JPH0410011B2 - - Google Patents

Info

Publication number
JPH0410011B2
JPH0410011B2 JP3436382A JP3436382A JPH0410011B2 JP H0410011 B2 JPH0410011 B2 JP H0410011B2 JP 3436382 A JP3436382 A JP 3436382A JP 3436382 A JP3436382 A JP 3436382A JP H0410011 B2 JPH0410011 B2 JP H0410011B2
Authority
JP
Japan
Prior art keywords
output
pipe
changeover switch
comparator
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3436382A
Other languages
Japanese (ja)
Other versions
JPS58151518A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3436382A priority Critical patent/JPS58151518A/en
Publication of JPS58151518A publication Critical patent/JPS58151518A/en
Publication of JPH0410011B2 publication Critical patent/JPH0410011B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 本発明は、コリオリの力を利用した質量流量計
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a mass flow meter that utilizes the Coriolis force.

第1図はコリオリ流量計の動作原理を説明する
ための構成説明図である。1は測定流体の流れる
U字管で、その先端中央部には永久磁石2が固定
され、U字管1の両端はベース3に固定されてい
る。4はU字管1に対向して設置された電磁駆
動・検出用コイル、5は電磁駆動・検出用コイル
をその先端において支持する支持ビームで、他端
はベース3に固定されている。U字管1と支持ビ
ーム5とは互いに音叉構造を形成している。即
ち、U字管1とビーム5は丁度音叉の歯が振動す
るように互いに相対向して振動し、かつ音叉のよ
うにベース3の部分が振動の節点となり振動エネ
ルギーを失うことが少ない構成となつている。6
1,62はU字管1の両脚の変位を検出するため
の変位検出器である。
FIG. 1 is a configuration explanatory diagram for explaining the operating principle of a Coriolis flowmeter. Reference numeral 1 denotes a U-shaped tube through which a measuring fluid flows, a permanent magnet 2 is fixed to the center of the tip thereof, and both ends of the U-shaped tube 1 are fixed to a base 3. Reference numeral 4 denotes an electromagnetic drive/detection coil installed opposite to the U-shaped tube 1, 5 is a support beam that supports the electromagnetic drive/detection coil at its tip, and the other end is fixed to the base 3. The U-shaped tube 1 and the support beam 5 mutually form a tuning fork structure. That is, the U-shaped tube 1 and the beam 5 vibrate opposite each other, just like the teeth of a tuning fork vibrate, and like a tuning fork, the base 3 serves as a node of vibration, so that less vibrational energy is lost. It's summery. 6
1 and 62 are displacement detectors for detecting the displacement of both legs of the U-shaped tube 1.

駆動コイル4とこれに対抗するU字管1に固定
された永久磁石2の間に働く電磁力で、U字管1
をその固有振動数で振動すると、(縦振動(対称
たわみ振動):第2図AのM1,M2,M3は各瞬間
のパターンを示す)、U字管1内を流れる流体に
コリオリの力が発生する。このコリオリ力の大き
さは、U字管1内を流れる流体の質量とその速度
に比例し、力の方向は流体の運動方向とU字管1
を励振する角速度のベクトル積の方向に一致す
る。またU字管1の入力側と出力側では流体の方
向が逆になるので、両脚側のコリオリ力によつ
て、U字管1にねじり(非対称たわみ)のトルク
が発生する。このトルクは、励振周波数と同一な
周波数で変化し、その振幅値は流体の質量流量に
比例する。第2図Bはこのねじりトルクによつて
表われる振動モード(コリオリ振動モード)を示
し、M4,M5,M6は各瞬間の振動パターンを示
す。したがつて、このねじり振動(非対称たわみ
振動)トルクの振幅を、変位検出器61,62に
よつて、例えばパルス幅などの形で検出すれば、
質量流量を知ることができる。
The electromagnetic force acting between the driving coil 4 and the permanent magnet 2 fixed to the opposing U-shaped tube 1 causes the U-shaped tube 1 to move.
When oscillates at its natural frequency (longitudinal vibration (symmetrical flexural vibration): M 1 , M 2 , M 3 in Fig. 2 A shows the pattern at each moment), Coriolis occurs in the fluid flowing inside the U-shaped tube 1. The force of is generated. The magnitude of this Coriolis force is proportional to the mass and velocity of the fluid flowing inside the U-shaped tube 1, and the direction of the force is proportional to the direction of fluid movement and the U-shaped tube 1.
coincides with the direction of the vector product of the angular velocities that excite. Further, since the direction of the fluid is reversed on the input side and the output side of the U-shaped tube 1, twisting (asymmetrical deflection) torque is generated in the U-shaped tube 1 due to the Coriolis force on both legs. This torque varies with the same frequency as the excitation frequency, and its amplitude value is proportional to the mass flow rate of the fluid. FIG. 2B shows the vibration mode (Coriolis vibration mode) caused by this torsional torque, and M 4 , M 5 , and M 6 show the vibration patterns at each moment. Therefore, if the amplitude of this torsional vibration (asymmetrical flexural vibration) torque is detected by the displacement detectors 61 and 62 in the form of a pulse width, for example,
You can know the mass flow rate.

上記の様な原理を用いた質量流量計は従来から
公知である(例えば特開昭54−52570号)が、こ
の場合に下記の様な問題点がある。即ち、前記変
位検出器61,62からの出力信号の位相差から
質量流量を求める場合に、増幅器の位相・ゲイ
ン、比較器のスレツシユホールド、カウンタのト
リガ・レベルなどが温度などにより変化し、出力
にドリフトを生じる傾向がある。
A mass flow meter using the above-mentioned principle has been known for some time (for example, Japanese Patent Application Laid-open No. 52570/1983), but this method has the following problems. That is, when determining the mass flow rate from the phase difference between the output signals from the displacement detectors 61 and 62, the phase and gain of the amplifier, the threshold of the comparator, the trigger level of the counter, etc. change depending on the temperature, etc. There is a tendency for output to drift.

本発明は上記の欠点を解消するためになされた
もので、回路ドリフトのない安定な出力が得られ
る振動式の質量流量計を実現することを目的とす
る。
The present invention was made to eliminate the above-mentioned drawbacks, and an object of the present invention is to realize a vibrating mass flowmeter that can provide a stable output without circuit drift.

本発明はコリオリ流量計の2つの検出信号間の
時間差測定において、時分割的に測定モードから
キヤリブレーシヨン・モードに切換えこのキヤリ
ブレーシヨン・モードで同一信号を2つの回路に
加えて出力を比較し、校正を行なうことにより安
定な時間差出力を得るものである。
In measuring the time difference between two detection signals of a Coriolis flowmeter, the present invention switches from measurement mode to calibration mode in a time-division manner, applies the same signal to two circuits in this calibration mode, and compares the outputs. However, by performing calibration, a stable time difference output can be obtained.

以下図面にもとづいて本発明を説明する。 The present invention will be explained below based on the drawings.

第3図は、本発明に係る装置の要部を示す構成
平面図である。図は直管形コリオリ流量計の場合
を示し、1は振動管路、3は振動管路1を両端で
固定するベース、61と62は振動管路1の振動
を検出する検出器で、例えば圧電素子などが使用
される。8は検出器61からの検出出力e1を増幅
する増幅器、10は増幅器8の出力を2値信号e3
に変換する比較器である。7は検出器61,62
からの検出出力e1またはe2を入力としこのうちの
一方を出力する切換スイツチ、9は切換スイツチ
7からの出力を増幅する増幅器、11は増幅器9
からの出力を2値信号e4に変換する比較器であ
る。12は比較器10,11からの出力を入力と
し、その時間差を演算するとともに切換スイツチ
7への切換信号を出力する演算回路である。演算
回路はカウンタ、コントローラなどの公知のもの
で構成できる。
FIG. 3 is a structural plan view showing the main parts of the device according to the present invention. The figure shows the case of a straight pipe Coriolis flowmeter, where 1 is a vibrating pipe, 3 is a base that fixes the vibrating pipe 1 at both ends, and 61 and 62 are detectors that detect the vibration of the vibrating pipe 1. For example, Piezoelectric elements and the like are used. 8 is an amplifier that amplifies the detection output e 1 from the detector 61, and 10 is an amplifier that converts the output of the amplifier 8 into a binary signal e 3
It is a comparator that converts to . 7 is the detector 61, 62
9 is an amplifier that amplifies the output from the selector switch 7 ; 11 is an amplifier 9;
This is a comparator that converts the output from e4 into a binary signal e4. Reference numeral 12 denotes an arithmetic circuit which inputs the outputs from the comparators 10 and 11, calculates the time difference between them, and outputs a switching signal to the changeover switch 7. The arithmetic circuit can be composed of known circuits such as counters and controllers.

第4図は前記直管式コリオリ流量計が示す振動
パターンを示す。M7,M8は駆動手段により励振
されたときに振動管路1が各瞬間に表わす対称た
わみ振動パターンで、M9,M10は直管中を流れ
る流体に働くコリオリ力により表われる非対称た
わみ振動のパターンである。実際にはこの2種の
振動パターンが重畳された形で振動管路1は振動
する。
FIG. 4 shows a vibration pattern exhibited by the straight pipe Coriolis flowmeter. M 7 and M 8 are symmetrical deflection vibration patterns that the vibrating pipe 1 exhibits at each moment when excited by the driving means, and M 9 and M 10 are asymmetric deflection patterns that are caused by the Coriolis force acting on the fluid flowing in the straight pipe. It is a pattern of vibration. In reality, the vibration pipe 1 vibrates in a manner in which these two types of vibration patterns are superimposed.

第5図は第3図に示した各信号のタイムチヤー
トで第5図Aは測定モード、第5図Bはキヤリブ
レーシヨン・モードの場合を示す。振動管路1が
第4図に示したような非対称たわみ振動を行なつ
ていると、検出器出力e1とe2は互いに時間差を生
じて振動する。測定モードでは切換スイツチ7が
(実線)の状態となるので、検出器62の出力
e2が増幅器9の入力となり、両検出信号e1とe2
時間差Δtnが演算回路12で得られる。第5図A
に示すように、比較器10のスレツシユホールド
値L1に対して比較器11のスレツシユホールド
値L2が、ドリフトによりL1と異なる値にずれる
と、このずれに起因するる誤差が時間差Δtnに含
まれる。切換スイツチ7が(点線)の状態に切
換わるとキヤリブレーシヨン・モードとなり、検
出器61の出力e1が増幅器8,9共通の入力とな
る。このとき演算回路12は第5図Bに示す様に
比較器10,11のスレツシユホールド値のずれ
による時間差Δtcを得る。次に演算回路12でΔt
=Δtn−Δtcを演算し、ドリフトによる誤差分を
含まない時間差Δtを得てこれに対応した出力を
e5としている。
FIG. 5 is a time chart of each signal shown in FIG. 3, where FIG. 5A shows the measurement mode and FIG. 5B shows the calibration mode. When the vibrating pipe 1 is performing asymmetrical flexural vibration as shown in FIG. 4, the detector outputs e 1 and e 2 vibrate with a time difference between them. In the measurement mode, the changeover switch 7 is in the state (solid line), so the output of the detector 62 is
e 2 becomes the input of the amplifier 9, and the time difference Δt n between both detection signals e 1 and e 2 is obtained by the arithmetic circuit 12. Figure 5A
As shown in , when the threshold value L 2 of the comparator 11 deviates from the threshold value L 1 of the comparator 10 to a value different from L 1 due to drift, the error caused by this deviation becomes the time difference. Included in Δt n . When the changeover switch 7 is switched to the state shown by the dotted line, the calibration mode is entered, and the output e1 of the detector 61 becomes a common input to the amplifiers 8 and 9. At this time, the arithmetic circuit 12 obtains a time difference Δt c due to the difference between the threshold values of the comparators 10 and 11, as shown in FIG. 5B. Next, in the arithmetic circuit 12, Δt
= Δt n − Δt c , obtain the time difference Δt that does not include the error due to drift, and output the corresponding output.
It is set as e5 .

測定モードとキヤリブレーシヨン・モードはそ
れぞれ振動の1周期毎に切換えて行なうこともで
きるが、複数周期毎に平均化しながら行なうこと
もできる。ドリフトの速度がゆるやかな時はキヤ
リブレーシヨン・モードを間引いて行なつてもよ
い。
The measurement mode and the calibration mode can be switched for each cycle of vibration, but they can also be averaged for every multiple cycles. When the drift speed is slow, the calibration mode may be performed at a reduced rate.

なお上記の説明では比較器のスレツシユホール
ド値にドリフトのある場合について示したが、増
幅器の位相・ゲイン、カウンタのトリガ・レベル
などが温度などにより変化しても同じように誤差
は消去される。
The above explanation deals with the case where there is a drift in the threshold value of the comparator, but the error will be eliminated in the same way even if the phase and gain of the amplifier, the trigger level of the counter, etc. change due to temperature, etc. .

また検出器出力レベルが充分であれば第3図の
増幅器8,9は省略できる。
Further, if the detector output level is sufficient, the amplifiers 8 and 9 shown in FIG. 3 can be omitted.

また第3図の実施例ではキヤリブレーシヨン・
モードにおける入力信号として検出器の出力を用
いたが、別に標準信号を用意して、検出器の出力
信号に代えてこの標準信号を使用してもよい。
In addition, in the embodiment shown in Fig. 3, the calibration
Although the output of the detector is used as the input signal in the mode, a standard signal may be prepared separately and used in place of the output signal of the detector.

また第3図の実施例では直管形のコリオリ流量
計について示したが、第1図に示す様なU字管形
のコリオリ流量計にも同様に適用できる。
Although the embodiment shown in FIG. 3 shows a straight pipe type Coriolis flowmeter, the present invention can be similarly applied to a U-tube type Coriolis flowmeter as shown in FIG.

以上述べたように、本発明によれば回路ドリフ
トの影響を受けず安定な出力が得られる振動式の
質量流量計を実現できる。
As described above, according to the present invention, it is possible to realize a vibrating mass flowmeter that is not affected by circuit drift and can provide stable output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、コリオリ流量計の動作原理図、第2
図A,Bは第1図の動作説明図、第3図は本発明
の一実施例の要部構成平面図、第4図は第3図の
動作説明図、第5図は第3図装置の動作を説明す
るためのタイムチヤートである。 1……管路、61,62……検出器、7……切
換スイツチ、10,11……比較器、12……演
算回路。
Figure 1 is a diagram of the operating principle of a Coriolis flowmeter, Figure 2
Figures A and B are explanatory diagrams of the operation in Figure 1, Figure 3 is a plan view of the main part configuration of an embodiment of the present invention, Figure 4 is an explanatory diagram of the operation in Figure 3, and Figure 5 is the device shown in Figure 3. This is a time chart to explain the operation. 1... Pipe line, 61, 62... Detector, 7... Changeover switch, 10, 11... Comparator, 12... Arithmetic circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 振動する管路内に流体を流し、その流れと管
の角振動によつて生じるコリオリの力により、管
路を変形振動させる構成の質量流量計において、
管路の非対称たわみ振動を検出する1対の検出器
の一方の出力を入力とし2値信号に変換する比較
器10と、前記1対の検出器からの2つの出力信
号を入力としこの2つの検出信号から1つ選択す
る切換スイツチと、この切換スイツチからの出力
信号を入力とし2値信号に変換する比較器11
と、前記比較器10,11の出力をその入力とす
るとともに前記切換スイツチに対して切換信号を
加え、前記切換スイツチの各切換位置において前
記比較器10,11の出力信号間の時間差を測定
するとともにこの両時間差の差を演算する演算回
路とを設け、流量出力に含まれる回路ドリフト成
分を除去するようにしたことを特徴とした質量流
量計。
1. In a mass flowmeter configured to flow fluid into a vibrating pipe and cause the pipe to deform and vibrate due to the Coriolis force generated by the flow and the angular vibration of the pipe,
A comparator 10 receives the output of one of a pair of detectors for detecting asymmetrical deflection vibration of the pipe and converts it into a binary signal, and a comparator 10 receives two output signals from the pair of detectors and converts these two A changeover switch that selects one of the detection signals, and a comparator 11 that receives the output signal from this changeover switch and converts it into a binary signal.
Then, the outputs of the comparators 10 and 11 are used as inputs, and a switching signal is applied to the changeover switch, and the time difference between the output signals of the comparators 10 and 11 is measured at each switching position of the changeover switch. A mass flowmeter characterized in that a calculation circuit is provided to calculate the difference between the two time differences, and a circuit drift component included in the flow rate output is removed.
JP3436382A 1982-03-04 1982-03-04 Mass flow meter Granted JPS58151518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3436382A JPS58151518A (en) 1982-03-04 1982-03-04 Mass flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3436382A JPS58151518A (en) 1982-03-04 1982-03-04 Mass flow meter

Publications (2)

Publication Number Publication Date
JPS58151518A JPS58151518A (en) 1983-09-08
JPH0410011B2 true JPH0410011B2 (en) 1992-02-24

Family

ID=12412076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3436382A Granted JPS58151518A (en) 1982-03-04 1982-03-04 Mass flow meter

Country Status (1)

Country Link
JP (1) JPS58151518A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112827033A (en) * 2020-12-29 2021-05-25 北京谊安医疗系统股份有限公司 Integrated display and control system of electronic flowmeter of anesthesia machine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4817448A (en) * 1986-09-03 1989-04-04 Micro Motion, Inc. Auto zero circuit for flow meter
US4911006A (en) * 1986-10-03 1990-03-27 Micro Motion Incorporated Custody transfer meter
US4845989A (en) * 1987-09-04 1989-07-11 Titlow Joseph D Method and apparatus for determining elastic constants in tubes
US4876879A (en) * 1988-08-23 1989-10-31 Ruesch James R Apparatus and methods for measuring the density of an unknown fluid using a Coriolis meter
US5231884A (en) * 1991-07-11 1993-08-03 Micro Motion, Inc. Technique for substantially eliminating temperature induced measurement errors from a coriolis meter
US7555397B2 (en) 2005-05-31 2009-06-30 Endress + Hauser Flowtec Ag Coriolis mass flow meter and method for compensation of transmission errors of its input circuit
DE102005025354A1 (en) * 2005-05-31 2006-12-07 Endress + Hauser Flowtec Ag Coriolis mass flow meter and method for compensation of transmission errors of its input circuit
RU2545323C1 (en) * 2011-02-23 2015-03-27 Майкро Моушн, Инк. Vibration flowmeter and temperature measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112827033A (en) * 2020-12-29 2021-05-25 北京谊安医疗系统股份有限公司 Integrated display and control system of electronic flowmeter of anesthesia machine

Also Published As

Publication number Publication date
JPS58151518A (en) 1983-09-08

Similar Documents

Publication Publication Date Title
RU2159410C2 (en) Device and method for processing of signal to determine phase shift
US5069075A (en) Mass flow meter working on the coriolis principle
EP0311610B1 (en) Coriolis mass flowmeters
EP0083144B1 (en) Improved method and apparatus for mass flow measurement
JP2575203B2 (en) Mass flow meter with improved accuracy by compensating for asymmetry and viscous damping
JPH0337127B2 (en)
KR102061724B1 (en) Apparatus and method for detecting asymmetric flow in vibrating flowmeters
JP3565588B2 (en) Vibration type measuring instrument
MXPA01013250A (en) Type identification for drive control of a coriolis flowmeter.
EP0644403A1 (en) Coriolis type mass flow meter
JPH0410011B2 (en)
CN107850479B (en) Non-resonant circulation for coriolis flowmeters
JPH0915015A (en) Mass/flow rate meter
JPH04291119A (en) Colioris mass flowmeter
JPS58156813A (en) Mass flowmeter
JPS56125622A (en) Mass flowmeter
JPS58153121A (en) Mass flowmeter
JP3051681B2 (en) Coriolis flow meter
JPS58117416A (en) Flowmeter
JPS58206924A (en) Mass flowmeter
SU1739204A1 (en) Method and device for measuring mass flow rate
JP3335600B2 (en) Coriolis mass flowmeter
JPH0835872A (en) Vibrating measuring device
JP2001116602A (en) Coriolis mass flowmeter
JPS58206925A (en) Mass flowmeter