JPH0341319A - Coriolis mass flowmeter - Google Patents

Coriolis mass flowmeter

Info

Publication number
JPH0341319A
JPH0341319A JP17543289A JP17543289A JPH0341319A JP H0341319 A JPH0341319 A JP H0341319A JP 17543289 A JP17543289 A JP 17543289A JP 17543289 A JP17543289 A JP 17543289A JP H0341319 A JPH0341319 A JP H0341319A
Authority
JP
Japan
Prior art keywords
measuring tube
dummy body
tube
vibration
dummy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17543289A
Other languages
Japanese (ja)
Inventor
Yoshinori Matsunaga
松永 義則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP17543289A priority Critical patent/JPH0341319A/en
Publication of JPH0341319A publication Critical patent/JPH0341319A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a flowmeter facilitating maintenance and washing and having excellent earthquake resistance by vibrating the central parts of a measuring tube and a dummy body and the vicinity thereof with a resonance frequency of the measuring tube and the dummy body. CONSTITUTION:A flowmeter is constructed of a measuring tube 1, a dummy body 11 having the same resonance frequency as the measuring tube, and a vibration-proof frame 13 to which the respective opposite ends of the dummy body 11 and the measuring tube 1 are fixed. A fluid to be measured is made to flow through the measuring tube 1 and the central parts of the measuring tube 1 and the dummy body 11 and the vicinity thereof are vibrated with the resonance frequency of the measuring tube 1 and the dummy body 11 by a vibrator 3. Then the measuring tube 1 and the dummy body 11 vibrate in the same direction. When an angular velocity in the direction of vibration denoted by 'omega' and a flow velocity of the fluid flowing inside the measuring tube 1 by 'V', a Coriolis force of Fc = -2m'omega' X 'V' acts. A change in a shape is caused in the measuring tube 1 by the Coriolis force according to the direction of the flow velocity 'V' and the shape of the measuring tube 1 changes. The displacement of the measuring tube 1 on the occasion is detected by displacement detecting sensors 4 and 5 provided near the opposite end parts of the measuring tube 1 and the dummy body 11, and thereby a flow rate is measured.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、保守洗浄が容易で、耐震性が良好なコリオリ
質量流量計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a Coriolis mass flowmeter that is easy to maintain and clean and has good seismic resistance.

〈従来の技術〉 第4図は従来より一般に使用されている従来例の構成説
明図である。
<Prior Art> FIG. 4 is a diagram illustrating the configuration of a conventional example that has been commonly used.

図において、1は配管Aに、両端が取付けられたU字形
の測定管である。
In the figure, 1 is a U-shaped measurement tube attached to piping A at both ends.

2は管路Aへの測定管1の取付はフランジである。2 is a flange for attaching the measuring tube 1 to the conduit A.

3はU字形をなす測定管1の先端に設けられた振動子で
ある。
Reference numeral 3 denotes a vibrator provided at the tip of the U-shaped measuring tube 1.

4.5は測定管1の両開にそれぞれ設けられた変位検出
センサである。
4.5 are displacement detection sensors provided on both sides of the measuring tube 1, respectively.

以上の構成において、測定管1に測定流体が流され、振
動子3が駆動される。振動子3の振動方向の角速度「ω
1、測定流体の流速’VJ  (以下「」で囲まれた記
号はベクトル量を表す。)とすると、 Fc=−2mrωJ X rVJ のコリオリカが働く、コリオリカに比例した振動の振幅
を測定すれば、質量流量が測定出来る。
In the above configuration, the measurement fluid is flowed through the measurement tube 1, and the vibrator 3 is driven. The angular velocity of the vibrator 3 in the vibration direction “ω
1. Assuming that the flow velocity of the fluid to be measured is 'VJ (hereinafter, the symbol enclosed in quotation marks represents a vector quantity), Fc = -2mrωJ Mass flow rate can be measured.

しかし、一般には、コリオリカに比例した振動の振幅は
、加振による振動の振幅より極めて小さく、コリオリカ
に比例した振動の振幅を直接検出することか出来ない。
However, in general, the amplitude of vibrations proportional to Coriolis is extremely smaller than the amplitude of vibrations caused by excitation, and it is only possible to directly detect the amplitude of vibrations proportional to Coriolis.

今、第4図のZ視の方向から見ると、振動子3の加振に
より、振動方向をα、βに別けて考えると、流速「V」
の向きによって、第5図(A)、(B)に示す如く、コ
リオリカの方向か異なるので、逆相となり、測定管1が
捩れながら振動する。
Now, when viewed from the Z direction in Fig. 4, the vibration direction is divided into α and β due to the vibration of the vibrator 3, and the flow velocity is “V”.
As shown in FIGS. 5(A) and 5(B), the direction of Coriolis differs depending on the direction of the coriolis, resulting in an opposite phase, and the measuring tube 1 vibrates while being twisted.

これを変位検出センサ4,5、例えば磁気センサで変位
を検出し、変位検出センサ4,5の変位の位相差が、(
コリオリカに比例した振動の振幅)/(加振による振動
の振幅)に比例するので質量流量を求める事ができる。
The displacement is detected by the displacement detection sensors 4 and 5, for example, a magnetic sensor, and the phase difference between the displacements of the displacement detection sensors 4 and 5 is (
The mass flow rate can be determined because it is proportional to (amplitude of vibration proportional to Coriolis)/(amplitude of vibration due to excitation).

位相差は波形かゼロをクロスする時間の差Δtとして測
定出来るので、結果としてコリオリカが測定出来る。
Since the phase difference can be measured as the difference Δt between the times when the waveform crosses zero, Coriolis can be measured as a result.

第5図は従来より一般に使用されている他の従来例の構
成説明図である。
FIG. 5 is a diagram illustrating the configuration of another conventional example that has been commonly used.

本従来例では、更に、ノイズを低減し、信号を大きくと
るために、測定管1を、2管式にしたものである。
In this conventional example, the measuring tube 1 is of a two-tube type in order to further reduce noise and increase the signal.

〈発明が解決しようとする課題〉 しかしながら、この様な、第5図装置においても、外部
振動等に対する耐震性は向上するが、測定流路か2本に
分離されていて、測定管の洗浄が困難になる、分岐部に
付着物が溜り易い、等の欠点を有する。
<Problems to be Solved by the Invention> However, although the device shown in FIG. 5 improves seismic resistance against external vibrations, the measurement flow path is separated into two, and cleaning of the measurement tube is difficult. It has drawbacks such as difficulty in handling and the tendency for deposits to accumulate at the branching part.

本発明は、この問題点を解決するものである。The present invention solves this problem.

本発明の目的は、保守洗浄が容易で、耐震性が良好なコ
リオリ質量流量計を提供するにある。
An object of the present invention is to provide a Coriolis mass flowmeter that is easy to maintain and clean and has good earthquake resistance.

く課題を解決するための手段〉 この目的を達成するために、本発明は、コリオリ力を利
用して質量流量を測定するコリオリ質量流量計において
、 測定流体の流れる測定管と、該測定管と平行に設けられ
該測定管と同様な共振周波数を有するダミー体と、該ダ
ミー体と前記測定管の両端か固定される防振枠と、前記
測定管と前記ダミー体との中央部付近を前記測定管と前
記ダミー体との共振周波数で加振する振動子と、前記測
定管と前記ダミー体の両端部近くにそれぞれ設けられた
第1第2変位検出センサとを具備したことを特徴とする
コリオリ質量流量計を構成したものである。
Means for Solving the Problems> To achieve this object, the present invention provides a Coriolis mass flowmeter that measures mass flow rate using Coriolis force, which includes: a measurement tube through which a measurement fluid flows; a dummy body that is provided in parallel and has a resonance frequency similar to that of the measurement tube; a vibration isolation frame to which both ends of the dummy body and the measurement tube are fixed; It is characterized by comprising a vibrator that vibrates at a resonance frequency of the measurement tube and the dummy body, and first and second displacement detection sensors provided near both ends of the measurement tube and the dummy body, respectively. This is a Coriolis mass flowmeter.

〈作 用〉 以上の構成において、測定管に測定流体が流され、振動
子が駆動される。振動子により測定管とダミー体は同一
方向に振動する。
<Operation> In the above configuration, the measurement fluid is flowed into the measurement tube, and the vibrator is driven. The measuring tube and the dummy body are vibrated in the same direction by the vibrator.

振動方向の角速度「ω」、測定管の内部を流れる測定流
体の流速「■J七すると、 F c =−2m Irωl x 「V、]のコリオリ
カが鋤<、流速「■」の向きによって、測定管にはコリ
オリカによる変形が加わり、測定管は変形する。第1.
第2変位検出センサではコリオリカによる変位を測定す
る。
If the angular velocity ``ω'' in the vibration direction and the flow rate ``■J'' of the measuring fluid flowing inside the measuring tube, F c = -2m Irωl The tube is deformed by Coriolis, and the measuring tube is deformed. 1st.
The second displacement detection sensor measures displacement due to Coriolis.

一方、測定値にノイズとして働く、主配管の振動に対し
て、測定管とタミ一体は両端近くを、防振枠で固定され
ているので、外部の振動を受は難い。
On the other hand, with respect to the vibration of the main pipe that acts as noise on the measured values, the measuring pipe and the tube are fixed near both ends with vibration isolating frames, so it is difficult to receive external vibrations.

以下、実施例に基づき詳細に説明する。Hereinafter, a detailed explanation will be given based on examples.

〈実施例〉 第1図は本発明の一実施例の要部構成説明図である。<Example> FIG. 1 is an explanatory diagram of the main part of an embodiment of the present invention.

図において、第4図と同一記号のm戊は同一機能を表わ
す。
In the figure, the same symbol m as in FIG. 4 represents the same function.

以下、第4図と相違部分のみ説明する。Hereinafter, only the differences from FIG. 4 will be explained.

11は測定管1と平行に設けられ測定管1と同様な共振
周波数を有するダミー体である。この場合は、パイプが
用いられている。
Reference numeral 11 denotes a dummy body which is provided in parallel with the measuring tube 1 and has a resonant frequency similar to that of the measuring tube 1. In this case, pipes are used.

12は補助ダミー管である。補助ダミー管12は、構造
の対称性を確保する為のものである。
12 is an auxiliary dummy pipe. The auxiliary dummy tube 12 is for ensuring the symmetry of the structure.

13はダミー体11と測定管1の両端が固定される防振
枠である。
13 is a vibration isolation frame to which both ends of the dummy body 11 and the measuring tube 1 are fixed.

振動子3は測定管1とダミー体11との中央部付近を測
定管1とダミー体11との共振周波数で加振する。
The vibrator 3 vibrates near the center of the measuring tube 1 and the dummy body 11 at the resonant frequency of the measuring tube 1 and the dummy body 11.

第1.第2変位検出センサ4,5は測定管1とタミ一体
11−の両端部近くにそれぞれ設けられている。
1st. The second displacement detection sensors 4 and 5 are respectively provided near both ends of the measuring tube 1 and the terminal body 11-.

以上の構成において、測定管1に測定流体が流され、振
動子3が駆動される。振動子3により測定管1とダミー
体11は同一方向に振動する。
In the above configuration, the measurement fluid is flowed through the measurement tube 1, and the vibrator 3 is driven. The measuring tube 1 and the dummy body 11 are vibrated in the same direction by the vibrator 3.

振動方向の角速度「ω」、測定管1の内部を流れる測定
流体の流速「V」とすると、 Fc=−2m Fω」X FV」 のコリオリカか働く、流速r ’J 4の向きによって
、測定管1にはコリオリカによる変形が加わり、測定管
1は変形する。第1.第2変位検出センサ4゜5ではコ
リオリカによる変位を測定する。
If the angular velocity in the vibration direction is ``ω'', and the flow rate of the measuring fluid flowing inside the measuring tube 1 is ``V'', then Fc = -2m Fω' 1 is deformed by Coriolis, and the measuring tube 1 is deformed. 1st. The second displacement detection sensor 4.5 measures the displacement caused by Coriolis.

一方、測定値にノイズとして働く、主配管の振動に対し
て、測定管1とダミー体11は両端近くを防振枠13で
固定されているので、外部の振動を受は難い。
On the other hand, since the measuring tube 1 and the dummy body 11 are fixed near both ends by the vibration isolating frame 13, it is difficult to receive external vibrations from the vibration of the main piping, which acts as noise on the measured values.

即ち、 (1) 測定流体の流量がゼロの場合の動作を第2図に
示す。
That is, (1) Figure 2 shows the operation when the flow rate of the measured fluid is zero.

第2図(A)は、変位検出センサ4または変位検出セン
サ5の位置での測定管1の振動aと、ダミー管11の振
動すとを示ず。
FIG. 2(A) does not show the vibration a of the measuring tube 1 and the vibration of the dummy tube 11 at the position of the displacement detection sensor 4 or the displacement detection sensor 5.

両者は、振動の方向か逆である。Both are in the opposite direction of vibration.

第2図(B)は、変位検出センサ4または変位検出セン
サ5の出力Cである。
FIG. 2(B) shows the output C of the displacement detection sensor 4 or the displacement detection sensor 5.

変位検出センサ4または変位検出センサ5は、測定管1
とダミー管11の振動の差を検出する。
The displacement detection sensor 4 or the displacement detection sensor 5 is connected to the measurement tube 1
The difference between the vibration of the dummy tube 11 and the vibration of the dummy tube 11 is detected.

測定流体の流量がゼロの場合には、変位検出センサ4ま
たは変位検出センサ5の出力は全く同じである。
When the flow rate of the measurement fluid is zero, the output of the displacement detection sensor 4 or the displacement detection sensor 5 is exactly the same.

(2>  :a定流体が測定管1を流れている場合の動
作を第3図に示す。
(2>:a The operation when a constant fluid is flowing through the measuring tube 1 is shown in FIG. 3.

第3図(A)は、変位検出センサ4の位置での測定管1
の振動dと、ダミー管11の振動eとを示す。
FIG. 3(A) shows the measurement tube 1 at the position of the displacement detection sensor 4.
The vibration d of the dummy tube 11 and the vibration e of the dummy tube 11 are shown.

ダミー管11の振動eは第2図(A)の振動すと同じで
あるが、測定管1の振動には破線diの励振とともに、
コリオリカによる振動d2が加わり、振動の波形が変化
する。
The vibration e of the dummy tube 11 is the same as that shown in FIG.
Vibration d2 caused by Coriolis is added, and the waveform of the vibration changes.

第3図(B)は、変位検出センサ5の位置での測定管1
の振動fと、ダミー管11の振動gとを示す。
FIG. 3(B) shows the measurement tube 1 at the position of the displacement detection sensor 5.
The vibration f of the dummy tube 11 and the vibration g of the dummy tube 11 are shown.

ダミー管11の振動gは第2図の振動すと同じであるか
、測定管1の振動には破線f1の励振とともに、コリオ
リカによる振動f2か加わり、振動の波形か変化する。
The vibration g of the dummy tube 11 is the same as the vibration shown in FIG. 2, or the waveform of the vibration changes as the vibration f2 due to Coriolica is added to the vibration of the measuring tube 1 along with the excitation indicated by the broken line f1.

コリオリカは変位検出センサ4の場合と反対なので、コ
リオリカによる振動f2も変位検出センサ4の場合と逆
である。
Since Coriolis is opposite to that in the case of the displacement detection sensor 4, the vibration f2 due to Coriolis is also opposite to that in the case of the displacement detection sensor 4.

第3図(C)は変位検出センサ4,5の出力り。FIG. 3(C) shows the outputs of the displacement detection sensors 4 and 5.

iを示す。Indicates i.

変位検出センサ4,5の出力り、iは、コリオリカによ
る振動d2.f2が反対な分、若干位相がずれている。
The outputs of the displacement detection sensors 4 and 5, i, are the vibrations caused by Coriolis d2. Since f2 is opposite, the phase is slightly shifted.

この位相のすれは、ちょうどコリオリカによる位相の変
化となる。
This phase shift corresponds to a phase change due to Coriolis.

従って、この位相のずれを検出する事により、コリオリ
カ即ち質量流量を測定する事が出来る。
Therefore, by detecting this phase shift, Coriolis, that is, mass flow rate can be measured.

この結果、−本の配管から構成されていて、液たまり、
分岐部が無いので、保守、洗浄が容易である。
As a result, it is made up of − pipes, and the liquid pool,
Since there are no branching parts, maintenance and cleaning are easy.

更に、振動の検出には、2本の管振動の差を利用してい
るので、外部の振動を受+i難い。
Furthermore, since the difference between the vibrations of the two tubes is used to detect vibrations, external vibrations are not easily detected.

なお、前述の実施例においては、ダミー体11はパイプ
状のものについて説明したが、これに限ることはなく、
例えば、棒状あるいは板状でもよく要するに、測定管1
と同じ共振周波数を有するものであれば良い。
In addition, in the above-mentioned embodiment, the dummy body 11 was described as having a pipe shape, but the dummy body 11 is not limited to this.
For example, the measuring tube 1 may be shaped like a rod or a plate.
It is sufficient if it has the same resonant frequency as .

また、測定管1は、直管状でなく、U字管状あるいはS
字管状出も良いことは勿論である。
In addition, the measuring tube 1 is not a straight tube, but a U-shaped tube or an S-shaped tube.
Of course, the tubular shape is also good.

〈発明の効果〉 以上説明したように、本発明は、コリオリ力を利用して
質量流量を測定するコリオリ質量流量計において、 測定流体の流れる測定管と、該測定管と平行に設けられ
該測定管と同様な共振周波数を有するタミ一体と、該ダ
ミー体と前記測定管の両端か固定される防振枠と、前記
測定管と前記ダミー体との中央部付近を前記測定管と前
記タミ一体との共振周波数で加振する振動子と、前記測
定管と前記ダミー体の両端部近くにそれぞれ設けられた
第1゜第2変位検出センサとを具備したことを特徴とす
るコリオリ質量流量計を構成した。
<Effects of the Invention> As explained above, the present invention provides a Coriolis mass flowmeter that measures mass flow rate using the Coriolis force, which includes a measurement tube through which a measurement fluid flows, and a measurement tube installed parallel to the measurement tube. a vibration-proof frame to which both ends of the dummy body and the measuring tube are fixed, and a central portion of the measuring tube and the dummy body are integrally connected to the measuring tube and the housing. A Coriolis mass flowmeter comprising: a vibrator that vibrates at a resonance frequency; and first and second displacement detection sensors provided near both ends of the measurement tube and the dummy body, respectively. Configured.

この結果、−本の配管から構成されていて、液だまり、
分岐部が無いので、保守、洗浄が容易である。
As a result, it consists of − pipes, a liquid pool,
Since there are no branching parts, maintenance and cleaning are easy.

更に、振動の検出には、2本の骨振動の差を利用してい
るので、外部の振動を受は難い。
Furthermore, since the difference between the vibrations of two bones is used to detect vibrations, it is difficult to receive external vibrations.

従って、本発明によれば、保守洗浄が容易で、耐震性が
良好なコリオリ質量流量計を実現することが出来る。
Therefore, according to the present invention, it is possible to realize a Coriolis mass flowmeter that is easy to maintain and clean and has good earthquake resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の要部構成説明図、第2図、
第3図は第1図の動作説明図、第4図は従来より一般に
使用されている従来例の構成説明図、第5図は第4図の
動作説明図、第6図は従来より一般に使用されている他
の従来例の構成説−明図である。 1・・・測定管、2・・・取付はフランジ、3・・・振
動子、4.5・・・変位検出センサ、1]・・・ダミー
管、12・・・補助ダミー管、13・・・防振枠。 1 第2 図 特開平3−41319 (5) 第 ヰ 図
FIG. 1 is an explanatory diagram of the main part configuration of an embodiment of the present invention, FIG.
Fig. 3 is an explanatory diagram of the operation of Fig. 1, Fig. 4 is an explanatory diagram of the configuration of a conventional example commonly used, Fig. 5 is an explanatory diagram of the operation of Fig. 4, and Fig. 6 is an explanatory diagram of the conventional example commonly used. FIG. 2 is an explanatory diagram of the configuration of another conventional example. DESCRIPTION OF SYMBOLS 1...Measurement tube, 2...Flange mounting, 3...Vibrator, 4.5...Displacement detection sensor, 1]...Dummy tube, 12...Auxiliary dummy tube, 13... ...An anti-vibration frame. 1 Figure 2 JP-A-3-41319 (5) Figure 3

Claims (1)

【特許請求の範囲】  コリオリ力を利用して質量流量を測定するコリオリ質
量流量計において、 測定流体の流れる測定管と、 該測定管と平行に設けられ該測定管と同様な共振周波数
を有するダミー体と、 該ダミー体と前記測定管の両端が固定される防振枠と、 前記測定管と前記ダミー体との中央部付近を前記測定管
と前記ダミー体との共振周波数で加振する振動子と、 前記測定管と前記ダミー体の両端部近くにそれぞれ設け
られた第1、第2変位検出センサとを具備したことを特
徴とするコリオリ質量流量計。
[Claims] A Coriolis mass flowmeter that measures mass flow rate using the Coriolis force includes: a measurement tube through which a measurement fluid flows; and a dummy installed parallel to the measurement tube and having the same resonance frequency as the measurement tube. a vibration isolation frame to which both ends of the dummy body and the measurement tube are fixed; and a vibration that excites a central portion of the measurement tube and the dummy body at a resonant frequency of the measurement tube and the dummy body. A Coriolis mass flowmeter, comprising: a first displacement detection sensor, and first and second displacement detection sensors provided near both ends of the measurement tube and the dummy body, respectively.
JP17543289A 1989-07-10 1989-07-10 Coriolis mass flowmeter Pending JPH0341319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17543289A JPH0341319A (en) 1989-07-10 1989-07-10 Coriolis mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17543289A JPH0341319A (en) 1989-07-10 1989-07-10 Coriolis mass flowmeter

Publications (1)

Publication Number Publication Date
JPH0341319A true JPH0341319A (en) 1991-02-21

Family

ID=15996002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17543289A Pending JPH0341319A (en) 1989-07-10 1989-07-10 Coriolis mass flowmeter

Country Status (1)

Country Link
JP (1) JPH0341319A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287754A (en) * 1991-06-09 1994-02-22 Krohne Messtechnik Massametron Gmbh & Co. Mass flow meter
JP2002350207A (en) * 2001-05-29 2002-12-04 Kazumasa Onishi Coriolis flowmeter
WO2014102037A1 (en) * 2012-12-30 2014-07-03 Endress+Hauser Flowtec Ag Vibration-type measuring transducer and measuring system formed therefrom
WO2014102036A1 (en) * 2012-12-30 2014-07-03 Endress+Hauser Flowtec Ag Vibration-type measurement transducer and measurement system formed therewith
EP3153827A1 (en) 2015-10-08 2017-04-12 Atsuden Co., Ltd Coriolis mass flow meter
EP3163262A1 (en) 2015-10-28 2017-05-03 Atsuden Co., Ltd Coriolis mass flow meter
KR20180112661A (en) 2017-04-03 2018-10-12 가부시키가이샤 아쓰덴 Coriolis mass flow meter

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287754A (en) * 1991-06-09 1994-02-22 Krohne Messtechnik Massametron Gmbh & Co. Mass flow meter
JP2002350207A (en) * 2001-05-29 2002-12-04 Kazumasa Onishi Coriolis flowmeter
WO2002097376A1 (en) * 2001-05-29 2002-12-05 Kazumasa Ohnishi Coriolis flowmeter
WO2014102037A1 (en) * 2012-12-30 2014-07-03 Endress+Hauser Flowtec Ag Vibration-type measuring transducer and measuring system formed therefrom
WO2014102036A1 (en) * 2012-12-30 2014-07-03 Endress+Hauser Flowtec Ag Vibration-type measurement transducer and measurement system formed therewith
CN105008871A (en) * 2012-12-30 2015-10-28 恩德斯+豪斯流量技术股份有限公司 Vibration-type measurement transducer and measurement system formed therewith
US9546890B2 (en) 2012-12-30 2017-01-17 Endress + Hauser Flowtec Ag Measuring transducer of vibration-type as well as measuring system formed therewith
US9593973B2 (en) 2012-12-30 2017-03-14 Endress + Hauser Flowtec Ag Measuring transducer of vibration-type as well as measuring system formed therwith
EP3153827A1 (en) 2015-10-08 2017-04-12 Atsuden Co., Ltd Coriolis mass flow meter
KR20170042246A (en) 2015-10-08 2017-04-18 가부시키가이샤 아쓰덴 Coriolis mass flow meter
US9921093B2 (en) 2015-10-08 2018-03-20 Atsuden Co., Ltd. Coriolis mass flow meter
EP3163262A1 (en) 2015-10-28 2017-05-03 Atsuden Co., Ltd Coriolis mass flow meter
US9995612B2 (en) 2015-10-28 2018-06-12 Atsuden Co., Ltd. Coriolis mass flow meter
KR20180112661A (en) 2017-04-03 2018-10-12 가부시키가이샤 아쓰덴 Coriolis mass flow meter
EP3392622A1 (en) 2017-04-03 2018-10-24 Atsuden Co., Ltd Coriolis mass flow meter
US10175078B2 (en) 2017-04-03 2019-01-08 Atsuden Co., Ltd. Coriolis mass flow meter

Similar Documents

Publication Publication Date Title
US5357811A (en) Single tube coriolis flow meter with floating intermediate section
JP2927307B2 (en) Mass flow meter
US5275061A (en) Coriolis mass flowmeter
JPH0341319A (en) Coriolis mass flowmeter
JPH04291119A (en) Colioris mass flowmeter
JP3327325B2 (en) Coriolis mass flowmeter
US6553845B2 (en) Coriolis flowmeter utilizing three-forked plate vibrator mode
JP2712684B2 (en) Coriolis mass flowmeter
JPH067324Y2 (en) Mass flow meter
JP2723306B2 (en) Mass flow meter
JPH0650784A (en) Mass flowmeter
JPH0526709A (en) Coriolis mass flowmeter
JPH07218309A (en) Corioris flowmeter
JP3757559B2 (en) Coriolis mass flow meter
JP2023515054A (en) A mode-splitting resonator for the balance bar of a Coriolis flowmeter
US20010049971A1 (en) Coriolis flowmeter
JPH0712612A (en) Coliolis type massflowmeter
JPH0331725A (en) Coriolis flow meter
JPH0357920A (en) Coriolis mass flowmeter
JPH0348729A (en) Coriolis mass flowmeter
JPH04155221A (en) Corioli&#39;s mass flowmeter
JPH1137820A (en) Coriolis mass flowmeter
JPH05157605A (en) Coriolis mass flowmeter
JPH04148826A (en) Clamp-on-type coriolis mass flowmeter
JPH02189426A (en) Coriolis mass flowmeter