JP2984134B2 - Coriolis flow meter - Google Patents

Coriolis flow meter

Info

Publication number
JP2984134B2
JP2984134B2 JP4041912A JP4191292A JP2984134B2 JP 2984134 B2 JP2984134 B2 JP 2984134B2 JP 4041912 A JP4041912 A JP 4041912A JP 4191292 A JP4191292 A JP 4191292A JP 2984134 B2 JP2984134 B2 JP 2984134B2
Authority
JP
Japan
Prior art keywords
straight
straight pipe
pipes
straight pipes
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4041912A
Other languages
Japanese (ja)
Other versions
JPH05209768A (en
Inventor
信吾 五味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOBARU KK
Original Assignee
OOBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOBARU KK filed Critical OOBARU KK
Priority to JP4041912A priority Critical patent/JP2984134B2/en
Publication of JPH05209768A publication Critical patent/JPH05209768A/en
Application granted granted Critical
Publication of JP2984134B2 publication Critical patent/JP2984134B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は、コリオリ流量計に関し、より詳
細には、測定流体が流通する振動管を直管とし、該直管
を高次振動モードで駆動する直管式コリオリ流量計に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Coriolis flowmeter, and more particularly, to a straight-tube Coriolis flowmeter in which a vibrating tube through which a measurement fluid flows is a straight tube and the straight tube is driven in a high-order vibration mode.

【0002】[0002]

【従来技術】被測定流体の流通する流管の一端又は両端
を支持し、該支持点回りに流管を該流管の流れ方向と垂
直な方向に振動したとき、流管(以下振動管という)に
作用するコリオリの力が質量流量に比例することを利用
した質量流量計(コリオリ流量計)は周知である。この
コリオリ流量計における振動管は要部をなすもので、流
量計の特性を決定づけるものである。振動管としての形
状は湾曲管と直管とに大別される。湾曲管方式のものは
コリオリの力を有効に取り出すための形状を選択できる
面で高感度の質量流量検出ができるが、形状が大きくな
るという短所がある。これに対して、直管式のコリオリ
流量計は、両端を支持された直管の中央部を直管軸に垂
直な方向に振動したとき、直管の支持部と中央部との間
でコリオリの力による直管の変位差、すなわち位相差信
号として質量流量を検知するもので、直管は両端の支持
部を節とする1次振動モードで振動される。
2. Description of the Related Art One end or both ends of a flow tube through which a fluid to be measured flows is supported, and when the flow tube is vibrated around the supporting point in a direction perpendicular to the flow direction of the flow tube, a flow tube (hereinafter referred to as a vibrating tube) is provided. 2. Description of the Related Art Mass flow meters (Coriolis flow meters) that utilize the fact that the Coriolis force acting on ()) is proportional to the mass flow rate are well known. The vibrating tube in this Coriolis flowmeter is an important part and determines the characteristics of the flowmeter. The shape as a vibrating tube is roughly classified into a curved tube and a straight tube. The curved tube type can detect mass flow rate with high sensitivity in terms of selecting a shape for effectively extracting Coriolis force, but has a disadvantage that the shape is large. In contrast, a straight pipe type Coriolis flowmeter is designed so that when the center of a straight pipe supported at both ends vibrates in a direction perpendicular to the straight pipe axis, the Coriolis flow between the straight pipe support and the center is The mass flow rate is detected as a displacement difference of the straight pipe due to the force of, i.e., a phase difference signal, and the straight pipe is vibrated in a primary vibration mode in which the supporting portions at both ends are nodes.

【0003】図7は、従来の直管式コリオリ流量計の1
次振動モードを説明するための図で、図中、30,31
は支持点、32は直管である。
FIG. 7 shows a conventional straight tube type Coriolis flowmeter.
FIG. 3 is a diagram for explaining a next vibration mode, in which 30 and 31 are illustrated.
Is a support point, and 32 is a straight pipe.

【0004】図示の如く、従来の直管式コリオリ流量計
では、直管32は中央部Aに配設された加振器(図示せ
ず)により、支持点30,31を節とした実線と点線と
で示す1次の振動モードにより駆動される。中央部Aと
支持点30の間の位置Bと、Bの中央部Aに関する対称
点Cとに位相検出器(図示せず)が配設され、直管32
への測定流体の流通によりコリオリの力に基く位相差が
検出される。しかし、上述の従来の直管式のコリオリ流
量計には下記の問題点があった。 コリオリの力は、流速と密度の積算値である質量流
量と駆動周波数とのベクトル積に比例して生じ、コリオ
リの力は直管32の曲げ変位による位相差として検出す
るものであるから、SN比の高い高感度なコリオリの力
を検出するためには、直管32の肉厚を薄くして変形し
易くするか、駆動周波数を高くすることが要求される。
しかし、直管32の肉厚を薄くすることは固有振動数を
下げることであるから、肉厚を薄くすることと固有振動
数を上げることとは相反した条件を与えることとなる。 また、感度向上の手段として、流速を増大させるこ
とが挙げられる。しかし、コリオリの力は流速に比例す
るから、2倍の感度を得るためには2倍の流速にする必
要があり、この結果、直管内での圧力損失は4倍近くに
増大する。 直管32が単管であると、振動によるマスバランス
をとるために、支持部30と31とが直管32の振動方
向と反対の向きに振動するので配管振動が生ずるが、こ
れをなくすため平行な2本の直管に分流し、近接,離間
する方向に振動させて流量計自体でマスバランスをとら
れるが、このために分岐部を必要とし、流速分布やスラ
リーとかガスの混入による不均一流れとなり、バランス
が不良になったり、また製造上の困難を生ずる。 これを解決するために、1本の直管に対してダミー管
(棒又は板)を配設し、対となる直管とダミー管とで平
衡をとる方法も提案されているが、この方法では、測定
流体の密度が変ったとき直管のみが固有振数が変化する
ので、振動のバランズがくずれ大幅な性能低下をもたら
す。
As shown in the drawing, in a conventional straight tube type Coriolis flow meter, a straight tube 32 is formed by a vibrator (not shown) disposed at a center portion A with a solid line having nodes at support points 30 and 31. It is driven in the primary vibration mode indicated by the dotted line. A phase detector (not shown) is disposed at a position B between the central portion A and the support point 30 and a symmetrical point C with respect to the central portion A of B.
The phase difference based on the Coriolis force is detected by the flow of the measurement fluid to the sample. However, the above-described conventional straight tube type Coriolis flowmeter has the following problems. The Coriolis force is generated in proportion to the vector product of the mass flow rate, which is the integrated value of the flow velocity and the density, and the drive frequency, and the Coriolis force is detected as a phase difference due to the bending displacement of the straight pipe 32. In order to detect a high-sensitivity Coriolis force with a high ratio, it is necessary to reduce the thickness of the straight pipe 32 so as to be easily deformed or to increase the driving frequency.
However, reducing the wall thickness of the straight pipe 32 means lowering the natural frequency, so reducing the wall thickness and increasing the natural frequency give contradictory conditions. Further, as a means for improving the sensitivity, there is a method of increasing the flow rate. However, since the Coriolis force is proportional to the flow velocity, it is necessary to make the flow velocity twice as high in order to obtain twice the sensitivity, and as a result, the pressure loss in the straight pipe increases nearly four times. If the straight pipe 32 is a single pipe, the supporting portions 30 and 31 vibrate in the direction opposite to the vibration direction of the straight pipe 32 in order to balance the mass by vibration. The flow is divided into two parallel straight pipes and vibrated in the direction of approach and separation to achieve mass balance with the flow meter itself. The flow becomes uniform, resulting in poor balance and difficulty in production. In order to solve this problem, a method has been proposed in which a dummy pipe (a rod or a plate) is provided for one straight pipe to balance the straight pipe and the dummy pipe as a pair. In this case, when the density of the measurement fluid changes, only the straight pipe changes in the natural frequency, so that the vibrational balance is lost and the performance is greatly reduced.

【0005】[0005]

【目的】本発明は、上述の実情に鑑みてなされたもの
で、直管式のコリオリ流量計において、加振振動数を直
管の高次振動モードとなる周波数とすることにより圧力
損失を増大させることなく、簡易で高感度なコリオリ流
量計を安価に提供することを目的としてなされたもので
ある。
The present invention has been made in view of the above circumstances, and in a straight tube type Coriolis flowmeter, the pressure loss is increased by setting the excitation frequency to a frequency at which a higher order vibration mode of the straight tube is set. It is an object of the present invention to provide a simple and highly sensitive Coriolis flowmeter at a low cost without causing any problems.

【0006】[0006]

【構成】本発明は、上記目的を達成するために、計測流
体が流通する直管の振動により生ずるコリオリの力を検
出して流体の流量を計測するコリオリ流量計において、
(1)前記直管の両端支持間長さをLとするとき、該両
端支持間長さLの直管と、該直管の一方の支持端からL
/3の位置に配設され前記直管を加振する駆動手段と、
前記直管の他方の支持端からL/3の位置に配設された
振幅検出器と、前記直管の何れか一方の支持端からL/
2の区間内にあり、且つL/3の位置に対して対称な位
置に配設された一対の位相検出器とからなり、前記駆動
手段の駆動周波数を前記直管の2次の振動モードとなる
周波数とし、前記振幅検出器の信号に基いて直管の振動
振幅を一定に制御すること、更には、(2)前記直管の
両端支持間長さをLとするとき、該両端支持間長さLの
直管と、該直管のL/2の位置に配設された回転加振器
と、前記直管の一方の支持端からL/2の区間内にあ
り、且つL/3の位置に対して対称の位置に配設された
一対の位相検出器とからなり、前記回転加振器を直管の
L/2位置を中心とし、直管の2次の振動モードとなる
回転数で一定の中心角で反復駆動したこと、或いは、
(3)同一固有振動数の平行な長さLの2本の直管と、
前記2本の直管の両端を支持する支持手段と、前記2本
の直管の一方の支持端からL/3の位置に配設され、
記2本の直管の各々を前記2本の直管により形成される
面に平行な方向に互いに反対位相で加振する駆動手段
と、前記2本の直管の何れか一方の支持端からL/2の
区間内にあり、且つL/3の位置に対して対称の位置に
配設された一対の位相検出器とからなり、前記駆動手段
の周波数を前記2本の直管の2次の振動モードとなる周
波数で駆動すること、或いは、(4)同一固有振動数の
平行な長さLの2本の直管と、前記2本の直管の両端を
支持する支持手段と、前記2本の直管の一方の支持端か
らL/3の位置に配設され、前記2本の直管の各々を前
記2本の直管により形成される面に垂直な方向に互いに
反対位相で加振する駆動手段と、前記2本の直管の何れ
か一方の支持端からL/2の区間内にあり、且つL/3
の位置に対して対称の位置に配設された一対の位相検出
器とからなり、前記駆動手段の周波数を前記2本の直管
の2次の振動モードとなる周波数で駆動することを特徴
とするものである。以下、本発明の実施例に基いて説明
する。
In order to achieve the above object, the present invention relates to a Coriolis flowmeter for measuring a flow rate of a fluid by detecting a Coriolis force generated by vibration of a straight pipe through which a measurement fluid flows.
(1) When the length between both ends of the straight pipe is L,
A straight pipe having a length L between the end supports, and L from the one support end of the straight pipe.
Driving means disposed at the position of 3 to vibrate the straight pipe;
It is disposed at a position L / 3 from the other support end of the straight pipe.
An amplitude detector and L / L from one of the support ends of the straight pipe.
Position within the section 2 and symmetric with respect to the position L / 3
And a pair of phase detectors
The driving frequency of the means becomes the secondary vibration mode of the straight pipe
Frequency and vibration of the straight pipe based on the signal of the amplitude detector.
Controlling the amplitude to be constant ; and (2) controlling the straight pipe
When the length between both ends of the support is L, a straight pipe having the length between both ends of the support L, a rotary vibrator disposed at a position of L / 2 of the straight pipe, and one support of the straight pipe Within the section of L / 2 from the end
And symmetrically disposed with respect to the position of L / 3.
A pair of phase detectors, wherein the rotary vibrator is repeatedly driven at a fixed central angle at a rotational speed of a secondary vibration mode around the L / 2 position of the straight pipe, or ,
(3) two straight pipes having the same natural frequency and having a parallel length L;
Support means for supporting both ends of the two straight tubes, the two
Disposed from one support end of the straight tube at the position of L / 3, before
Each of the two straight pipes is formed by the two straight pipes.
Driving means that vibrate with phases opposite to each other in a direction parallel to the plane
And L / 2 of the distance from one of the support ends of the two straight pipes.
Within the section and at a position symmetrical with respect to the L / 3 position
The driving means, comprising a pair of phase detectors disposed
Frequency that is driven at a frequency which is a second-order vibration mode of the straight tube of the two, or, (4) and straight tube of two identical natural frequencies of the parallel length L, a the two At both ends of the straight pipe
A supporting means for supporting, disposed at a position L / 3 from one supporting end of one of the two straight pipes;
In a direction perpendicular to the plane formed by the two straight pipes.
A driving means for vibrating in opposite phases, and any one of the two straight pipes
L / 2 section from one of the support ends, and L / 3
Pair of phase detectors located at symmetrical positions
And driving the driving means at a frequency at which the two straight pipes have a secondary vibration mode. Hereinafter, a description will be given based on an example of the present invention.

【0007】図1は、本発明のコリオリ流量計を説明す
るための使用中における断面図で、図中、1は支持筒、
2,3はフランジ、4は直管、5は振幅検出器、6は加
振器、7,8は位相検出器、9,10は支持部である。
FIG. 1 is a cross-sectional view of a Coriolis flowmeter according to the present invention during use, in which 1 is a support cylinder,
Reference numerals 2 and 3 are flanges, 4 is a straight pipe, 5 is an amplitude detector, 6 is a vibrator, 7 and 8 are phase detectors, and 9 and 10 are support parts.

【0008】図1において、4は直管(図においては、
動作説明のため湾曲した湾曲状態に示している)で、支
持筒1の両端面の支持部9と10とで両持ち支持され
る。該直管4は支持部9と10との間で長さがLで、フ
ランジ2と3とで流管(図示せず)に介装され測定流体
が流通する。直管4の一端、図示においては支持部9か
らL/3の位置に加振器6が配設されている。支持部9
からL/3の位置は、支持部9と10とで両端を固定し
た両持式の直管4に2次モードの固有周波数によって振
動させたとき、振幅が最大となる位置である。加振器6
は、例えば直管4に直管軸と垂直方向に一端を固着され
た棒状の磁石(又はコアー)6aと、一端を支持筒1に
固着され、支持部材6cとに該支持部材6cに一端を支
持されたコイル6bとから構成され、コイル6b内にコ
アー6aが挿通している。直管4の他端の支持部10か
らL/3の位置にも加振器6と同様に構成の振幅検出器
5が支持筒1と直管4とに固着されている。更に、前記
加振器6の両側には、振幅検出器と同様の構成原理の磁
石およびコイルとからなる位相検出器7と8とが配設さ
れている。該位相検出器7と8の配設位置は加振器6と
同一側L/2内の区間である。前記加振動6、振幅検出
器5及び位相検出器7,8の配設位置は、高次振動モー
ドの分析、研究に基いて得られたものである。
In FIG. 1, reference numeral 4 denotes a straight pipe (in the figure,
It is shown in a curved state for explanation of the operation), and is supported at both ends by the support portions 9 and 10 on both end surfaces of the support tube 1. The straight pipe 4 has a length L between the supports 9 and 10, and is interposed between the flanges 2 and 3 in a flow pipe (not shown), through which a measurement fluid flows. The vibrator 6 is disposed at one end of the straight pipe 4, at a position L / 3 from the support 9 in the drawing. Support part 9
The position from to L / 3 is a position where the amplitude becomes maximum when the doubly supported straight pipe 4 whose both ends are fixed by the support portions 9 and 10 is vibrated at the natural frequency of the second mode. Exciter 6
For example, a rod-shaped magnet (or core) 6a having one end fixed to the straight pipe 4 in the direction perpendicular to the straight pipe axis, and one end fixed to the support cylinder 1 and one end connected to the support member 6c. A core 6a is inserted into the coil 6b. An amplitude detector 5 having the same configuration as the vibrator 6 is fixed to the support cylinder 1 and the straight pipe 4 at a position L / 3 from the support portion 10 at the other end of the straight pipe 4. Further, on both sides of the vibrator 6, phase detectors 7 and 8 comprising magnets and coils having the same configuration principle as the amplitude detector are arranged. The disposition positions of the phase detectors 7 and 8 are sections within the same side L / 2 as the vibrator 6. Excitation 6, amplitude detection
The positions of the detector 5 and the phase detectors 7 and 8 are
It was obtained based on the analysis and research of the

【0009】上述の構成になる本発明のコリオリ流量計
の動作を説明する。加振器6のコイル6bに直管4の2
次モードとなる周波数の交流電源を発振器(図示せず)
により印加する。このときの固有周波数fnは
The operation of the Coriolis flow meter according to the present invention having the above-described configuration will be described. The straight pipe 4-2 is attached to the coil 6b of the vibrator 6.
Oscillator (not shown) that supplies AC power at the next mode frequency
Is applied. The natural frequency fn at this time is

【0010】[0010]

【数1】 (Equation 1)

【0011】であらわされる。ここでCnは振動モード
により定められる定数で、1次振動モードのときはC1
=3.507、2次ではC2=9.815であり、Eは直
管4のヤング率、Iは2次モーメント、ρは密度(流体
を含む)、Aは断面積、Lは両持支持部9,10間の長
さである。直管4の長さL等、式の平方根内におけるコ
リオリ流量計の駆動条件を一定とすると、直管の固有振
動数fnは振動モードの次数により定まる。すなわち、
2次モード振動では1次モード振動に比し2.8倍の f
2=2.8f1 となる。この振動は振幅検出器5で検出さ
れ、振幅制御回路(図示せず)により一定の振幅,一定
の2次モード振動となるように加振器6を駆動する。し
かし、2次モードの振動においては、加振器の位置と支
持部10からL/3の振幅検出器5の位置では正確に逆
位相となる位置であるから、加振器6を振幅検出器5の
位置6aに、振幅検出器5を加振器6の位置5aに換え
てもよい。このように、同条件で振動モードを1次から
2次にした場合、2.8倍の高い振動数を得られること
により、同条件で2.8倍のコリオリ力、つまり変化を
得ることができ、SN比が大幅に向上する。又、高周波
数であることは配管振動等の低周波数の影響を受けにく
くなり、よりSN比を向上させることになる。
## EQU1 ## Here, Cn is a constant determined by the vibration mode, and C 1 in the case of the primary vibration mode.
= 3.507, C 2 = 9.815 for the second order, E is Young's modulus of the straight pipe 4, I is the second moment, ρ is the density (including fluid), A is the cross-sectional area, and L is the two-sided This is the length between the support parts 9 and 10. Assuming that the driving conditions of the Coriolis flowmeter within the square root of the equation, such as the length L of the straight pipe 4, are constant, the natural frequency fn of the straight pipe is determined by the order of the vibration mode. That is,
In the second mode vibration, f is 2.8 times that of the first mode vibration.
2 = the 2.8f 1. This vibration is detected by the amplitude detector 5, and the vibrator 6 is driven by an amplitude control circuit (not shown) so as to have a constant amplitude and a constant second mode vibration. However, in the vibration in the second mode, the position of the vibration exciter and the position of the L / 3 amplitude detector 5 from the support unit 10 are exactly in opposite phases, so that the vibration exciter 6 is connected to the amplitude detector. Alternatively, the amplitude detector 5 may be replaced with the position 5a of the vibrator 6 at the position 6a of FIG. As described above, when the vibration mode is changed from the first order to the second order under the same condition, a 2.8 times higher frequency can be obtained, so that a 2.8 times Coriolis force, that is, a change can be obtained under the same condition. As a result, the SN ratio is greatly improved. In addition, having a high frequency makes it less likely to be affected by a low frequency such as pipe vibration, thereby further improving the SN ratio.

【0012】図2は、2次モード振動を説明するための
図で、図中、Mは直管4の中央部、P,Qは2次モード
振動における最大振幅位置、A,B,C,Dは位相検出
器の位置で、CはMに関しBの対称位置、DはMに関し
Bの対称位置で、直管4の中央部Mは、2次の振動モー
ドにおける節となる部分である。実線と点線とは位相が
180°異なる直管4の振動状態を示すものである。直
管4はMの右側では−Δ、左側では+Δの慣性力に基く
振幅変位が生ずる。このように、1本の直管に慣性力が
上下方向に対称に生ずるので、上下方向に作用する慣性
力はキャンセルされる。位置の違いによるモーメントが
生ずるが、コリオリ流量計は配管にリジッドに結合され
るので問題はない。
FIG. 2 is a view for explaining the second mode vibration. In the figure, M is the central portion of the straight pipe 4, P and Q are the maximum amplitude positions in the second mode vibration, A, B, C, and D is a position of the phase detector, C is a symmetric position of B with respect to M, D is a symmetric position of B with respect to M, and a central portion M of the straight pipe 4 is a portion serving as a node in the second-order vibration mode. The solid line and the dotted line show the vibration state of the straight pipe 4 having a phase difference of 180 °. The straight pipe 4 undergoes an amplitude displacement based on the inertial force of −Δ on the right side of M and + Δ on the left side of M. As described above, the inertial force acting on one straight pipe is symmetrical in the vertical direction, so that the inertial force acting in the vertical direction is canceled. Although the moment due to the difference in position is generated, there is no problem because the Coriolis flowmeter is rigidly connected to the piping.

【0013】図3(a),(b),(c)は、2次振動モ
ードにおけるコリオリの力を説明するための図で、図3
(a)は、図2の実線で示した位相に至る工程のコリオ
リの力を説明するもので、図3(b)は、図2の点線で
示した位相に至る工程のコリオリの力を示したもので、
図3(a)と図3(b)とでは180°位相が異なる。
なお、振幅最大位置P,Qには加振器6又は振幅検出器
5が配設される。ここで、直管4がP位置で+△変位
し、Q位置で−△変位したときにコリオリの力による変
位は曲線CLであらわされる。
FIGS. 3A, 3B and 3C are views for explaining Coriolis force in the secondary vibration mode.
FIG. 3A illustrates the Coriolis force in the process reaching the phase indicated by the solid line in FIG. 2, and FIG. 3B illustrates the Coriolis force in the process reaching the phase indicated by the dotted line in FIG. That
FIG. 3A and FIG. 3B have a 180 ° phase difference.
Note that a vibration exciter 6 or an amplitude detector 5 is provided at the maximum amplitude positions P and Q. Here, the straight tube 4 is + △ displaced position P, at Q position - △ displacement due to the Coriolis force is represented by the curve C L when displaced.

【0014】図3(a)の工程の位相検出器7のA位置
では、コリオリの力は振動方向に逆向きの力、すなわち
支持位置を結ぶ9−10線に関して下方に向く力が生
じ、位相検出器8のB位置では、流体の振動が低下する
方向であるため上方向きのコリオリの力が作用し、図示
のAとBの位置には位相差が生ずる。同様にC位置では
下向きの力、D位置では上向きの力が生じ、CとD位置
には位相点が生ずる。図3(b)の反対位相の工程で
は、図3(a)と全く逆の向きの位相差が生ずる。従っ
て、位相検出器7と8との間には、支持位置9−10を
結ぶ線を通過するとき、図3(c)に示すように最大の
位相差Δφが生ずる。この位相差はコリオリの力に基く
もので、測定流体の質量流量に比例する量であるから、
この位相差信号に基いて質量流量を検知することができ
る。また、A位置とD位置およびB位置とC位置間でも
位相点が生じ、この位相点を検出することもできる。
At the position A of the phase detector 7 in the step of FIG. 3A, the Coriolis force is a force in a direction opposite to the vibration direction, that is, a force directed downward with respect to the line 9-10 connecting the supporting positions, and At the position B of the detector 8, since the vibration of the fluid decreases, an upward Coriolis force acts, and a phase difference occurs between the positions A and B in the drawing. Similarly, a downward force is generated at the C position, an upward force is generated at the D position, and a phase point is generated at the C and D positions. In the step of the opposite phase in FIG. 3B, a phase difference in a direction completely opposite to that in FIG. Therefore, when passing through the line connecting the support positions 9-10 between the phase detectors 7 and 8, a maximum phase difference Δφ occurs as shown in FIG. 3 (c). Since this phase difference is based on the Coriolis force and is an amount proportional to the mass flow rate of the measurement fluid,
The mass flow rate can be detected based on the phase difference signal. Further, a phase point occurs between the A position and the D position and between the B position and the C position, and this phase point can be detected.

【0015】図4は、本発明におけるコリオリ流量計の
他の実施例を示す図で、図中、11は回転加振器で、図
1と同じ作用をする部分には同一の参照番号を付してい
る。
FIG. 4 is a view showing another embodiment of the Coriolis flowmeter according to the present invention. In the figure, reference numeral 11 denotes a rotary vibrator, and portions having the same functions as those in FIG. doing.

【0016】図示の回転加振器11は、直管4の中央部
Mにおいて、直管4を矢印R,F方向に所定角度往復回
転させる駆動手段であり、その構造を問うものではない
が、例えば、直管4と直交する磁性材の棒を直管4の中
央M部に固着し、該磁性材の自由端部を円周方向に電磁
石等で駆動することにより容易に駆動することができ
る。この方法によれば、位相検出器7や8と回転加振器
11とは離間して配設することができるので、位相検出
器7や8に対しての雑音を小さくすることができる。
The illustrated rotary vibration exciter 11 is a driving means for reciprocating the straight pipe 4 in the directions of arrows R and F at a predetermined angle in the central portion M of the straight pipe 4, and its structure is not limited. For example, the rod can be easily driven by fixing a rod of a magnetic material orthogonal to the straight pipe 4 to the center M of the straight pipe 4 and driving the free end of the magnetic material in a circumferential direction by an electromagnet or the like. . According to this method, since the phase detectors 7 and 8 and the rotary vibration exciter 11 can be disposed separately from each other, noise to the phase detectors 7 and 8 can be reduced.

【0017】図5(a),(b)は、本発明におけるコ
リオリ流量計の更に他の実施例を説明するための図で、
図5(a)は断面図、図5(b)は図5(a)を流れ方
向からみた図であり、図中、12,13は支持部材、1
4,15は直管、16は加振器、17は振幅検出器、1
8,19は位相検出器、20,21,22,23は支持
位置である。
FIGS. 5A and 5B are diagrams for explaining still another embodiment of the Coriolis flow meter according to the present invention.
5A is a cross-sectional view, and FIG. 5B is a view of FIG. 5A as viewed from the flow direction.
4, 15 are straight tubes, 16 is a vibrator, 17 is an amplitude detector, 1
8, 19 are phase detectors and 20, 21, 22, 23 are support positions.

【0018】図示の直管14,15は、平行で同一面と
なるように支持部材12と13とに両端を固着した長さ
Lの同一の固有振動数を有する直管で、支持部材12と
13とには各々直管14は20と21とで支持され、直
管15は22と23とで支持される管体であるが、図に
おいて簡単に線状で示している。加振器16,振幅検出
器17,および位相検出器18と19とは、図1の加振
器6,振幅検出器5,位相検出器7,8と同じもので、
各々の取付ける寸法位置関係も同一に選んでいる。
The straight pipes 14 and 15 shown are straight pipes having the same natural frequency of the length L and having both ends fixed to support members 12 and 13 so as to be parallel and flush with each other. In FIG. 13, a straight pipe 14 is supported by 20 and 21 and a straight pipe 15 is supported by 22 and 23, respectively. The vibrator 16, the amplitude detector 17, and the phase detectors 18 and 19 are the same as the vibrator 6, the amplitude detector 5, and the phase detectors 7 and 8 in FIG.
The same dimensional positional relationship is chosen for each.

【0019】図示において、加振器16を各々の直管1
4と15とが2次の振動モードとなる周波数で反対位相
となるように駆動する。このときも中央部Mは節とな
り、或る位相で直管14,15は同一面上で図示の実線
で示したように加振器16側では離間し、振幅検出器1
7側では近接する方向となり、図示しない反対の位相で
は逆に加振器16側では近接し、振幅検出器17側では
離間した振動となる。この結果、直管14と15との振
動によるマスバランスは完全にとられ、外部流管に振動
を与えることもなく、また、面上に振動する外部振動に
も影響を受けることがない。
In the figure, the vibrator 16 is connected to each straight pipe 1.
Driving is performed so that 4 and 15 are in opposite phases at the frequency at which the secondary vibration mode is set. Also at this time, the central portion M becomes a node, and at a certain phase, the straight tubes 14 and 15 are separated on the same surface on the vibrator 16 side as shown by the solid line in FIG.
On the other hand, the vibration becomes closer on the side of the vibrator 16 and on the side of the amplitude detector 17 in the opposite phase (not shown). As a result, the mass balance due to the vibration of the straight pipes 14 and 15 is completely achieved, and no vibration is applied to the external flow pipe, and the external flow pipe is not affected by the external vibration.

【0020】図6(a),(b)は、本発明におけるコ
リオリ流量計の更に他の実施例を説明するための図で、
図6(a)は側面図、図6(b)は正面図であり、図
中、24,25は支持部材、26,27は直管である。
FIGS. 6A and 6B are views for explaining still another embodiment of the Coriolis flowmeter according to the present invention.
FIG. 6A is a side view, and FIG. 6B is a front view, in which 24 and 25 are support members and 26 and 27 are straight pipes.

【0021】図示においては、加振器と振幅検出器およ
び位相検出器の図示を省いているが、実線は図5と同一
構造のものが同一間隔で配設されている。図示の場合
は、支持部材24と25とに同一の固有振動数を有する
直管26と27とを同一面に両持ち固着したもので、図
5のものと同一であるが、直管26と27との駆動方向
が異なる。すなわち、直管26と27との加振方向は、
直管26と27とのなす面に垂直な方向に各々の直管2
6と27との2次モードで各々反対位相で加振される。
従って、コリオリの力は支持部材24と中間点Mの間の
区間において、L/3の位置Aに対称な位置の間での位
相差として検知される。この場合の位相差信号は、単管
の場合に比べ2倍の検出感度が得られる。
Although the illustration of the vibrator, the amplitude detector, and the phase detector is omitted in the drawing, the solid line has the same structure as that of FIG. 5 and is arranged at the same interval. In the case shown, straight pipes 26 and 27 having the same natural frequency are fixed to support members 24 and 25 on the same surface at both ends, and are the same as those in FIG. 27 is different from the driving direction. That is, the vibration direction of the straight pipes 26 and 27 is
Each straight pipe 2 extends in a direction perpendicular to the plane formed by the straight pipes 26 and 27.
Vibrations are performed in opposite phases in the secondary modes 6 and 27, respectively.
Accordingly, the Coriolis force is detected as a phase difference between positions symmetrical with the position A of L / 3 in a section between the support member 24 and the intermediate point M. In this case, the detection sensitivity of the phase difference signal is twice as high as that of a single tube.

【0022】[0022]

【効果】以上の説明から明らかなように、本発明によれ
ば、以下のような効果がある。 (1)請求項1〜に対応する効果:直管式のコリオリ
流量計において駆動振動数を直管の高次振動モードとな
る周波数で加振することにより、圧力損失を増加させる
ことなく、簡易で高感度なコリオリ流量計を安価に提供
することができる。 (2)請求項3,4に対応する効果:支持部材に対し、
同一固有振動数の直管を平行に配設して2次の振動モー
ドの周波数で駆動したので、振動によるマスバランスが
とれ、外部に与える振動も少く、検出感度は倍増して、
しかも外部振動影響も小さくすることができる。
As is clear from the above description, the present invention has the following effects. (1) Effects corresponding to the first to fourth aspects: In a straight pipe type Coriolis flowmeter, the drive frequency is vibrated at a frequency that is a higher vibration mode of the straight pipe, so that pressure loss is not increased. A simple and highly sensitive Coriolis flowmeter can be provided at low cost. (2) Effects corresponding to the third and fourth aspects :
Since straight pipes having the same natural frequency are arranged in parallel and driven at the frequency of the secondary vibration mode, mass balance due to vibration can be obtained, the vibration given to the outside is small, the detection sensitivity is doubled,
In addition, the influence of external vibration can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のコリオリ流量計を説明するための使
用中における断面図である。
FIG. 1 is a sectional view of a Coriolis flow meter according to the present invention during use.

【図2】 2次モード振動を説明するための図である。FIG. 2 is a diagram for explaining second-order mode vibration.

【図3】 2次振動モードにおけるコリオリの力を説明
するための図である。
FIG. 3 is a diagram for explaining Coriolis force in a secondary vibration mode.

【図4】 本発明におけるコリオリ流量計の他の実施例
を示す図である。
FIG. 4 is a view showing another embodiment of the Coriolis flow meter according to the present invention.

【図5】 本発明におけるコリオリ流量計の更に他の実
施例を説明するための図である。
FIG. 5 is a view for explaining still another embodiment of the Coriolis flowmeter according to the present invention.

【図6】 本発明におけるコリオリ流量計の更に他の実
施例を説明するための図である。
FIG. 6 is a view for explaining still another embodiment of the Coriolis flowmeter according to the present invention.

【図7】 従来の直管式コリオリ流量計の1次振動モー
ドを説明するための図である。
FIG. 7 is a view for explaining a primary vibration mode of a conventional straight tube Coriolis flowmeter.

【符号の説明】[Explanation of symbols]

1…支持筒、2,3…フランジ、4…直管、5…振幅検
出器、6…加振器、7,8…位相検出器、9,10…支持
部。
DESCRIPTION OF SYMBOLS 1 ... Support cylinder, 2, 3 ... Flange, 4 ... Straight pipe, 5 ... Amplitude detector, 6 ... Exciter, 7, 8 ... Phase detector, 9, 10 ... Support part.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 計測流体が流通する直管の振動により生
ずるコリオリの力を検出して流体の流量を計測するコリ
オリ流量計において、前記直管の両端支持間長さをLと
するとき、該両端支持間長さLの直管と、該直管の一方
の支持端からL/3の位置に配設され前記直管を加振す
る駆動手段と、前記直管の他方の支持端からL/3の位
置に配設された振幅検出器と、前記直管の何れか一方の
支持端からL/2の区間内にあり、且つL/3の位置に
対して対称な位置に配設された一対の位相検出器とから
なり、前記駆動手段の駆動周波数を前記直管の2次の振
動モードとなる周波数とし、前記振幅検出器の信号に基
いて直管の振動振幅を一定に制御することを特徴とする
コリオリ流量計。
In a Coriolis flowmeter for measuring a flow rate of a fluid by detecting Coriolis force generated by vibration of a straight pipe through which a measurement fluid flows, when a length between both ends of the straight pipe is L, L and a straight pipe both ends supported between the length L, a driving means for vibrating said straight pipe is arranged from one of the support ends at the position of L / 3 of the straight tube, the other support end of said straight pipe / 3, and an amplitude detector disposed at a position of one of the straight pipes.
Within the section of L / 2 from the support end and at the position of L / 3
Consists of a pair of phase detectors disposed at symmetrical positions against, the drive frequency of the drive means and the frequency of the secondary vibration mode of the straight pipe, straight on the basis of a signal of the amplitude detector A Coriolis flowmeter characterized by controlling the vibration amplitude of a pipe to be constant.
【請求項2】 計測流体が流通する直管の振動により生
ずるコリオリの力を検出して流体の流量を計測するコリ
オリ流量計において、前記直管の両端支持間長さをLと
するとき、該両端支持間長さLの直管と、該直管のL/
2の位置に配設された回転加振器と、前記直管の一方の
支持端からL/2の区間内にあり、且つL/3の位置に
対して対称の位置に配設された一対の位相検出器とから
なり、前記回転加振器を直管のL/2位置を中心とし、
直管の2次の振動モードとなる回転数で一定の中心角で
反復駆動したことを特徴とするコリオリ流量計。
2. The vibration of a straight pipe through which a measurement fluid flows causes
Coriolis that measure the flow rate of fluid by detecting the shearing Coriolis force
In the orifice flow meter, the length between both ends of the straight pipe is L.
When the straight tube of the both-ends-supported between length L, a of the straight tube L /
A rotary vibrator arranged at the position 2 and one of the straight pipes
Within the section of L / 2 from the support end and at the position of L / 3
A pair of phase detectors disposed symmetrically with respect to each other , wherein the rotary vibrator is centered on the L / 2 position of the straight pipe,
A Coriolis flowmeter characterized in that it is repeatedly driven at a constant central angle at a rotation speed at which a straight vibration mode of the straight pipe is set to a secondary vibration mode.
【請求項3】 同一固有振動数の平行な長さLの2本の
直管と、前記2本の直管の両端を支持する支持手段と、
前記2本の直管の一方の支持端からL/3の位置に配設
され、前記2本の直管の各々を前記2本の直管により形
成される面に平行な方向に互いに反対位相で加振する駆
動手段と、前記2本の直管の何れか一方の支持端からL
/2の区間内にあり、且つL/3の位置に対して対称の
位置に配設された一対の位相検出器とからなり、前記駆
動手段の周波数を前記2本の直管の2次の振動モードと
なる周波数で駆動することを特徴とするコリオリ流量
計。
3. Two straight pipes having the same natural frequency and having a parallel length L; and support means for supporting both ends of the two straight pipes ;
The two straight pipes are disposed at a position L / 3 from one support end of each of the two straight pipes, and each of the two straight pipes is formed by the two straight pipes.
Drives in opposite directions in the direction parallel to the plane formed
Moving means and L from either one of the two straight pipes.
/ 2 and symmetric with respect to the position of L / 3
And a pair of phase detectors disposed at
A Coriolis flowmeter characterized in that the frequency of the moving means is driven at a frequency that is a secondary vibration mode of the two straight pipes.
【請求項4】 同一固有振動数の平行な長さLの2本の
直管と、前記2本の直管の両端を支持する支持手段と、
前記2本の直管の一方の支持端からL/3の位置に配設
され、前記2本の直管の各々を前記2本の直管により形
成される面に垂直な方向に互いに反対位相で加振する駆
動手段と、前記2本の直管の何れか一 方の支持端からL
/2の区間内にあり、且つL/3の位置に対して対称の
位置に配設された一対の位相検出器とからなり、前記駆
動手段の周波数を前記2本の直管の2次の振動モードと
なる周波数で駆動することを特徴とするコリオリ流量
計。
4. Two straight pipes having the same natural frequency and having a parallel length L, and supporting means for supporting both ends of the two straight pipes ;
The two straight pipes are disposed at a position L / 3 from one support end of each of the two straight pipes, and each of the two straight pipes is formed by the two straight pipes.
Drives in opposite directions in the direction perpendicular to the plane formed
And motion means, the supporting end of any hand of the two straight tubes L
/ 2 and symmetric with respect to the position of L / 3
And a pair of phase detectors disposed at
A Coriolis flowmeter characterized in that the frequency of the moving means is driven at a frequency that is a secondary vibration mode of the two straight pipes.
JP4041912A 1992-01-30 1992-01-30 Coriolis flow meter Expired - Fee Related JP2984134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4041912A JP2984134B2 (en) 1992-01-30 1992-01-30 Coriolis flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4041912A JP2984134B2 (en) 1992-01-30 1992-01-30 Coriolis flow meter

Publications (2)

Publication Number Publication Date
JPH05209768A JPH05209768A (en) 1993-08-20
JP2984134B2 true JP2984134B2 (en) 1999-11-29

Family

ID=12621481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4041912A Expired - Fee Related JP2984134B2 (en) 1992-01-30 1992-01-30 Coriolis flow meter

Country Status (1)

Country Link
JP (1) JP2984134B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0770858T3 (en) * 1995-10-26 2000-05-08 Flowtec Ag Coriolis mass flow detector with a single measuring tube

Also Published As

Publication number Publication date
JPH05209768A (en) 1993-08-20

Similar Documents

Publication Publication Date Title
JP3432799B2 (en) Straight tube type Coriolis flowmeter and method for balancing the elastic modulus of the flow tube and balance bar
JP2778836B2 (en) Coriolis effect flowmeter with increased sensitivity using sensors close to the nodes
JP3541010B2 (en) Method of increasing sensitivity by balance bar and Coriolis flowmeter therewith
DK1759178T3 (en) VIBRATION TYPE TRANSDUCER
JPH0337127B2 (en)
JPH0692901B2 (en) Mass flowmeter operating on the Coriolis principle
JP5096365B2 (en) Vibrating measurement transducer
JP2984134B2 (en) Coriolis flow meter
JP2786829B2 (en) Coriolis flow meter
JP2003177048A (en) Coriolis flowmeter
JPS61283827A (en) Mass flowmeter
JPH0341319A (en) Coriolis mass flowmeter
JP2712684B2 (en) Coriolis mass flowmeter
JP2992162B2 (en) Coriolis flow meter
JP2801842B2 (en) Coriolis flow meter
JPH0436409Y2 (en)
JP3051681B2 (en) Coriolis flow meter
JP2840578B2 (en) Coriolis flow meter
JPH1151733A (en) Vibration type measuring device
JPH0436410Y2 (en)
JP3834144B2 (en) Counter balance tube type Coriolis flow meter
JPH0979882A (en) Vibration type measuring device
JPH07218309A (en) Corioris flowmeter
JPH0650784A (en) Mass flowmeter
JPH05157605A (en) Coriolis mass flowmeter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees