JPH0526709A - Coriolis mass flowmeter - Google Patents

Coriolis mass flowmeter

Info

Publication number
JPH0526709A
JPH0526709A JP18731491A JP18731491A JPH0526709A JP H0526709 A JPH0526709 A JP H0526709A JP 18731491 A JP18731491 A JP 18731491A JP 18731491 A JP18731491 A JP 18731491A JP H0526709 A JPH0526709 A JP H0526709A
Authority
JP
Japan
Prior art keywords
natural frequency
ratio
tube
measuring tube
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18731491A
Other languages
Japanese (ja)
Inventor
Yoshinori Matsunaga
義則 松永
Nagaoki Kayama
長興 嘉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP18731491A priority Critical patent/JPH0526709A/en
Publication of JPH0526709A publication Critical patent/JPH0526709A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To reduce span fluctuation due to a change in temperature by a construction wherein the ratio in natural frequency between a drive mode and a vibration mode is made to be a specified value or below so that a span error occurring in a measuring tube be within a prescribed value. CONSTITUTION:A construction is so made that the ratio between the natural frequency in a drive mode and the natural frequency in a vibration mode is a prescribed value or below so that a span error occurring on the basis of a damping coefficient according to the material of a measuring tube 1 be within a prescribed value. In order to make the span error be 1% or below in the case when the tube 1 is a metal tube and a damping ratio is 0.01, for instance, a spring constant of a spring 6 is set so that the ratio in the natural frequency be 0.9. When the ratio in the natural frequency is made too small, the same condition without the spring 6 is brought forth and a measuring signal can not be made large. When the tube 1 is an ordinary metal tube, accordingly, it is desirable that the ratio in the natural frequency is 0.7 to 0.95, and it is desirable that the ratio is 0.5 to 0.9 when the tube is a plastic tube. As the result, span fluctuation can be reduced even when the damping ratio of the tube 1 changes due to a change in temperature or others.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、温度変化等により測定
管の減衰比が変化しても、スパン変動が少ない特性の良
好なコリオリ質量流量計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Coriolis mass flowmeter having excellent characteristics such that the span variation is small even if the damping ratio of the measuring tube changes due to temperature changes or the like.

【0002】[0002]

【従来の技術】図4は従来より一般に使用されている従
来例の構成説明図で、例えば、特開昭58−11741
6号、発明の名称:「流量計」、特許出願人:本願出願
人、に示されている。図において、 1は、配管Aに両端が取付けられたU字形の測定管であ
る。 2は、測定管1の取付けベ―スである。 3は、U字形をなす測定管1の先端に設けられた振動子
である。 4,5は、測定管1の両側にそれぞれ設けられた変位検
出センサである。 6は、ばねで、一端がコリオリ振動モ―ド(コリオリ力
によって表われる振動モ―ドで、この場合は、捩じり振
動(非対称たわみ振動))の節となる測定管1の中央部
に接続され、他端がベ―ス2に固定されている。
2. Description of the Related Art FIG. 4 is an explanatory view of the configuration of a conventional example which has been generally used, for example, Japanese Patent Laid-Open No. 58-11741.
No. 6, title of invention: “Flowmeter”, patent applicant: applicant of the present application. In the figure, 1 is a U-shaped measuring tube having both ends attached to the piping A. Reference numeral 2 is a mounting base for the measuring tube 1. Reference numeral 3 is a vibrator provided at the tip of the U-shaped measuring tube 1. Reference numerals 4 and 5 are displacement detection sensors provided on both sides of the measuring tube 1, respectively. 6 is a spring, one end of which is a Coriolis vibration mode (vibration mode expressed by Coriolis force, in this case, torsional vibration (asymmetrical flexural vibration)), which is located at the center of the measuring tube 1. They are connected and the other end is fixed to the base 2.

【0003】以上の構成において、測定管1に測定流体
が流され、振動子3が駆動される。振動子3の振動方向
の角速度『ω』、測定流体の流速『V』(以下『』で囲
まれた記号はベクトル量を表す。)とすると、 Fc=―2m『ω』×『V』 のコリオリ力が働く、コリオリ力に比例した振動の振幅
を測定すれば、質量流量が測定出来る。
In the above structure, the measuring fluid is flown through the measuring tube 1 to drive the vibrator 3. Assuming that the angular velocity “ω” in the vibration direction of the vibrator 3 and the flow velocity “V” of the measured fluid (hereinafter, the symbol enclosed in “” represents a vector amount), Fc = −2 m “ω” × “V” The mass flow rate can be measured by measuring the amplitude of vibration that is proportional to the Coriolis force acting on the Coriolis force.

【0004】しかし、一般には、コリオリ力に比例した
振動の振幅は、加振による振動の振幅より極めて小さ
く、コリオリ力に比例した振動の振幅を直接検出するこ
とが出来ない。
However, in general, the amplitude of vibration proportional to the Coriolis force is much smaller than the amplitude of vibration due to excitation, and the amplitude of vibration proportional to the Coriolis force cannot be directly detected.

【0005】今、図4のZ視の方向から見ると、振動子
3の加振により、振動方向をα、βに別けて考えると、
流速『V』の向きによって、図5、図6に示す如く、コ
リオリ力の方向が異なるので、逆相となり、測定管1が
捩れながら振動する。これを変位検出センサ4,5、例
えば磁気センサで変位を検出し、変位検出センサ4,5
の変位の位相差が、(コリオリ力に比例した振動の振
幅)/(加振による振動の振幅)に比例するので質量流
量を求める事ができる。位相差は波形がゼロをクロスす
る時間の差Δtとして測定出来るので、結果としてコリ
オリ力が測定出来る。
Now, when viewed from the direction of Z in FIG. 4, considering the vibration directions of α and β by vibrating the vibrator 3,
As shown in FIG. 5 and FIG. 6, the direction of the Coriolis force differs depending on the direction of the flow velocity “V”, so that the phases are reversed and the measuring tube 1 vibrates while twisting. This is detected by the displacement detection sensors 4, 5, for example, magnetic sensors, and the displacement detection sensors 4, 5 are detected.
Since the phase difference of the displacement of is proportional to (amplitude of vibration proportional to Coriolis force) / (amplitude of vibration due to excitation), the mass flow rate can be obtained. Since the phase difference can be measured as the time difference Δt when the waveforms cross zero, the Coriolis force can be measured as a result.

【0006】コリオリ振動モ―ド(この場合は、捩じり
振動(非対称撓み振動))の節となる部分を、ばね6に
よって拘束すると、測定管1の駆動モ―ド(駆動手段に
よって表われる振動モ―ドで、この場合は、縦振動(対
称撓み振動))の固有振動数が上昇するのに対し、コリ
オリ振動モ―ド(この場合は、捩じり振動(非対称撓み
振動))の固有振動数には殆んど影響しない。また、一
般に、測定管1の捩じり振動(非対称撓み振動)の固有
振動数は、縦振動(対称撓み振動))の固有振動数より
も高い。
When a portion serving as a node of Coriolis vibration mode (in this case, torsional vibration (asymmetrical flexural vibration)) is restrained by the spring 6, a driving mode of the measuring tube 1 (represented by a driving means). In vibration mode, in this case, the natural frequency of longitudinal vibration (symmetrical flexural vibration) rises, while in Coriolis vibration mode (in this case, torsional vibration (asymmetrical flexural vibration)) It has almost no effect on the natural frequency. Further, generally, the natural frequency of the torsional vibration (asymmetrical flexural vibration) of the measuring tube 1 is higher than the natural frequency of the longitudinal vibration (symmetrical flexural vibration).

【0007】従って、適当な定数のばね6を用いること
によって、測定管1の駆動モ―ド(この場合は、縦振動
(対称撓み振動))の固有振動数を上昇させて、コリオ
リ振動モ―ド(この場合は、捩じり振動(非対称撓み振
動))の固有振動数とほぼ等しくする事が出来る。
Therefore, by using the spring 6 having an appropriate constant, the natural frequency of the driving mode of the measuring tube 1 (in this case, the longitudinal vibration (symmetrical bending vibration)) is increased to increase the Coriolis vibration mode. (In this case, torsional vibration (asymmetric bending vibration)) can be made substantially equal to the natural frequency.

【0008】このように構成すると、コリオリの力によ
って発生する測定管1の変位は、コリオリ振動モ―ド
(この場合は、捩じり振動(非対称撓み振動))のQに
よって増幅されて表われるので、検出感度を大幅に向上
させる事が出来る。
With this structure, the displacement of the measuring tube 1 caused by the Coriolis force is amplified by the Q of Coriolis vibration mode (in this case, torsional vibration (asymmetric bending vibration)). Therefore, the detection sensitivity can be greatly improved.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、この様
な装置においては、駆動モ―ドの固有振動数と、コリオ
リ振動モ―ドの固有振動数とをほぼ一致させる場合、コ
リオリ振動の振幅は、共振の大きさQに依存するように
なる。Qが温度等で変化すると、流量に比例した信号の
大きさも同時に変化し、スパン変動が生ずる。
However, in such a device, when the natural frequency of the drive mode and the natural frequency of the Coriolis vibration mode are substantially matched, the amplitude of the Coriolis vibration is It becomes dependent on the magnitude Q of resonance. When Q changes with temperature or the like, the magnitude of the signal proportional to the flow rate also changes at the same time, causing span fluctuation.

【0010】本発明は、この問題点を解決するものであ
る。本発明の目的は、温度変化等により測定管の減衰比
が変化しても、スパン変動が少ない特性の良好なコリオ
リ質量流量計を提供するにある。
The present invention solves this problem. It is an object of the present invention to provide a Coriolis mass flowmeter which has a good characteristic that the span variation is small even if the attenuation ratio of the measuring tube changes due to temperature change or the like.

【0011】[0011]

【課題を解決するための手段】この目的を達成するため
に、本発明は、振動する測定管内に測定流体を流し、そ
の流れと測定管の角振動によって生じるコリオリ力によ
り、測定管を変形振動させるコリオリ質量流量計であっ
て、前記測定管のコリオリ振動モ―ドの節となる箇所を
弾性材を介して拘束し、駆動モ―ドの固有振動数と、コ
リオリ振動モ―ドの固有振動数とをほぼ一致させるよう
にしたコリオリ質量流量計において、前記測定管の材料
による減衰係数に基づいて発生するスパン誤差が所定値
以内にあるように前記駆動モ―ドの固有振動数と前記振
動モ―ドの固有振動数との比率を所定値以下になるよう
に構成された事を特徴とするコリオリ質量流量計を構成
したものである。
In order to achieve this object, the present invention allows a measuring fluid to flow in an oscillating measuring tube, and the Coriolis force generated by the flow and the angular vibration of the measuring tube causes the measuring tube to deform and vibrate. In the Coriolis mass flowmeter, the nodes of the Coriolis vibration mode of the measuring tube are constrained via elastic materials, and the natural frequency of the drive mode and the natural vibration of the Coriolis vibration mode are constrained. In a Coriolis mass flowmeter whose number is substantially the same, the natural frequency of the drive mode and the vibration are adjusted so that the span error generated based on the damping coefficient of the material of the measuring tube is within a predetermined value. This is a Coriolis mass flowmeter characterized in that the ratio with the natural frequency of the mode is set to a predetermined value or less.

【0012】[0012]

【作用】以上の構成において、前記測定管の材料による
減衰係数に基づいて発生するスパン誤差が所定値以内に
あるように前記駆動モ―ドの固有振動数と前記振動モ―
ドの固有振動数との比率を所定値以下になるように構成
されたので、温度変化等により測定管の減衰比が変化し
ても、スパン変動が少ないコリオリ質量流量計が得られ
る。以下、実施例に基づき詳細に説明する。
In the above structure, the natural frequency of the drive mode and the vibration mode are set so that the span error generated based on the damping coefficient of the material of the measuring tube is within a predetermined value.
Since the ratio with respect to the natural frequency of the coil is configured to be equal to or less than the predetermined value, a Coriolis mass flowmeter with a small span variation can be obtained even if the damping ratio of the measuring pipe changes due to temperature change or the like. Hereinafter, detailed description will be given based on examples.

【0013】[0013]

【実施例】図1は本発明の一実施例の要部構成説明図で
ある。図において、 1は、配管Aに両端が取付けられたU字形の測定管であ
る。 2は、測定管1の取付けベ―スである。 3は、U字形をなす測定管1の先端に設けられた振動子
である。 4,5は、測定管1の両側にそれぞれ設けられた変位検
出センサである。 6は、ばねで、一端がコリオリ振動モ―ド(コリオリ力
によって表われる振動モ―ドで、この場合は、捩じり振
動(非対称たわみ振動))の節となる測定管1の中央部
に接続され、他端がベ―ス2に固定されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of the essential structure of an embodiment of the present invention. In the figure, 1 is a U-shaped measuring tube having both ends attached to the piping A. Reference numeral 2 is a mounting base for the measuring tube 1. Reference numeral 3 is a vibrator provided at the tip of the U-shaped measuring tube 1. Reference numerals 4 and 5 are displacement detection sensors provided on both sides of the measuring tube 1, respectively. 6 is a spring, one end of which is a node of Coriolis vibration mode (vibration mode expressed by Coriolis force, in this case, torsional vibration (asymmetric flexural vibration)) at the center of the measuring tube 1. They are connected and the other end is fixed to the base 2.

【0014】而して、測定管1の材料による減衰係数に
基づいて発生するスパン誤差が、所定値以内にあるよう
に、駆動モ―ドの固有振動数と振動モ―ドの固有振動数
との比率を所定値以下になるように構成されている。こ
の場合は、駆動モ―ドの固有振動数と振動モ―ドの固有
振動数との比率を、0.9となるようにばね6のスプリ
ング定数を定めている。但し、測定管1が通常の金属管
の場合は、固有振動数比は0.7〜0.95が望まし
く、プラスチック管では0.5〜0.9が望ましい。
Thus, the natural frequency of the drive mode and the natural frequency of the vibration mode are set so that the span error generated based on the damping coefficient of the material of the measuring tube 1 is within a predetermined value. Is configured to be equal to or less than a predetermined value. In this case, the spring constant of the spring 6 is determined so that the ratio of the natural frequency of the drive mode and the natural frequency of the vibration mode is 0.9. However, when the measuring tube 1 is a normal metal tube, the natural frequency ratio is preferably 0.7 to 0.95, and the plastic tube is preferably 0.5 to 0.9.

【0015】すなわち、温度変化等により測定管1の減
衰比が変化する。図2に減衰比が50%変化した時のス
パン誤差を幾つかの減衰比について示す。図2から分る
ごとく、スパン誤差を一定値以下とするには、固有振動
数比が一定値以下でなければならない。例えば、測定管
1が金属パイプで、減衰比が0.01の場合、スパン誤
差を1%以下とするには、固有振動数比を0.9以下と
すれば良い。一般には、金属の減衰比は0.01以下な
ので固有振動数比を0.95以下とすれば、スパン誤差
を充分小さく出来る。また、測定管1がプラスチックパ
イプでは、金属より減衰比が大きい。例えば、減衰比
0.03のプラスチックの場合は、固有振動数比を0.
77以下とすれば良い。プラスチックは種々の材料があ
り、減衰比の幅が大きい。したがって、固有振動数比を
0.9以下とすれば良い。
That is, the damping ratio of the measuring tube 1 changes due to temperature changes and the like. FIG. 2 shows the span error when the damping ratio changes by 50% for some damping ratios. As can be seen from FIG. 2, in order to keep the span error below a certain value, the natural frequency ratio must be below a certain value. For example, when the measuring pipe 1 is a metal pipe and the damping ratio is 0.01, the natural frequency ratio may be set to 0.9 or less to reduce the span error to 1% or less. Generally, since the damping ratio of metal is 0.01 or less, the span error can be sufficiently reduced by setting the natural frequency ratio to 0.95 or less. When the measuring pipe 1 is a plastic pipe, the damping ratio is larger than that of metal. For example, in the case of a plastic with a damping ratio of 0.03, the natural frequency ratio is 0.
It may be 77 or less. There are various materials for plastic, and the range of the damping ratio is large. Therefore, the natural frequency ratio may be 0.9 or less.

【0016】なお、固有振動数比をあまり小さくしすぎ
ると、ばね6の無い場合と同じになり、測定信号を大き
く出来ない。従って、測定管1が通常の金属管の場合
は、固有振動数比は0.7〜0.95が望ましく、プラ
スチック管では0.5〜0.9が望ましい。
If the natural frequency ratio is made too small, it becomes the same as the case without the spring 6, and the measurement signal cannot be increased. Therefore, when the measuring pipe 1 is a normal metal pipe, the natural frequency ratio is preferably 0.7 to 0.95, and the plastic pipe is preferably 0.5 to 0.9.

【0017】以上の構成において、前記測定管の材料に
よる減衰係数に基づいて発生するスパン誤差が所定値以
内にあるように前記駆動モ―ドの固有振動数と前記振動
モ―ドの固有振動数との比率を所定値以下になるように
構成されたので、温度変化等により測定管の減衰比が変
化しても、スパン変動が少ないコリオリ質量流量計が得
られる。
In the above structure, the natural frequency of the drive mode and the natural frequency of the vibration mode are set so that the span error generated based on the damping coefficient of the material of the measuring tube is within a predetermined value. Since it has been configured such that the ratio of and is less than or equal to a predetermined value, a Coriolis mass flowmeter with less span fluctuation can be obtained even if the damping ratio of the measuring pipe changes due to temperature changes or the like.

【0018】この結果、スパン変動が少なく、特性の良
好なコリオリ質量流量計を得ることが出来る。
As a result, it is possible to obtain a Coriolis mass flowmeter which has a small span variation and excellent characteristics.

【0019】図3は本考案の他の実施例の要部構成説明
図である。本実施例においては、測定管7を直管とした
ものである。
FIG. 3 is an explanatory view of the essential structure of another embodiment of the present invention. In this embodiment, the measuring pipe 7 is a straight pipe.

【0020】なお、前述の実施例では、単管の例につい
て説明したが、測定管1が2本に分岐している平行曲り
管、直管から構成されていても良い。その場合は、ばね
6は、2本の測定管1の間に結合される。また、ばね6
は単純ばね以外のばねでも、板ばねでも良い。
In the above-mentioned embodiment, the example of the single pipe has been described, but the measuring pipe 1 may be composed of a parallel bent pipe or a straight pipe branched into two. In that case, the spring 6 is coupled between the two measuring tubes 1. Also, the spring 6
May be a spring other than a simple spring or a leaf spring.

【0021】[0021]

【発明の効果】以上説明したように、本発明は、振動す
る測定管内に測定流体を流し、その流れと測定管の角振
動によって生じるコリオリ力により、測定管を変形振動
させるコリオリ質量流量計であって、前記測定管のコリ
オリ振動モ―ドの節となる箇所を弾性材を介して拘束
し、駆動モ―ドの固有振動数と、コリオリ振動モ―ドの
固有振動数とをほぼ一致させるようにしたコリオリ質量
流量計において、前記測定管の材料による減衰係数に基
づいて発生するスパン誤差が所定値以内にあるように前
記駆動モ―ドの固有振動数と前記振動モ―ドの固有振動
数との比率を所定値以下になるように構成された事を特
徴とするコリオリ質量流量計を構成した。
As described above, the present invention is a Coriolis mass flowmeter in which a measuring fluid is caused to flow in an oscillating measuring tube, and the flow and the Coriolis force generated by the angular vibration of the measuring tube cause the measuring tube to deform and vibrate. Therefore, the node of the Coriolis vibration mode of the measuring tube is constrained via an elastic material so that the natural frequency of the drive mode and the natural frequency of the Coriolis vibration mode are substantially equal. In the Coriolis mass flowmeter, the natural frequency of the drive mode and the natural vibration of the vibration mode are adjusted so that the span error generated based on the damping coefficient of the material of the measuring tube is within a predetermined value. A Coriolis mass flowmeter characterized in that the ratio to the number is set to a predetermined value or less.

【0022】この結果、スパン変動が少なく、特性の良
好なコリオリ質量流量計を得ることが出来る。
As a result, it is possible to obtain a Coriolis mass flowmeter which has a small span variation and excellent characteristics.

【0023】従って、本発明によれば、温度変化等によ
り測定管の減衰比が変化しても、スパン変動が少ない特
性の良好なコリオリ質量流量計を実現することが出来
る。
Therefore, according to the present invention, it is possible to realize a Coriolis mass flowmeter having a good characteristic that the span variation is small even if the damping ratio of the measuring pipe changes due to temperature change or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の要部構成説明図である。FIG. 1 is an explanatory diagram of a main part configuration of an embodiment of the present invention.

【図2】図1の動作説明図である。FIG. 2 is an operation explanatory diagram of FIG.

【図3】本発明の他の実施例の要部構成説明図である。FIG. 3 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図4】従来より一般に使用されている従来例の構成説
明図である。
FIG. 4 is an explanatory diagram of a configuration of a conventional example that is generally used in the past.

【図5】図1の動作説明図である。5 is an operation explanatory diagram of FIG. 1. FIG.

【図6】図1の動作説明図である。FIG. 6 is an operation explanatory diagram of FIG. 1;

【符号の説明】[Explanation of symbols]

1…測定管 2…ケ―ス 3…振動子 4…変位検出センサ 5…変位検出センサ 6…ばね 7…測定管 1 ... Measuring tube 2 ... Case 3 ... Transducer 4 ... Displacement detecting sensor 5 ... Displacement detecting sensor 6 ... Spring 7 ... Measuring tube

Claims (1)

【特許請求の範囲】 【請求項1】振動する測定管内に測定流体を流し、その
流れと測定管の角振動によって生じるコリオリ力によ
り、測定管を変形振動させるコリオリ質量流量計であっ
て、前記測定管のコリオリ振動モ―ドの節となる箇所を
弾性材を介して拘束し、駆動モ―ドの固有振動数と、コ
リオリ振動モ―ドの固有振動数とをほぼ一致させるよう
にしたコリオリ質量流量計において、 前記測定管の材料による減衰係数に基づいて発生するス
パン誤差が所定値以内にあるように前記駆動モ―ドの固
有振動数と前記振動モ―ドの固有振動数との比率を所定
値以下になるように構成された事を特徴とするコリオリ
質量流量計。
Claim: What is claimed is: 1. A Coriolis mass flowmeter for causing a measuring fluid to flow in an oscillating measuring tube, and deforming and vibrating the measuring tube by a Coriolis force generated by the flow and the angular vibration of the measuring tube. Coriolis that constrains the nodes of the Coriolis vibration mode of the measuring tube via an elastic material so that the natural frequency of the drive mode and the natural frequency of the Coriolis vibration mode are approximately the same. In the mass flow meter, the ratio of the natural frequency of the drive mode and the natural frequency of the vibration mode so that the span error generated based on the damping coefficient of the material of the measuring tube is within a predetermined value. A Coriolis mass flowmeter characterized in that is set to be a predetermined value or less.
JP18731491A 1991-07-26 1991-07-26 Coriolis mass flowmeter Pending JPH0526709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18731491A JPH0526709A (en) 1991-07-26 1991-07-26 Coriolis mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18731491A JPH0526709A (en) 1991-07-26 1991-07-26 Coriolis mass flowmeter

Publications (1)

Publication Number Publication Date
JPH0526709A true JPH0526709A (en) 1993-02-02

Family

ID=16203836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18731491A Pending JPH0526709A (en) 1991-07-26 1991-07-26 Coriolis mass flowmeter

Country Status (1)

Country Link
JP (1) JPH0526709A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003046489A1 (en) * 2001-11-26 2003-06-05 Emerson Electric Co. High purity fluid delivery system
JP2003525437A (en) * 2000-03-02 2003-08-26 マイクロ・モーション・インコーポレーテッド Method and apparatus for manufacturing Coriolis flowmeters mainly composed of plastic
US7005019B2 (en) * 2001-11-26 2006-02-28 Emerson Electric Co. Manufacturing flow meters having a flow tube made of a fluoropolymer substance
EP3163262A1 (en) * 2015-10-28 2017-05-03 Atsuden Co., Ltd Coriolis mass flow meter

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6904667B2 (en) 2000-03-02 2005-06-14 Micro Motion, Inc. Apparatus for and a method for fabricating a coriolis flowmeter formed primarily of plastic
JP2003525437A (en) * 2000-03-02 2003-08-26 マイクロ・モーション・インコーポレーテッド Method and apparatus for manufacturing Coriolis flowmeters mainly composed of plastic
EP2026041A2 (en) * 2001-11-26 2009-02-18 Emerson Electric CO. High purity fluid delivery system
US7005019B2 (en) * 2001-11-26 2006-02-28 Emerson Electric Co. Manufacturing flow meters having a flow tube made of a fluoropolymer substance
CN1310016C (en) * 2001-11-26 2007-04-11 美国艾默生电气公司 High purity fluid delivery system
JP2009009606A (en) * 2001-11-26 2009-01-15 Emerson Electric Co High purity fluid delivery system
WO2003046489A1 (en) * 2001-11-26 2003-06-05 Emerson Electric Co. High purity fluid delivery system
EP2312277A3 (en) * 2001-11-26 2012-01-18 Emerson Electric Co. High purity fluid delivery system
EP2026041A3 (en) * 2001-11-26 2012-02-08 Emerson Electric CO. High purity fluid delivery system
USRE43288E1 (en) 2001-11-26 2012-04-03 Emerson Electric Co. High purity fluid delivery system
EP3163262A1 (en) * 2015-10-28 2017-05-03 Atsuden Co., Ltd Coriolis mass flow meter
CN106996812A (en) * 2015-10-28 2017-08-01 株式会社压电 Coriolis mass flowmeters
TWI628418B (en) * 2015-10-28 2018-07-01 壓電股份有限公司 Coriolis mass flow meter

Similar Documents

Publication Publication Date Title
US4756198A (en) Sensor apparatus for mass flow rate measurement system
US5670709A (en) Transducer for the measurement of attributes of flowable media
US4691578A (en) Coriolis-type mass flowmeter
US4957005A (en) Coriolis-type flowmeter
US6164140A (en) Solid state transducer for Coriolis flowmeter
JP2004538449A (en) Vibration transducer
US4756197A (en) Coriolis-type mass flowmeter
JPH0337127B2 (en)
JPH0353131A (en) Mass flowmeter operating under coriolis principle
JP2850556B2 (en) Coriolis mass flowmeter
US4972724A (en) Coriolis-type mass flowmeter having a straight measuring tube
JPH0526709A (en) Coriolis mass flowmeter
US6178828B1 (en) Free standing Coriolis driver
JPH0341319A (en) Coriolis mass flowmeter
US6598488B1 (en) Coriolis effect fluid flow meter
JP2984192B2 (en) Coriolis flow meter
US6553845B2 (en) Coriolis flowmeter utilizing three-forked plate vibrator mode
JP2966355B2 (en) Coriolis flow meter
JP2951456B2 (en) Coriolis mass flowmeter
JP2951460B2 (en) Coriolis mass flowmeter
JPH067324Y2 (en) Mass flow meter
JPH06317444A (en) Coriolis-type mass flowmeter
JPH0835872A (en) Vibrating measuring device
JPH0593640A (en) Coriolis mass flowmeter
JP2910273B2 (en) Flowmeter