JP2712684B2 - Coriolis mass flowmeter - Google Patents

Coriolis mass flowmeter

Info

Publication number
JP2712684B2
JP2712684B2 JP34377689A JP34377689A JP2712684B2 JP 2712684 B2 JP2712684 B2 JP 2712684B2 JP 34377689 A JP34377689 A JP 34377689A JP 34377689 A JP34377689 A JP 34377689A JP 2712684 B2 JP2712684 B2 JP 2712684B2
Authority
JP
Japan
Prior art keywords
tube
flat plate
measuring
vibration
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34377689A
Other languages
Japanese (ja)
Other versions
JPH03199922A (en
Inventor
義則 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP34377689A priority Critical patent/JP2712684B2/en
Publication of JPH03199922A publication Critical patent/JPH03199922A/en
Application granted granted Critical
Publication of JP2712684B2 publication Critical patent/JP2712684B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • G01F1/8477Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane with multiple measuring conduits

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、保守洗浄が容易で、耐震性が良好なコリオ
リ質量流量計に関するものである。
Description: TECHNICAL FIELD The present invention relates to a Coriolis mass flowmeter which is easy to maintain and clean and has good earthquake resistance.

<従来の技術> 第9図は従来より一般に使用されている従来例の構成
説明図である。
<Prior Art> FIG. 9 is an explanatory diagram of a configuration of a conventional example generally used conventionally.

図において、1は配管Aに、両端が取付けられたU字
形の測定管である。
In the figure, reference numeral 1 denotes a U-shaped measuring pipe having both ends attached to a pipe A.

2は管路Aへの測定管1の取付けフランジである。 Reference numeral 2 denotes a mounting flange of the measuring pipe 1 to the pipe A.

3はU字形をなす測定管1の先端に設けられた振動子
である。
Reference numeral 3 denotes a vibrator provided at the tip of the U-shaped measuring tube 1.

4,5は測定管1の両側にそれぞれ設けられた変位検出
センサである。
Reference numerals 4 and 5 denote displacement detection sensors provided on both sides of the measuring tube 1, respectively.

以上の構成において、測定管1に測定流体が流され、
振動子3が駆動される。振動子3の振動方向の角速度
『ω』、測定流体の流速『V』(以下『 』で囲まれた
記号はベクトル量を表す。)とすると、 Fc=−2m『ω』×『V』 のコリオリ力が働く、コリオリ力に比例した振動の振幅
を測定すれば、質量流量が測定出来る。
In the above configuration, the measurement fluid is caused to flow through the measurement tube 1,
The vibrator 3 is driven. Assuming that the angular velocity “ω” in the vibration direction of the vibrator 3 and the flow velocity “V” of the measurement fluid (hereinafter, a symbol surrounded by “” represents a vector amount), Fc = −2 m “ω” × “V” The mass flow rate can be measured by measuring the amplitude of the vibration in which the Coriolis force acts and which is proportional to the Coriolis force.

しかし、一般には、コリオリ力に比例した振動の振幅
は、加振による振動の振幅より極めて小さく、コリオリ
力に比例した振動の振幅を直接検出することが出来な
い。
However, in general, the amplitude of the vibration proportional to the Coriolis force is much smaller than the amplitude of the vibration due to the excitation, and the amplitude of the vibration proportional to the Coriolis force cannot be directly detected.

今、第9図のZ視の方向から見ると、振動子3の加振
により、振動方向をα、βに別けて考えると、流速
『V』の向きによって、第10図(A)、(B)に示す如
く、コリオリ力の方向が異なるので、逆相となり、測定
管1が捩れながら振動する。これを変位検出センサ4,
5、例えば磁気センサで変位を検出し、変位検出センサ
4,5の変位の位相差が、(コリオリ力に比例した振動の
振幅)/(加振による振動の振幅)に比例するので質量
流量を求める事ができる。
Now, when viewed from the Z-view direction in FIG. 9, when the vibration direction is divided into α and β by the vibration of the vibrator 3, depending on the direction of the flow velocity “V”, FIGS. As shown in B), since the directions of the Coriolis force are different, the phases are reversed, and the measuring tube 1 vibrates while being twisted. This is called the displacement detection sensor 4,
5.Displacement detection sensor, for example, detecting displacement with a magnetic sensor
Since the phase difference between the displacements 4 and 5 is proportional to (amplitude of vibration in proportion to Coriolis force) / (amplitude of vibration due to excitation), the mass flow rate can be obtained.

位相差は波形がゼロをクロスする時間の差Δtとして
測定出来るので、結果としてコリオリ力が測定出来る。
Since the phase difference can be measured as the time difference Δt at which the waveform crosses zero, the Coriolis force can be measured as a result.

第11図は従来より一般に使用されている他の従来の構
成説明図である。
FIG. 11 is an explanatory view of another conventional structure generally used from the prior art.

本従来例では、更に、ノイズを低減し、信号を大きく
とるために、測定管1を、2管式にしたものである。
In this conventional example, the measuring tube 1 is a two-tube type in order to further reduce noise and obtain a large signal.

<発明が解決しようとする課題> しかしながら、この様な、第11図装置においても、外
部振動等に対する耐震性は向上するが、測定流路が2本
に分離されていて、測定管の洗浄が困難になる、分岐部
に付着物が溜り易い、等の欠点を有する。
<Problems to be Solved by the Invention> However, even in such a device shown in FIG. 11, the seismic resistance against external vibrations and the like is improved, but the measurement flow path is separated into two, and the cleaning of the measurement tube is difficult. It has drawbacks such as becoming difficult, and deposits tending to accumulate at the branch.

本発明は、この問題点を解決するものである。 The present invention solves this problem.

本発明の目的は、保守洗浄が容易で、耐震性が良好な
コリオリ質量流量計を提供するにある。
An object of the present invention is to provide a Coriolis mass flowmeter which is easy to perform maintenance cleaning and has good earthquake resistance.

<課題を解決するための手段> この目的を達成するために、本発明は、コリオリ力を
利用して質量流量を測定するコリオリ質量流量計におい
て、 測定流体の流れる直管状の測定管と、該測定管の管軸
に平行に設けられた平板と、該平板と前記測定管の両端
が固定される防振枠と、前記管軸に直交して設けられ前
記測定管の中央部付近で該測定管と前記平板とを結合す
る結合板と、前記管軸と前記平板とに直交し前記結合板
と前記防振枠との間に対向して設けられ前記測定管と前
記平板を振動させる振動駆動装置と前記平板の変位速度
を測定する速度測定装置と、前記測定管の端部と結合板
の取付け部との中間部付近に設けられ該測定管と前記平
板との相対変位を検出する相対変位検出装置とを具備し
たことを特徴とするコリオリ質量流量計を構成したもの
である。
<Means for Solving the Problems> In order to achieve this object, the present invention relates to a Coriolis mass flowmeter for measuring a mass flow rate using a Coriolis force, comprising: A flat plate provided in parallel with the tube axis of the measuring tube, a vibration isolating frame to which both ends of the flat plate and the measuring tube are fixed, and the measurement provided near the center of the measuring tube provided orthogonal to the tube axis. A coupling plate that couples a tube and the flat plate, and a vibration drive that is orthogonal to the tube axis and the flat plate and that is provided to face between the coupling plate and the vibration isolating frame and vibrates the measurement tube and the flat plate. A speed measuring device for measuring a displacement speed of the device and the flat plate, and a relative displacement provided near an intermediate portion between an end of the measuring tube and a mounting portion of the coupling plate for detecting a relative displacement between the measuring tube and the flat plate. A Coriolis mass flowmeter comprising a detection device Are those that you configured.

<作 用> 以上の構成において、測定管の測定流体が流され、振
動子が駆動される。振動子により測定管と平板は同一方
向に振動する。
<Operation> In the above configuration, the measurement fluid in the measurement tube flows, and the vibrator is driven. The vibrator vibrates the measurement tube and the flat plate in the same direction.

振動方向の角速度『ω』、測定管の内部を流れる測定
流体の流速『V』とすると、 Fc=−2m『ω』×『V』 のコリオリ力が働く、流速『V』の向きによって、測定
管にはコリオリ力による変形が加わり、測定管は変形す
る。
Assuming that the angular velocity in the vibration direction is “ω” and the flow velocity of the measurement fluid flowing inside the measuring tube is “V”, the Coriolis force of Fc = −2 m “ω” × “V” acts. The tube is deformed by Coriolis force, and the measuring tube is deformed.

しかし、平板はコリオリ力の影響は受けない。従っ
て、コリオリ力による相対変位が相対変位測定装置によ
り測定される。
However, the flat plate is not affected by the Coriolis force. Therefore, the relative displacement due to the Coriolis force is measured by the relative displacement measuring device.

而して、測定された相対変位信号を速度測定装置で割
算する事により質量信号が得られる。
Thus, a mass signal is obtained by dividing the measured relative displacement signal by the speed measuring device.

一方、測定値にノイズとして働く、主配管の振動に対
して、測定管と平板は両端近くを、防振枠で固定されて
いるので、外部の振動を受け難い。
On the other hand, with respect to the vibration of the main pipe, which acts as noise on the measured value, the measurement pipe and the flat plate are fixed near both ends by the vibration isolating frame, so that they are hardly subjected to external vibration.

以下、実施例に基づき詳細に説明する。 Hereinafter, a detailed description will be given based on embodiments.

<実施例> 第1図は本発明の一実施例の要部構成説明図、第2図
は第1図のA−A断面図、第3図は第1図のB−B断面
図である。
<Embodiment> FIG. 1 is an explanatory view of a main part configuration of an embodiment of the present invention, FIG. 2 is a sectional view taken along line AA of FIG. 1, and FIG. 3 is a sectional view taken along line BB of FIG. .

11は配管路と接続するフランジである。 Numeral 11 is a flange connected to the piping.

12はロの字形の防振枠てある。 12 is a square-shaped anti-vibration frame.

13は、測定流体の流れる直管状の測定管で、両端は防
振枠に固定されている。この場合は、配管路よりも管直
径は小さい直径から構成され、配管路と縮小部,拡大部
で結合されている。
Reference numeral 13 denotes a straight measurement tube through which a measurement fluid flows, and both ends are fixed to a vibration isolating frame. In this case, the pipe has a diameter smaller than that of the pipe, and is connected to the pipe at a reduced portion and an enlarged portion.

14は測定管13の管軸に平行に設けられた平板で、両端
は防振枠に固定されている。平板14は、測定管13と最小
共振周波数が、同一になるように板厚が選ばれている。
Reference numeral 14 denotes a flat plate provided in parallel with the tube axis of the measurement tube 13, and both ends are fixed to a vibration isolating frame. The thickness of the flat plate 14 is selected so that the minimum resonance frequency is the same as that of the measurement tube 13.

15は、測定管13の管軸に直交して設けられ、測定管13
の中央部付近で測定管13と平板14とを結合する結合板で
ある。
15 is provided orthogonal to the tube axis of the measuring tube 13 and
Is a connecting plate for connecting the measuring tube 13 and the flat plate 14 in the vicinity of the center of the measuring tube 13.

16,17は、測定管13と管軸と平板14とに直交し結合板1
5と防振枠12との間に対向して設けられ、測定管13と平
板14を振動させる振動駆動装置と、平板14の変位速度を
測定する速度測定装置である。
16 and 17 are orthogonal to the measuring tube 13, the tube axis and the flat plate 14,
A vibration driving device is provided between the anti-vibration frame 12 and the vibration isolating frame 12 to vibrate the measuring tube 13 and the flat plate 14, and a speed measuring device for measuring the displacement speed of the flat plate 14.

18は、測定管13の端部と結合板15の取付け部との中間
部付近に設けられ測定管13と平板14との相対変位を検出
する相対変位検出装置である。
Reference numeral 18 denotes a relative displacement detection device that is provided near an intermediate portion between the end of the measurement tube 13 and the attachment portion of the coupling plate 15, and detects a relative displacement between the measurement tube 13 and the flat plate 14.

相対変位検出装置18は、この場合は、スリット181、
発光装置182と受光装置183よりなる。
In this case, the relative displacement detection device 18 includes a slit 181,
It comprises a light emitting device 182 and a light receiving device 183.

第4図に、電気回路ブロック図を示す。 FIG. 4 shows an electric circuit block diagram.

21は、平板14と測定管13の相対変位を電圧に変換する
相対変位変換回路である。
Reference numeral 21 denotes a relative displacement conversion circuit that converts the relative displacement between the flat plate 14 and the measurement tube 13 into a voltage.

相対変位変換回路21はスリット181、発光装置182、受
光装置183、演算回路22とよりなる。
The relative displacement conversion circuit 21 includes a slit 181, a light emitting device 182, a light receiving device 183, and an arithmetic circuit 22.

23は、速度測定装置17の出力から、変位に比例した電
圧信号を出力する、速度信号回路である。
Reference numeral 23 denotes a speed signal circuit that outputs a voltage signal proportional to the displacement from the output of the speed measuring device 17.

24は相対変位変換回路21の出力を平滑する平滑回路で
ある。
24 is a smoothing circuit for smoothing the output of the relative displacement conversion circuit 21.

25は速度信号回路23の出力を平滑する平滑回路であ
る。
25 is a smoothing circuit for smoothing the output of the speed signal circuit 23.

26は平滑回路24と平滑回路25とを出力を割算する割算
回路である。
26 is a division circuit for dividing the output of the smoothing circuits 24 and 25.

27は、コイルと鉄心からなる振動駆動装置16の駆動回
路で、速度信号回路23の周波数信号と平滑回路25の平滑
信号を利用して、周波数、大きさをコントロールする。
Reference numeral 27 denotes a driving circuit of the vibration driving device 16 including a coil and an iron core. The driving circuit 27 controls the frequency and magnitude by using the frequency signal of the speed signal circuit 23 and the smoothing signal of the smoothing circuit 25.

以上の構成において、測定管13に測定流体が流され、
振動駆動装置16が駆動される。振動駆動装置16により測
定管13と平板14は同一方向に振動する。
In the above configuration, the measurement fluid is caused to flow through the measurement tube 13,
The vibration driving device 16 is driven. The measurement tube 13 and the flat plate 14 vibrate in the same direction by the vibration driving device 16.

振動方向の角速度『ω』、測定管13の内部を流れる測
定流体の流速『V』とすると、 Fc=−2m『ω』×『V』 のコリオリ力が働く、流速『V』の向きによって、測定
管13にはコリオリ力による変形が加わり、測定管13は変
形する。
Assuming that the angular velocity in the vibration direction is “ω” and the flow velocity of the measurement fluid flowing inside the measurement tube 13 is “V”, the Coriolis force of Fc = −2 m “ω” × “V” acts. The measurement tube 13 is deformed by Coriolis force, and the measurement tube 13 is deformed.

しかし、平板14はコリオリ力の影響は受けない。従っ
て、コリオリ力による相対変位が相対変位測定装置によ
り測定される。
However, the flat plate 14 is not affected by the Coriolis force. Therefore, the relative displacement due to the Coriolis force is measured by the relative displacement measuring device.

而して、測定された相対変位信号を、速度測定装置17
で割算する事により、質量信号が得られる。
Thus, the measured relative displacement signal is transmitted to the speed measuring device 17.
By dividing by, a mass signal is obtained.

一方、測定値にノイズとして働く、主配管の振動に対
して、測定管13と平板14は両端近くを、防振枠12で固定
されているので、外部の振動を受け難い。
On the other hand, with respect to the vibration of the main pipe, which acts as noise on the measured value, the measurement pipe 13 and the flat plate 14 are fixed by the anti-vibration frame 12 near both ends, so that they are hardly subjected to external vibration.

即ち、 第5図に、測定管13と平板14との動きを示す。 That is, FIG. 5 shows the movement of the measuring tube 13 and the flat plate 14.

振動駆動装置16が駆動されると、結合板15に周期的な
力が加わり、一体の状態で撓み振動する。第7図(A)
は測定流体の流れが無い場合、第7図(B)は測定流体
の流れが有る場合である。
When the vibration driving device 16 is driven, a periodic force is applied to the coupling plate 15 to bend and vibrate in an integrated state. Fig. 7 (A)
FIG. 7B shows the case where there is no flow of the measurement fluid, and FIG. 7B shows the case where there is a flow of the measurement fluid.

測定流体の流れが無い場合は、第5図(A)に示す如
く、平板14の変位δと測定管13の変位δは一致して
いる。従って、平板14を基準として見た測定管13の変位
δ−δは第6図(A)に示す如く、ゼロである。
If the flow of the fluid should not, as shown in FIG. 5 (A), the displacement [delta] 2 of the displacement [delta] 1 and flow tube 13 of the plate 14 are matched. Therefore, the displacement δ 2 −δ 1 of the measuring tube 13 with reference to the flat plate 14 is zero as shown in FIG. 6 (A).

測定流体の流れがある場合は、第5図(B)に示す如
く、測定管13には質量流量に比例したコリオリ力が加わ
り、測定管13は上下流で逆方向に歪む。従って、平板14
を基準として見た測定管13の変位δ−δは第6図
(B)に示す如く、正弦波状に変化するが、これは、コ
リオリ力(即ち、質量流量)に比例する。
When there is a flow of the measurement fluid, a Coriolis force proportional to the mass flow rate is applied to the measurement tube 13 as shown in FIG. 5 (B), and the measurement tube 13 is distorted in upstream and downstream directions in opposite directions. Therefore, the flat plate 14
As shown in FIG. 6B, the displacement δ 2 −δ 1 of the measuring tube 13 changes in a sinusoidal manner as shown in FIG. 6B, which is proportional to the Coriolis force (that is, the mass flow rate).

δ−δ=kωM(υ) ω:測定管13の角速度 M(υ):質量流量 次に、第8図に相対変位検出装置18の部分の動きを示
す。
δ 2 −δ 1 = kωM (υ) ω: angular velocity of the measuring tube 13 M (υ): mass flow rate Next, FIG. 8 shows the movement of the relative displacement detector 18.

第8図(A)は相対変位が無い場合である。 FIG. 8A shows a case where there is no relative displacement.

発光装置182から出た光は、スリット181で遮られ、一
部が受光装置183に到達する。受光装置183は一対の構成
で、相対変位が無い場合には、同一の光量の光を受光す
る。
Light emitted from the light emitting device 182 is blocked by the slit 181, and a part of the light reaches the light receiving device 183. The light receiving device 183 has a pair of structures and receives the same amount of light when there is no relative displacement.

第8図(B)は相対変位が有る場合である。 FIG. 8B shows a case where there is a relative displacement.

スリット181が移動するために、一対の受光装置183に
到達する光はアンバランスとなる。
Since the slit 181 moves, the light reaching the pair of light receiving devices 183 becomes unbalanced.

夫々の光量をA1,A2とすれば、A2−A1は相対変位に比
例する。
Assuming that the respective light amounts are A 1 and A 2 , A 2 −A 1 is proportional to the relative displacement.

而して、受光装置183の出力電圧E(A1),E(A2)の
差を演算回路22で演算し、平滑回路24で平滑することに
より、下式のようにコリオリ力に比例した信号を得るこ
とが出来る。
Thus, the difference between the output voltages E (A 1 ) and E (A 2 ) of the light receiving device 183 is calculated by the arithmetic circuit 22 and smoothed by the smoothing circuit 24, so as to be proportional to the Coriolis force as in the following equation. A signal can be obtained.

ED=E(A2)−E(A1) =k2(A2−A1) =k2k3(δ−δ) =k1k2k3ωM(υ) 更に、結合板15の、速度測定装置17からの速度に比例
した出力Eυ=k4ωで上記平滑信号を割る事により質量
信号に比例した信号が得られる。
E D = E (A 2 ) −E (A 1 ) = k 2 (A 2 −A 1 ) = k 2 k 32 −δ 1 ) = k 1 k 2 k 3 ωM (υ) plate 15, a signal proportional to the mass signals by dividing the smoothed signal is obtained at the output E υ = k 4 ω which is proportional to the speed from the speed measuring device 17.

Eout=ED/Eυ =(k1k2k3ωM(υ))/(k4ω) この結果、 (1)一本の配管から構成されていて、液だまり、分岐
部が無いので、保守、洗浄が容易である。
E out = E D / E υ = (k 1 k 2 k 3 ωM (υ)) / (k 4 ω) As a result, (1) it is composed of one pipe and there is no liquid pool and no branch part Therefore, maintenance and cleaning are easy.

(2)振動の検出には、測定管13と平板14の振動の差を
利用しているので、外部の振動を受け難い。
(2) Since the difference between the vibration of the measuring tube 13 and the vibration of the flat plate 14 is used for detecting the vibration, it is hard to receive the external vibration.

なお、速度測定装置17の速度を一定になるように駆動
する場合、割算回路26を省略してもよい。
When the speed of the speed measuring device 17 is driven to be constant, the dividing circuit 26 may be omitted.

相対変位検出装置18は、光学式でなく、静電容量式電
磁誘導式、ストレインゲージ式、PZTを用いてもよい。
The relative displacement detecting device 18 may use an electrostatic induction type, a strain gauge type, or PZT instead of an optical type.

速度測定装置17は電磁誘導式でなく、変位センサの出
力を微分する方法、加速度センサの出力を積分する方法
でもよい。
The speed measuring device 17 may be a method of differentiating the output of the displacement sensor or a method of integrating the output of the acceleration sensor instead of the electromagnetic induction type.

相対変位検出装置18の数は、結合板15の対称位置に一
対取付けたが、一対の変位信号をピックアップ後演算処
理する事によりS/N比を向上する事ができる。
The number of relative displacement detectors 18 is set at a symmetrical position on the coupling plate 15, but the S / N ratio can be improved by performing arithmetic processing after picking up a pair of displacement signals.

センサの信号をA/D変換して演算すれば、演算精度を
向上する事ができる。
If the signal of the sensor is A / D converted and calculated, the calculation accuracy can be improved.

<発明の効果> 以上説明したように、本発明は、コリオリ力を利用し
て質量流量を測定するコリオリ質量流量計において、 測定流体の流れる直管状の測定管と、該測定管の管軸
に平行に設けられた平板と、該平板と前記測定管の両端
が固定される防振枠と、前記管軸に直交して設けられ前
記測定管の中央部付近で該測定管と前記平板とを結合す
る結合板と、前記管軸と前記平板とに直交し前記結合板
と前記防振枠とを間に対向して設けられ前記測定管と前
記平板を振動させる振動駆動装置と前記平板の変位速度
を測定する速度測定装置と、前記測定管の端部と結合板
の取付け部との中間部付近に設けられ該測定管と前記平
板との相対変位を検出する相対変位検出装置とを具備し
たことを特徴とするコリオリ質量流量計を構成した。
<Effect of the Invention> As described above, the present invention relates to a Coriolis mass flowmeter that measures a mass flow rate using a Coriolis force, wherein a straight tubular measurement pipe through which a measurement fluid flows, and a pipe axis of the measurement pipe. A flat plate provided in parallel, an anti-vibration frame to which both ends of the flat plate and the measuring tube are fixed, and the measuring tube and the flat plate provided near the center of the measuring tube provided orthogonal to the pipe axis. A coupling plate to be coupled, a vibration drive device orthogonal to the tube axis and the flat plate, provided opposite the coupling plate and the vibration isolating frame, and vibrating the measurement tube and the flat plate, and displacement of the flat plate A speed measuring device for measuring a speed, and a relative displacement detecting device provided near an intermediate portion between an end of the measuring tube and a mounting portion of the coupling plate and detecting a relative displacement between the measuring tube and the flat plate. Thus, a Coriolis mass flowmeter was constructed.

この結果、 (1)一本の配管から構成されていて、液だまり、分岐
部が無いので、保守、洗浄が容易である。
As a result, (1) Since it is composed of one pipe and there is no liquid pool or branch part, maintenance and cleaning are easy.

(2)振動の検出には、測定管と平板の振動の差を利用
しているので、外部の振動を受け難い。
(2) Since the difference between the vibration of the measuring tube and the vibration of the flat plate is used for detecting the vibration, it is hard to receive the external vibration.

従って、本発明によれば、保守洗浄が容易で、耐震性
が良好なコリオリ質量流量計を実現することが出来る。
Therefore, according to the present invention, it is possible to realize a Coriolis mass flowmeter which is easy to perform maintenance cleaning and has good seismic resistance.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の要部構成説明図、第2図は
第1図のA−A断面図、第3図は第1図のB−B断面
図、第4図は第1図の電気回路ブロック図、第5図から
第8図は第1図の動作説明図、第9図は従来より一般に
使用されている従来例の構成説明図、第10図は第9図の
動作説明図、第11図は従来より一般に使用されている他
の従来例の構成説明図である。 11……フランジ、12……防振枠、13……測定管、14……
平板、15……結合板、16……振動駆動装置、17……速度
測定装置、18……相対変位検出装置、181……スリッ
ト、182……発光装置、183……受光装置、21……相対変
位回路、22……演算回路、23……速度信号回路、24,25
……平滑回路、26……割算回路。
FIG. 1 is an explanatory view of a main part of an embodiment of the present invention, FIG. 2 is a sectional view taken along line AA of FIG. 1, FIG. 3 is a sectional view taken along line BB of FIG. 1, and FIG. FIG. 1 is an electric circuit block diagram, FIG. 5 to FIG. 8 are operation explanatory diagrams of FIG. 1, FIG. 9 is an explanatory diagram of a configuration of a conventional example generally used, and FIG. FIG. 11 is an operation explanatory view, and FIG. 11 is a structural explanatory view of another conventional example which has been generally used conventionally. 11 ... Flange, 12 ... Vibration isolation frame, 13 ... Measuring tube, 14 ...
Flat plate, 15 coupling plate, 16 vibration driving device, 17 speed measurement device, 18 relative displacement detection device, 181 slit, 182 light emitting device, 183 light receiving device, 21 Relative displacement circuit, 22: arithmetic circuit, 23: speed signal circuit, 24, 25
…… Smoothing circuit, 26 …… Division circuit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】コリオリ力を利用して質量流量を測定する
コリオリ質量流量計において、 測定流体の流れる直管状の測定管と、 該測定管の管軸に平行に設けられた平板と、 該平板と前記測定管の両端が固定される防振枠と、 前記管軸に直交して設けられ前記測定管の中央部付近で
該測定管と前記平板とを結合する結合板と、 前記管軸と前記平板とに直交し前記結合板と前記防振枠
との間に対向して設けられ前記測定管と前記平板を振動
させる振動駆動装置と前記平板の変位速度を測定する速
度測定装置と、 前記測定管の端部と結合板の取付部との中間部付近に設
けられ該測定管と前記平板との相対変位を検出する相対
変位検出装置と を具備したことを特徴とするコリオリ質量流量計。
1. A Coriolis mass flowmeter for measuring a mass flow rate using a Coriolis force, comprising: a straight tube-shaped measuring tube through which a measuring fluid flows; a flat plate provided in parallel with a pipe axis of the measuring tube; And a vibration isolating frame to which both ends of the measurement tube are fixed, a coupling plate that is provided orthogonal to the tube axis and couples the measurement tube and the flat plate near the center of the measurement tube, and the tube shaft. A vibration drive device provided orthogonally to the flat plate and opposed between the coupling plate and the vibration isolating frame to vibrate the measurement tube and the flat plate, and a speed measuring device for measuring a displacement speed of the flat plate; A Coriolis mass flowmeter comprising: a relative displacement detection device provided near an intermediate portion between an end of a measurement tube and a mounting portion of a coupling plate, for detecting a relative displacement between the measurement tube and the flat plate.
JP34377689A 1989-12-27 1989-12-27 Coriolis mass flowmeter Expired - Lifetime JP2712684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34377689A JP2712684B2 (en) 1989-12-27 1989-12-27 Coriolis mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34377689A JP2712684B2 (en) 1989-12-27 1989-12-27 Coriolis mass flowmeter

Publications (2)

Publication Number Publication Date
JPH03199922A JPH03199922A (en) 1991-08-30
JP2712684B2 true JP2712684B2 (en) 1998-02-16

Family

ID=18364153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34377689A Expired - Lifetime JP2712684B2 (en) 1989-12-27 1989-12-27 Coriolis mass flowmeter

Country Status (1)

Country Link
JP (1) JP2712684B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995003528A1 (en) * 1993-07-21 1995-02-02 Endress + Hauser Flowtec Ag Coriolis mass flow rate sensor
DE102008002215A1 (en) * 2008-06-04 2009-12-10 Endress + Hauser Flowtec Ag Device for determining and / or monitoring a flow parameter
CN104792379B (en) * 2015-04-08 2018-01-12 浙江大学 A kind of Coriolis flowmeter amplitude self-adaptation control method based on fluid state detection

Also Published As

Publication number Publication date
JPH03199922A (en) 1991-08-30

Similar Documents

Publication Publication Date Title
JP5222996B2 (en) Double pick-off vibratory flow meter
US4823614A (en) Coriolis-type mass flowmeter
JP2927307B2 (en) Mass flow meter
JP5222995B2 (en) Double driver vibration type flow meter
US4831885A (en) Acoustic wave supressor for Coriolis flow meter
US4811606A (en) Mass flowmeter
JP2850556B2 (en) Coriolis mass flowmeter
JP2712684B2 (en) Coriolis mass flowmeter
JPH0341319A (en) Coriolis mass flowmeter
JPH1130543A (en) Coriolis mass flowmeter
US6553845B2 (en) Coriolis flowmeter utilizing three-forked plate vibrator mode
JP2984134B2 (en) Coriolis flow meter
JP2951456B2 (en) Coriolis mass flowmeter
JPH0650784A (en) Mass flowmeter
CN106989787B (en) Method and mass flow measurement instrument for operating mass flow measuring instrument
JP2951460B2 (en) Coriolis mass flowmeter
JPH08122120A (en) Coriolis mass flowmeter
JPH06235652A (en) Mass flowmeter
JPH109925A (en) Coriolis flow meter
JPH08278181A (en) Coriolis mass flow meter
JP2723306B2 (en) Mass flow meter
JPH0712612A (en) Coliolis type massflowmeter
JPH0835872A (en) Vibrating measuring device
JPH0783718A (en) Coriolis mass flowmeter
JPH02206722A (en) Coriolis mass flowmeter