Coriolis flow needle. 1 is a 0-shaped tube through which the measurement fluid flows, a permanent magnet 2 is fixed at the center of its tip, and both ends of the 0-shaped tube 1 are fixed to paces 5. 04 is installed opposite to the 0-shaped tube 1. The electromagnetic drive/detection coil 5 is a support beam that supports the electromagnetic drive/detection coil at its tip, and the other end is fixed to the pace S. The υ-shaped tube 1 and the support beam 5 mutually form a tuning fork structure. In other words, the 0-shape tube 1 and the beam 5 vibrate opposite each other, just like the teeth of a tuning fork vibrate, and like a tuning fork, the pace 5 becomes a vibration node and has a configuration in which less vibrational energy is lost. It has become. 61 and 62 are round displacement detectors that detect the displacement of the rain leg of the 0-shaped tube 1.

駆動コイル4とこれに対抗する0字管1に固定された永
久磁石2の間に働く電磁力で、0字管1をその固有振動
数で励振すると(縦振動(対称九わみ振動):第2図体
)のMl、 M2. M3は各−間Oパターンを示す)
、U字管1内を流れる流体にコリオリの力が発生する。
When the O-shaped tube 1 is excited at its natural frequency by the electromagnetic force acting between the drive coil 4 and the permanent magnet 2 fixed to the O-shaped tube 1 opposing it (longitudinal vibration (symmetrical nine-deflection vibration)): 2nd figure) Ml, M2. M3 indicates each - inter-O pattern)
, a Coriolis force is generated in the fluid flowing inside the U-shaped tube 1.

この;リオリ力の大きさは、U字管1内を流れる流体の
質量とその速度に比例し、力の方向は流体0運動方向と
0字管1を励振する角速度のベクトル積の方向に一致す
る。を九U字管10入力端と出力側では流体の方向が逆
になるので、雨脚側のコリオリカによって、8字管1に
ねじり(非対称たわみ)のトルクが発生する。
The magnitude of this Rioli force is proportional to the mass and velocity of the fluid flowing inside the U-shaped tube 1, and the direction of the force corresponds to the direction of the vector product of the fluid motion direction and the angular velocity that excites the O-shaped tube 1. do. Since the direction of the fluid is reversed between the input end and the output side of the 9-U-shaped tube 10, a twisting (asymmetrical deflection) torque is generated in the 8-shaped tube 1 due to the Coriolis on the rain leg side.

このトルクは、励振周波数と同一な周波数で変化し、そ
の振幅値は流体の質量流量に比例する。jlK2図伊)
ルミのねじ砂トルクによって表われる振動モード(コリ
オリ損動毫−ド)を示し、M4. M5. Meは各瞬
間の振動パターンを示す。したがって、このねじり振動
(非対称九わみ振動)トルクの振幅を、変位検出器61
.62によって、例えばパルス幅などの形で検出すれば
、質量流量を知ることができる。
This torque varies with the same frequency as the excitation frequency, and its amplitude value is proportional to the mass flow rate of the fluid. jlK2 figure Italy)
It shows the vibration mode (Coriolis vibration mode) caused by the screw sand torque of M4. M5. Me indicates the vibration pattern at each moment. Therefore, the amplitude of this torsional vibration (asymmetrical 9-way vibration) torque is detected by the displacement detector 61.
.. 62, the mass flow rate can be determined by detecting the pulse width, for example.

上記の様なM珊を用いた質量流量針は従来から公知であ
る(例えば特開昭54−52570号)が、この場合に
下記の様な問題点がある。即ち、質量流量針の感度が不
充分であるため、8/Nが悪く、出力が不安定にな抄、
分鱗能が不充分で微小流量測定が困−になるという欠点
がある。
A mass flow needle using M coral as described above has been known for some time (for example, Japanese Patent Application Laid-Open No. 54-52570), but this has the following problems. In other words, the sensitivity of the mass flow needle is insufficient, resulting in poor 8/N and unstable output.
The drawback is that the scale ability is insufficient, making it difficult to measure minute flow rates.

本発明は上記の欠点を鱗消するため帆なされたもので、
感度が大きく、出力が安定で、高分解能が得られる振動
式の質量流量針(コリオリ流量計)本発明は、コリオリ
流量計において、コリすり力によって管路に生じる非対
称九わみ振動成分と、駆動力によって管路に生じる対称
九わみ振動成分との比が最大となる位置の近くに検出器
を配置することにより感度を大幅に向上させえものであ
る0以下WA面にもとすいて本発明を説明する0第XS
a、本発明の直管形コリオリ流量針についての実施例を
示す要部構成子m図であるolllにおいて、1は両端
をベースjKl!定されえ直管の振動管路、61.62
Fiこの管路1の振動を検出する検出器、7は検出器6
1.82の出力信号・1.・2を入力としこの信号・、
と信号・2の間の位相差を演算する位相差演算回路であ
る。位相差演算回路70位相差田方は質量流量に比例す
る。
The present invention has been made to eliminate the above-mentioned drawbacks.
A vibrating mass flow meter (Coriolis flowmeter) that has high sensitivity, stable output, and high resolution.The present invention is based on a Coriolis flowmeter that uses an asymmetrical nine-deflection vibration component that occurs in a pipe line due to a Coriolis force. Sensitivity can be greatly improved by placing the detector near the position where the ratio to the symmetrical 9-way vibration component generated in the pipe by the driving force is maximum, even on the WA surface below 0. 0th XS to explain the invention
a. In oll, which is a diagram showing an embodiment of the straight pipe type Coriolis flow needle of the present invention, 1 has both ends as the base jKl! Vibrating straight pipe, 61.62
Fi is a detector that detects the vibration of this pipe line 1, 7 is a detector 6
1.82 output signal 1.・Input 2 and this signal...
This is a phase difference calculation circuit that calculates the phase difference between signal 2 and signal 2. The phase difference calculation circuit 70 phase difference is proportional to the mass flow rate.

第4図は第1図における管路1が示す振動パターンを示
す動作説明図である。図において、M7゜M8は駆動手
段により励振されたときに直管が各瞬間に表わす対称九
わみ振動パターンで、Me、 ln。
FIG. 4 is an operation explanatory diagram showing a vibration pattern shown by the conduit 1 in FIG. 1. In the figure, M7°M8 are the symmetrical 9-deflection vibration patterns that the straight pipe exhibits at each moment when excited by the driving means, Me, ln.

は直管中を流れる流体に働くコリオリカによ勤表われる
非対称たわみ振動のパターンであゐ。実際にはこの2種
の振動パターンが重畳された形で管路1は振動する〇 93図におけゐ検出器61.62として圧電素子などの
ひずみ検出器を用いた場合、前記位相差はコリオリカに
よって管路1に生じる非対称九わみ振動に@l因するひ
ずみ成分εと、駆動力によって管路1に生じる対称九わ
み振動に起因するひずみ成分εとの比ε。lε、にほぼ
比例する。前述したようK、前記位相差は質量流量にほ
ぼ比例しているから、前記ひずみ成分比’c”dが大き
い程流量計の感度は向上する。第5図はひずみと1;1
に対応するーげモーメン)Kついて計算例を示したもの
で、駆動力によるーげモーメントm6.コリオリカによ
るーげモーメントm1両者の比mc1mdをプロ、トし
である。図において、―けモーメント比mc/ ff1
aの値はC,Dの位置ではピークを示すが測定不能なの
で、この近傍の固定端からの距離tの点A、Bに検出器
を設置すれば流量針の感度を高くすることができる。特
にC,D点の近傍では検出器の位置をわずかにずらすだ
けで、感度を大幅に増加で自る利点がある。
is a pattern of asymmetrical flexural vibrations caused by Coriolis acting on the fluid flowing in the straight pipe. In reality, the conduit 1 vibrates in a manner in which these two types of vibration patterns are superimposed. If a strain detector such as a piezoelectric element is used as the detectors 61 and 62 in Fig. The ratio ε of the strain component ε caused by the asymmetric 9-way vibration @l generated in the conduit 1 by the driving force and the strain component ε caused by the symmetric 9-deflection vibration generated in the conduit 1 by the driving force. It is approximately proportional to lε. As mentioned above, K, the phase difference is almost proportional to the mass flow rate, so the sensitivity of the flowmeter improves as the strain component ratio 'c''d increases. Figure 5 shows the relationship between strain and 1;
An example of calculation is shown for K (moment) corresponding to the moment m6 due to the driving force. The ratio of the moment m1 and the moment mc1md due to Coriolika is professional and toshi. In the figure, the moment ratio mc/ff1
The value of a shows a peak at positions C and D, but cannot be measured, so if detectors are installed at points A and B near these points at a distance t from the fixed end, the sensitivity of the flow rate needle can be increased. Particularly in the vicinity of points C and D, there is an advantage in that the sensitivity can be greatly increased by simply shifting the position of the detector slightly.

第5図におけゐ検出器61.62として光検出素子など
の変位検出器を用い九場合も同様で、コリオリカによる
変位成分d0と駆動力による変位成分d。
The same applies to the case where displacement detectors such as photodetecting elements are used as the detectors 61 and 62 in FIG.

の比ac/d、を大きくとる程感度は向上するO第6図
は前記変位成分dct daと前記変位成分比dc/ 
d。
The larger the ratio ac/d, the higher the sensitivity. Figure 6 shows the displacement component dct da and the displacement component ratio dc/
d.

について計算例を示したもので、第ssO場合と同様に
前記変位成分比d。/d、が最大となる値O近傍ム、B
K検出器を設置することにより流量針O感度を大幅に向
上させることができる。
A calculation example is shown for the displacement component ratio d as in the case of the ssO. /d, is the maximum value O neighborhood M,B
By installing a K detector, the sensitivity of the flow needle O can be greatly improved.

なお第5図における検出器61.62として適度検出器
を用いた場合も同様である。
The same applies to the case where moderate detectors are used as the detectors 61 and 62 in FIG.

また第5図の実施例ではコリオリ流量針の管路が直管の
場合について示し九が、0字管などIIO形の管路に対
しても同様に本発明を適用でき40以上述べたようK、
本実@によれば高感度で、1it/Nが優れ、出力が安
定で、高分解能01徽小滝量測定が可能な質量流量針を
簡単な方法で実現できる。
In addition, in the embodiment shown in FIG. 5, the case where the Coriolis flow needle conduit is a straight pipe is shown. ,
According to Honjitsu@, it is possible to realize a mass flow needle with high sensitivity, excellent 1it/N, stable output, and high-resolution measurement of the amount of waterfall using a simple method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、コリオリ流量針の動作原理図、第2図(4)
、0)は第1図の動作説明図、第3図は本発明の−vI
I施例の要部構成平面図、第4IiIは第5図の動作説
明図、第5図はひずみ検出器の位置を決めるための、―
げ毫−メント及びその比に関する曲線図、第6閣は変位
検出器の位置を決めるための、変位及びその比に関する
一線図である。 1・・・管路、61.62・・・検出器、M7. M8
・・・対称たわみ擦動成分(パターン)、M9. MI
O・・・非対称たわみ擦動成分(パターン)。 ′ ) 代理人   弁理士  小 沢 信 勲第1図
Figure 1 is a diagram of the operating principle of the Coriolis flow needle, Figure 2 (4)
, 0) is an operation explanatory diagram of FIG. 1, and FIG. 3 is a -vI diagram of the present invention.
4IiI is a diagram explaining the operation of FIG. 5, and FIG.
6. Curve Diagram Regarding Movement and Its Ratio, No. 6 is a line diagram regarding displacement and its ratio for determining the position of the displacement detector. 1...Pipeline, 61.62...Detector, M7. M8
... Symmetrical deflection friction component (pattern), M9. M.I.
O...Asymmetric deflection friction component (pattern). ’ ) Agent Patent Attorney Nobu Isao Ozawa Figure 1

Claims (1)

【特許請求の範囲】[Claims] 振動する管路内に流体が流れ、七の流れと管の角振動に
よってコリオリの力が生じ、管路を変形振動させる構成
の質量流量計において、コリオリカにより管路に発生す
る非対称たわみ振動成分と、駆動力により管路に発生す
る対称たわみ振動成分との比が最大となる位蓋の近傍に
検出器を設け、感度を向上させるようにしたことを特徴
とする質量流量針。
In a mass flowmeter that has a configuration in which fluid flows in a vibrating pipe, Coriolis force is generated by the flow and angular vibration of the pipe, and the pipe deforms and vibrates, the asymmetric deflection vibration component generated in the pipe by Coriolis and A mass flow rate needle characterized in that a detector is provided in the vicinity of the lid at a position where the ratio to the symmetrical deflection vibration component generated in the conduit due to the driving force is maximum to improve sensitivity.
JP3610782A 1982-03-08 1982-03-08 Mass flowmeter Pending JPS58153121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3610782A JPS58153121A (en) 1982-03-08 1982-03-08 Mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3610782A JPS58153121A (en) 1982-03-08 1982-03-08 Mass flowmeter

Publications (1)

Publication Number Publication Date
JPS58153121A true JPS58153121A (en) 1983-09-12

Family

ID=12460544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3610782A Pending JPS58153121A (en) 1982-03-08 1982-03-08 Mass flowmeter

Country Status (1)

Country Link
JP (1) JPS58153121A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5044207A (en) * 1987-03-11 1991-09-03 Schlumberger Industries Limited Mass flow measurement
US5321991A (en) * 1991-08-01 1994-06-21 Micro Motion Incorporated Coriolis effect mass flowmeter
WO1995029386A1 (en) * 1994-04-26 1995-11-02 Direct Measurement Corporation Coriolis mass flow rate meter
DE4417332A1 (en) * 1994-05-18 1995-11-23 Krohne Ag Mass flow measurement device
JP2015524932A (en) * 2012-08-21 2015-08-27 マイクロ モーション インコーポレイテッド Coriolis flow meter and method for improved meter zero
CN108369121A (en) * 2015-12-11 2018-08-03 高准公司 Asymmetric drift gauge and correlation technique

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5044207A (en) * 1987-03-11 1991-09-03 Schlumberger Industries Limited Mass flow measurement
US5321991A (en) * 1991-08-01 1994-06-21 Micro Motion Incorporated Coriolis effect mass flowmeter
WO1995029386A1 (en) * 1994-04-26 1995-11-02 Direct Measurement Corporation Coriolis mass flow rate meter
DE4417332A1 (en) * 1994-05-18 1995-11-23 Krohne Ag Mass flow measurement device
DE4417332C2 (en) * 1994-05-18 2000-01-13 Krohne Ag Basel Mass flow meter
JP2015524932A (en) * 2012-08-21 2015-08-27 マイクロ モーション インコーポレイテッド Coriolis flow meter and method for improved meter zero
US9395224B2 (en) 2012-08-21 2016-07-19 Micro Motion, Inc. Coriolis flowmeter and method with improved meter zero
CN108369121A (en) * 2015-12-11 2018-08-03 高准公司 Asymmetric drift gauge and correlation technique
CN108369121B (en) * 2015-12-11 2021-08-03 高准公司 Asymmetric flow meter and associated method

Similar Documents

Publication Publication Date Title
RU2159410C2 (en) Device and method for processing of signal to determine phase shift
US5497666A (en) Increased sensitivity coriolis effect flowmeter using nodal-proximate sensors
JP2575203B2 (en) Mass flow meter with improved accuracy by compensating for asymmetry and viscous damping
US4852409A (en) Signal recovery system for mass flowmeter
JPH0337127B2 (en)
JPS61502704A (en) Flowmeter to measure mass flow rate in a flow of material
JPH0337689B2 (en)
JPH0462324B2 (en)
JPS58153121A (en) Mass flowmeter
JPH04291119A (en) Colioris mass flowmeter
JPH0410011B2 (en)
MXPA03004576A (en) Gyroscopic mass flowmeter.
US6598488B1 (en) Coriolis effect fluid flow meter
JPH0341319A (en) Coriolis mass flowmeter
JPS58206926A (en) Mass flowmeter
JPS58156813A (en) Mass flowmeter
JPS58117416A (en) Flowmeter
WO1999041572A1 (en) Free standing coriolis driver
JP3227691B2 (en) Coriolis mass flowmeter
JPS58206924A (en) Mass flowmeter
JPS58206925A (en) Mass flowmeter
JPS63233328A (en) Mass flowmeter
JPH067324Y2 (en) Mass flow meter
JPH03199922A (en) Coriolis mass flowmeter
JPS58120122A (en) Mass flowmeter