JPH03199922A - Coriolis mass flowmeter - Google Patents

Coriolis mass flowmeter

Info

Publication number
JPH03199922A
JPH03199922A JP34377689A JP34377689A JPH03199922A JP H03199922 A JPH03199922 A JP H03199922A JP 34377689 A JP34377689 A JP 34377689A JP 34377689 A JP34377689 A JP 34377689A JP H03199922 A JPH03199922 A JP H03199922A
Authority
JP
Japan
Prior art keywords
flat plate
measuring
pipe
vibration
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34377689A
Other languages
Japanese (ja)
Other versions
JP2712684B2 (en
Inventor
Yoshinori Matsunaga
松永 義則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP34377689A priority Critical patent/JP2712684B2/en
Publication of JPH03199922A publication Critical patent/JPH03199922A/en
Application granted granted Critical
Publication of JP2712684B2 publication Critical patent/JP2712684B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • G01F1/8477Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane with multiple measuring conduits

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To obtain a mass flowmeter which is easy to maintain and clean and having good resistance to vibration by coupling a straight measuring pipe in which a measuring fluid flows with a flat plate and vibrating the same. CONSTITUTION:A straight measuring pipe 13 which has a smaller diameter than a piping passage is fixed to a vibration preventing frame 12. A flat plate 14 having the same minimum resonance frequency as the measuring pipe 13 is provided in parallel to the axis of the pipe. A coupling plate 15 is provided at right angles to the axis of the pipe, thereby coupling the measuring pipe 13 with the flat plate 14. When a measuring fluid is let to flow in the measuring pipe 13 and the flat plate 14 is vibrated by a vibration driving apparatus 16, the measuring pipe 13 is moved in the same direction as the flat plate 14. Although the measuring pipe 13 is deformed by the Coriolis force, the flat plate 14 is not influenced by the Coriolis force. Therefore, if the relative displacement detected by a relative displacement measuring apparatus 18 is divided by the displacement speed of the flat plate 14 obtained by a speed measuring apparatus 17, a mass signal is obtained. Since there is no place for the fluid to accumulate or a branch, it is easy to clean the pipe. Moreover, since the measuring pipe 13 and flat plate 14 are fixed near at the end parts thereof by the vibration preventing frame 12, the pipe is hard to be affected by the outside vibration.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、保守洗浄が容易で、耐震性が良好なコリオリ
質量流量計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a Coriolis mass flowmeter that is easy to maintain and clean and has good seismic resistance.

〈従来の技術〉 第9図は従来より一般に使用されている従来例の構成説
明図である。
<Prior Art> FIG. 9 is an explanatory diagram of the configuration of a conventional example that has been commonly used.

図において、1は配管Aに、両端が取付けられたU字形
の測定管である。
In the figure, 1 is a U-shaped measurement tube attached to piping A at both ends.

2は管路Aへの測定管1の取付はフランジである。2 is a flange for attaching the measuring tube 1 to the conduit A.

3はU字形をなす測定管lの先端に設けられた振動子で
ある。
3 is a vibrator provided at the tip of the U-shaped measuring tube l.

4.5は測定管1の両側にそれぞれ設けられた変位検出
センサである。
4.5 are displacement detection sensors provided on both sides of the measuring tube 1, respectively.

以上の構成において、測定管1に測定流体が流され、振
動子3が駆動される。振動子3の振動方向の角速度rω
」、測定流体の流速rv」 (以下「」で囲まれた記号
はベクトル量を表す。)とすると Fc=−2mrωJXrVJ のコリオリカが働く、コリオリカに比例した振動の振幅
を測定すれば、質量流量が測定出来る。
In the above configuration, the measurement fluid is flowed through the measurement tube 1, and the vibrator 3 is driven. Angular velocity rω of the vibrator 3 in the vibration direction
'', the flow velocity of the measured fluid rv'' (hereinafter the symbols enclosed in ``'' represent vector quantities), then a Coriolis of Fc = -2mrωJXrVJ acts.If we measure the amplitude of vibration proportional to Coriolis, we can find that the mass flow rate is Can be measured.

しかし、一般には、コリオリカに比例した振動の振幅は
、加振による振動の振幅より極めて小さく、コリオリカ
に比例した振動の振幅を直接検出することが出来ない。
However, in general, the amplitude of vibrations proportional to Coriolis is extremely smaller than the amplitude of vibrations caused by excitation, and it is not possible to directly detect the amplitude of vibrations proportional to Coriolis.

今、第9図の2視の方向から見ると、振動子3の加振に
より、振動方向をα、βに別けて考えると、流速ryJ
の向きによって、第10図(A>、(B)に示す如く、
コリオリカの方向が異なるので、逆相となり、測定管1
が捩れながら振動する。
Now, when viewed from the second view direction in Fig. 9, the vibration direction is divided into α and β due to the vibration of the vibrator 3, and the flow velocity ryJ
Depending on the orientation, as shown in Figure 10 (A>, (B)),
Since the direction of Coriolis is different, the phase is reversed, and measurement tube 1
vibrates while twisting.

これを変位検出センサ4,5、例えば磁気センサで変位
を検出し、変位検出センサ4,5の変位の位相差が、(
コリオリカに比例した振動の振幅)/(加振による振動
の振幅)に比例するので質量流量を求める事ができる。
The displacement is detected by the displacement detection sensors 4 and 5, for example, a magnetic sensor, and the phase difference between the displacements of the displacement detection sensors 4 and 5 is (
The mass flow rate can be determined because it is proportional to (amplitude of vibration proportional to Coriolis)/(amplitude of vibration due to excitation).

位相差は波形がゼロをクロスする時間の差Δtとして測
定出来るので、結果としてコリオリカが測定出来る。
Since the phase difference can be measured as the difference Δt in time at which the waveform crosses zero, Coriolis can be measured as a result.

第10図は従来より一般に使用されている他の従来例の
構成説明図である。
FIG. 10 is a diagram illustrating the configuration of another conventional example that has been commonly used.

本従来例では、更に、ノイズを低減し、信号を大きくと
るために、測定管1を、2管式にしたものである。
In this conventional example, the measuring tube 1 is of a two-tube type in order to further reduce noise and increase the signal.

〈発明が解決しようとする課題〉 しかしながら、この様な、第10図装置においても、外
部振動等に対する耐震性は向上するが、測定流路が2本
に分離されていて、測定管の洗浄が困難になる、分岐部
に付着物が溜り易い、等の欠点を有する。
<Problems to be Solved by the Invention> However, even in the device shown in FIG. 10, although the seismic resistance against external vibrations etc. is improved, the measurement flow path is separated into two, and cleaning of the measurement tube is difficult. It has drawbacks such as difficulty in handling and the tendency for deposits to accumulate at the branching part.

本発明は、この問題点を解決するものである。The present invention solves this problem.

本発明の目的は、保守洗浄が容易で、耐震性が良好なコ
リオリ質量流量計を提供するにある。
An object of the present invention is to provide a Coriolis mass flowmeter that is easy to maintain and clean and has good earthquake resistance.

〈課題を解決するだめの手段〉 この目的を達成するために、本発明は、コリオリ力を利
用して質量流量を測定するコリオリ質量流量計において
、 測定流体の流れる直管状の測定管と、該測定管の管軸に
平行に設けられた平板と、該平板と前記測定管の両端が
固定される防振枠と、前記管軸に直交して設けられ前記
測定管の中央部付近で該測定管と前記平板とを結合する
結合板と、前記管軸と前記平板とに直交し前記結合板と
前記防振枠との間に対向して設けられ前記平板を振動さ
せる振動駆動装置と前記平板の変位速度を測定する速度
測定装置と、前記測定管の端部と結合板の取付は部との
中間部付近に設けられ該測定管と前記平板との相対変位
を検出する相対変位検出装置とを具備したことを特徴と
するコリオリ質量流量計を構成したものである。
<Means for Solving the Problem> In order to achieve this object, the present invention provides a Coriolis mass flowmeter that measures mass flow rate using Coriolis force, which includes a straight measuring tube through which a measuring fluid flows; a flat plate provided parallel to the tube axis of the measuring tube; a vibration isolation frame to which both ends of the flat plate and the measuring tube are fixed; and a vibration isolation frame provided perpendicular to the tube axis and configured to perform the measurement near the center of the measuring tube. a coupling plate that couples the tube and the flat plate; a vibration drive device that is provided perpendicularly to the tube axis and the flat plate and facing between the coupling plate and the vibration isolation frame and vibrates the flat plate; and the flat plate. a velocity measuring device for measuring the displacement speed of the flat plate, and a relative displacement detecting device for detecting the relative displacement between the measuring tube and the flat plate, the connecting plate being attached near the intermediate portion between the end of the measuring tube and the flat plate. This is a Coriolis mass flowmeter characterized by comprising:

く作 用〉 以上の構成において、測定管に測定流体が流され、振動
子が駆動される。振動子により測定管と平板は同一方向
に振動する。
Function> In the above configuration, the measurement fluid is flowed into the measurement tube, and the vibrator is driven. The measuring tube and flat plate are vibrated in the same direction by the vibrator.

振動方向の角速度rω1、測定管の内部を流れる測定流
体の流速ryJとすると、 Fc−−2m rωI X rV3 のコリオリカが働く、流速rVJの向きによって、測定
管にはコリオリカによる変形が加わり、測定管は変形す
る。
If the angular velocity rω1 in the vibration direction and the flow velocity ryJ of the measuring fluid flowing inside the measuring tube are Fc--2m rωI transforms.

しかし、平板はコリオリカの影響は受けない。However, flat plates are not affected by Coriolika.

従って、コリオリカによる相対変位が相対変位測定装置
により測定される。
Therefore, the relative displacement due to Coriolis is measured by the relative displacement measuring device.

而して、測定された相対変位信号を速度測定装置で割算
する事により質量信号が得られる。
A mass signal is then obtained by dividing the measured relative displacement signal by the velocity measuring device.

一方、測定値にノイズとして働く、主配管の振動に対し
て、測定管と平板は両端近くを、防振枠で固定されてい
るので、外部の振動を受は難い。
On the other hand, with respect to the vibration of the main pipe that acts as noise on the measured values, the measurement pipe and the flat plate are fixed near both ends with vibration isolating frames, so it is difficult to receive external vibrations.

以下、実施例に基づき詳細に説明する。Hereinafter, a detailed explanation will be given based on examples.

〈実施例〉 第1図は本発明の一実施例の要部構成説明図、第2図は
第1図のA−A断面図、第3図は第1図のB−B断面図
である。
<Example> Fig. 1 is an explanatory diagram of the main part configuration of an embodiment of the present invention, Fig. 2 is a cross-sectional view taken along line AA in Fig. 1, and Fig. 3 is a cross-sectional view taken along line B-B in Fig. 1. .

11は配管路と接続するフランジである。11 is a flange connected to a piping path.

12は口の字形の防振枠である。12 is a mouth-shaped anti-vibration frame.

13は、測定流体の流れる直管状の測定管で、両端は防
振枠に固定されている。この場合は、配管路よりも管直
径は小さい直径から構成され、配管路と縮小部、拡大部
で結合されている。
Reference numeral 13 denotes a straight measuring tube through which the measuring fluid flows, and both ends are fixed to a vibration isolating frame. In this case, the tube has a diameter smaller than that of the piping, and is connected to the piping at a reduced portion and an enlarged portion.

14は測定管13の管軸に平行に設けられた平板で、両
端は防振枠に固定されている。平板14は、測定管13
と最小共振周波数が、同一になるように板厚が選ばれて
いる。
14 is a flat plate provided parallel to the tube axis of the measuring tube 13, and both ends are fixed to the vibration isolating frame. The flat plate 14 is the measuring tube 13
The plate thickness is selected so that the minimum resonant frequency and the minimum resonant frequency are the same.

15は、測定管13の管軸に直交して設けられ、測定管
13の中央部付近で測定管13と平板14とを結合する
結合板である。
Reference numeral 15 denotes a connecting plate that is provided perpendicularly to the tube axis of the measuring tube 13 and connects the measuring tube 13 and the flat plate 14 near the center of the measuring tube 13.

16.17は、測定管13の管軸と平板14とに直交し
結合板15と防振枠12との間に対向して設けられ、平
板14を振動させる振動駆動装置と、平板14の変位速
度を測定する速度測定装置である。
Reference numeral 16 and 17 denote a vibration drive device which is orthogonal to the tube axis of the measurement tube 13 and the flat plate 14 and is provided facing between the coupling plate 15 and the vibration isolation frame 12, vibrates the flat plate 14, and a vibration drive device which vibrates the flat plate 14, and a vibration drive device which vibrates the flat plate 14. This is a speed measurement device that measures speed.

18は、測定管13の端部と結合板15の取付は部との
中間部付近に設けられ測定管13と平板14との相対変
位を検出する相対変位検出装置である。
Reference numeral 18 denotes a relative displacement detecting device that is installed near the intermediate portion between the end of the measuring tube 13 and the connecting plate 15 and detects the relative displacement between the measuring tube 13 and the flat plate 14.

相対変位検出装置18は、この場合は、スリット181
、発光装置182と受光装置183よりなる。
In this case, the relative displacement detection device 18 is a slit 181.
, a light emitting device 182 and a light receiving device 183.

第4図に、電気回路ブロック図を示す。FIG. 4 shows an electric circuit block diagram.

21は、平板14と測定管13の相対変位を電圧に変換
する相対変位変換回路である。
21 is a relative displacement conversion circuit that converts the relative displacement between the flat plate 14 and the measuring tube 13 into voltage.

相対変位変換口v@21はスリット181、発光装置1
82、受光装W183、演算回路22とよりなる。
Relative displacement conversion port v@21 has slit 181 and light emitting device 1
82, a light receiving device W183, and an arithmetic circuit 22.

23は、速度測定装置17の出力から、変位に比例した
電圧信号を出力する、速度値3回路である。
23 is a speed value 3 circuit that outputs a voltage signal proportional to displacement from the output of the speed measuring device 17.

24は相対変位変換回路21の出力を平滑する平滑回路
である。
24 is a smoothing circuit that smoothes the output of the relative displacement conversion circuit 21.

25は速度信号同1i23の出力を平滑する平滑回路で
ある。
25 is a smoothing circuit for smoothing the output of the speed signal 1i23.

26は平滑回路24と平滑回路25との出力を割算する
割算回路である。
A dividing circuit 26 divides the outputs of the smoothing circuit 24 and the smoothing circuit 25.

27は、コイルと鉄心からなる振動駆動装置16の駆動
回路で、速度信号回路23の周波数信号と平滑回路25
の平滑信号を利用して、周波数、大きさをコントロール
する。
27 is a drive circuit of the vibration drive device 16 consisting of a coil and an iron core, which receives the frequency signal of the speed signal circuit 23 and the smoothing circuit 25.
Control the frequency and magnitude using the smoothed signal.

以上の構成において、測定管13に測定流体が流され、
振動駆動装置16が駆動される。振動駆動装置j6によ
り測定管13と平板14は同一方向に振動する。
In the above configuration, the measurement fluid is flowed into the measurement tube 13,
The vibration drive device 16 is driven. The measuring tube 13 and the flat plate 14 are vibrated in the same direction by the vibration drive device j6.

振動方向の角速度「ω」、測定管13の内部を流れる測
定流体の流速f V Jとすると、Fc −−2m ’
ωJ X rVJ のコリオリカが働く、流速「V!の向きによって、測定
管13にはコリオリカによる変形が加わり、測定管13
は変形する6 しかし、平板14はコリオリカの影響は受けない。従っ
て、コリオリカによる相対変位が相対変位測定装置によ
り測定される。
Assuming that the angular velocity in the vibration direction is "ω" and the flow velocity of the measurement fluid flowing inside the measurement tube 13 is fVJ, then Fc--2m'
Due to the direction of the flow velocity "V!" in which the Coriolika of ωJ
However, the flat plate 14 is not affected by Coriolika. Therefore, the relative displacement due to Coriolis is measured by the relative displacement measuring device.

而して、測定された相対変位信号を、速度測定装置17
で割算する事により、質量信号が得られるう 一方4測定値にノイズとして働く、主配管の振動に対し
て、測定管13と平板14は両端近くを、防振枠12で
固定されているので、外部の振動を受は難い。
Then, the measured relative displacement signal is transmitted to the speed measuring device 17.
A mass signal is obtained by dividing by Therefore, it is difficult to receive external vibrations.

即ち、 第5図に、測定管13と平板14との動きを示す。That is, FIG. 5 shows the movement of the measuring tube 13 and the flat plate 14.

振動駆動装置16が駆動されると、結合板15に周期的
な力が加わり、一体の状態で撓み振動する。第7図(A
)は測定流体の流れが無い場合、第7図(B)は測定流
体の流れが有る場合である。
When the vibration drive device 16 is driven, a periodic force is applied to the coupling plate 15, causing it to flex and vibrate as a unit. Figure 7 (A
) shows the case where there is no flow of the measuring fluid, and FIG. 7(B) shows the case where there is a flow of the measuring fluid.

測定流体の流れが無い場合は、第5図(A)に示す如く
、平板14の変位δ、と測定管13の変位δ2は一致し
ている。従って、平板14を基準として見た測定管13
の変位δ2−δ1は第6図(A)に示す如く、ゼロであ
る。
When there is no flow of measurement fluid, the displacement δ of the flat plate 14 and the displacement δ2 of the measurement tube 13 match, as shown in FIG. 5(A). Therefore, the measurement tube 13 seen with the flat plate 14 as a reference.
The displacement δ2-δ1 is zero, as shown in FIG. 6(A).

測定流体の流れがある場合は、第5図(B)に示す如く
、測定管13には質量流量に比例したコリオリカが加わ
り、測定管13は上下流で逆方向に歪む。従って、平板
14を基準として見た測定管13の変位δ2−δ、は第
6図(B)に示す如く、正弦波状に変化するが、これは
、コリオリカ(即ち、質量流量)に比例する。
When there is a flow of measurement fluid, Coriolis proportional to the mass flow rate is applied to the measurement tube 13, as shown in FIG. 5(B), and the measurement tube 13 is distorted in opposite directions in the upstream and downstream directions. Therefore, the displacement δ2-δ of the measuring tube 13 when viewed from the flat plate 14 changes sinusoidally as shown in FIG. 6(B), which is proportional to the Coriolis (ie, mass flow rate).

δ2−δ+=にωM(υ) ω:測定管13の角速度 M(υ):質量流量 次に、第8図に相対変位検出装置18の部分の動きを示
す。
δ2−δ+=ωM(υ) ω: Angular velocity M(υ) of the measuring tube 13: Mass flow rate Next, FIG. 8 shows the movement of the relative displacement detecting device 18.

第8図(A)は相対変位が無い場合である。FIG. 8(A) shows the case where there is no relative displacement.

発光装置182から出た光は、スリット181で遮られ
、一部が受光装置183に到達する。受光装置183は
一対の構成で、相対変位が無い場合には、同一の光量の
光を受光する。
The light emitted from the light emitting device 182 is blocked by the slit 181 and a portion reaches the light receiving device 183. The light receiving devices 183 are configured as a pair and receive the same amount of light when there is no relative displacement.

第8図(A>は相対変位が有る場合である。FIG. 8 (A> is the case where there is relative displacement.

スリット181が移動するために、一対の受光装置18
3に到達する光はアンバランスとなる。
In order for the slit 181 to move, a pair of light receiving devices 18
The light reaching 3 becomes unbalanced.

夫々の光量をA + 、 A 2とずれば、A2  A
tは相対変位に比例する。
If the respective light amounts are shifted from A + and A 2, A2 A
t is proportional to relative displacement.

而して、受光装置183の出力電圧E(At)。Therefore, the output voltage E (At) of the light receiving device 183.

E (A2 )の差を演算回路22で演算し、平滑回路
24で平滑することにより、下式のようにコリオリカに
比例した信号を得ることが出来る。
By calculating the difference between E (A2) in the arithmetic circuit 22 and smoothing it in the smoothing circuit 24, a signal proportional to Coriolis can be obtained as shown in the equation below.

Eo −E (A2 >  −B (At )=12 
(A2  At ) =12J!3 (δ2−δ、) A、12130M (?J ) 更に、結合板15の、速度測定装置17からの速度に比
例した出力Eυ−に4ωで上記平滑信号を割る事により
質量信号に比例した信号が得られる。
Eo −E (A2 > −B (At) = 12
(A2 At) = 12J! 3 (δ2-δ,) A, 12130M (?J) Furthermore, by dividing the above smoothed signal by 4ω to the output Eυ- of the coupling plate 15, which is proportional to the speed from the speed measuring device 17, a signal proportional to the mass signal is obtained. is obtained.

ll:o 11 t −Erl /E1゜”(1+  
A2 fi3ωM(υ))/(A4 ω) この結果、 (1)−本の配管から構成されていて、液だまり、分岐
部が無いので、保守、洗浄が容易である。
ll:o 11 t -Erl /E1゜”(1+
A2 fi3ωM(υ))/(A4ω) As a result, (1) Since it is composed of - pipes and there are no liquid pools or branch parts, maintenance and cleaning are easy.

(2)@動の検出には、測定管13と平板14の振動の
差を利用しているので、外部の振動を受は難い。
(2) Since the difference in vibration between the measurement tube 13 and the flat plate 14 is used to detect @ motion, it is difficult to receive external vibrations.

なお、速度測定装置17の速度を一定になるように駆動
する場合、割算回路26を省略してもよい。
In addition, when driving the speed measuring device 17 so that the speed is constant, the division circuit 26 may be omitted.

相対変位検出装置18は、光学式でなく、静電容量式電
磁誘導式、ストレインゲージ式、PZTを用いてもよい
The relative displacement detection device 18 is not an optical type, but may be a capacitance type, an electromagnetic induction type, a strain gauge type, or a PZT type.

1 速度測定装置17は電磁誘導式でなく、変位センサの出
力を微分する方法、加速度センサの出力を積分する方法
でもよい。
1. The speed measuring device 17 is not an electromagnetic induction type, and may be a method of differentiating the output of a displacement sensor or a method of integrating the output of an acceleration sensor.

相対変位検出装置18の数は、結合板15の対称位置に
一対取付けたが、一対の変位信号をピックアップ後演算
処理する事によりS/N比を向上する事ができる。
Although a pair of relative displacement detection devices 18 are installed at symmetrical positions on the coupling plate 15, the S/N ratio can be improved by processing the pair of displacement signals after picking them up.

センサの信号をA/D変換して演算すれば、演算精度を
向上する事ができる。
Calculation accuracy can be improved by A/D converting the sensor signal.

〈発明の効果〉 以上説明したように、本発明は、コリオリ力を利用して
質量流量を測定するコリオリ質量流量計において、 測定流体の流れる直管状の測定管と、該測定管の管軸に
平行に設けられた平板と、該平板と前記測定管の両端が
固定される防振枠と、前記管軸に直交して設けられ前記
測定管の中央部付近で該測定管と前記平板とを結合する
結合板と、前記管軸と前記平板とに直交し前記結合板と
前記防振枠との間に対向して設けられ前記平板を振動さ
せる振 2 動駆動装置と前記平板の変位速度を測定する速度測定装
置と、前記測定管の端部と結合板の取付は部との中間部
付近辷設けられ該測定管と前記平板との相対変位を検出
する相対変位検出装置とを具備したことを特徴とするコ
リオリ質量流量計を構成した。
<Effects of the Invention> As explained above, the present invention provides a Coriolis mass flowmeter that measures mass flow rate using the Coriolis force, which includes a straight measuring tube through which a measuring fluid flows, and a tube axis of the measuring tube. A flat plate provided in parallel, a vibration isolation frame to which both ends of the flat plate and the measurement tube are fixed, and a vibration isolation frame provided perpendicular to the tube axis and connecting the measurement tube and the flat plate near the center of the measurement tube. a coupling plate to be coupled, a vibration drive device that is provided perpendicularly to the tube axis and the flat plate and facing between the coupling plate and the vibration isolation frame and vibrates the flat plate; and a vibration drive device that vibrates the flat plate; A speed measuring device for measuring speed, and a relative displacement detecting device for detecting relative displacement between the measuring tube and the flat plate, the measuring device being provided near the intermediate portion between the end of the measuring tube and the connecting plate. A Coriolis mass flowmeter featuring the following features was constructed.

この結果、 (1)−本の配管から構成されていて、液だまり、分岐
部が無いので、保守、洗浄が容易である。
As a result, (1) It is composed of -1 piping, and there are no liquid pools or branching parts, so maintenance and cleaning are easy.

〈2〉振動の検出には、測定管と平板の振動の差を利用
しているので、外部の振動を受は難い。
<2> Vibration detection uses the difference in vibration between the measurement tube and the flat plate, so it is difficult to detect external vibrations.

従って、本発明によれば、保守洗浄が容易で、耐震性が
良好なコリオリ質量流量計を実現することが出来る。
Therefore, according to the present invention, it is possible to realize a Coriolis mass flowmeter that is easy to maintain and clean and has good earthquake resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の要部構成説明図、第2図は
第1図のA−A断面図、第3図は第1図のB−B断面図
、第4図は第1図の電気回路ブロック図、第5図から第
8図は第1図の動作説明図、第9図は従来より一般に使
用されている従来例の構成説明図、第10図は第9図の
動作説明図、第11図は従来より一般に使用されている
他の従来例の構成説明図である。 11・・・フランジ、12・・・防振枠、13・・・測
定管、14・・・平板、15・・・結合板、16・・・
振動駆動装置、17・・・測度測定装置、18・・・相
対変位検出装置、181・・・スリット、182・・・
発光装置、183・・・受光装置、21・・・相対変位
回路、22・・・演算回路、23・・・速度信号回路、
24.25・・・平滑回路、26・・・割算口m= 第 5 図 ネ木々S1 第 図 Sz4+ 5z−5;+
FIG. 1 is an explanatory diagram of the main part configuration of an embodiment of the present invention, FIG. 2 is a sectional view taken along the line AA in FIG. 1, FIG. 3 is a sectional view taken along BB in FIG. 1, and FIG. 1 is an electric circuit block diagram, FIGS. 5 to 8 are operation explanatory diagrams of FIG. 1, FIG. 9 is an explanatory diagram of the configuration of a conventional example commonly used, and FIG. FIG. 11 is a diagram illustrating the configuration of another conventional example that has been commonly used. DESCRIPTION OF SYMBOLS 11...Flange, 12...Vibration isolation frame, 13...Measuring tube, 14...Flat plate, 15...Joining plate, 16...
Vibration drive device, 17... Measurement measuring device, 18... Relative displacement detection device, 181... Slit, 182...
Light emitting device, 183... Light receiving device, 21... Relative displacement circuit, 22... Arithmetic circuit, 23... Speed signal circuit,
24.25...Smoothing circuit, 26...Division port m= Fig. 5 Trees S1 Fig. Sz4+ 5z-5;+

Claims (1)

【特許請求の範囲】 コリオリ力を利用して質量流量を測定するコリオリ質量
流量計において、 測定流体の流れる直管状の測定管と、 該測定管の管軸に平行に設けられた平板と、該平板と前
記測定管の両端が固定される防振枠と、 前記管軸に直交して設けられ前記測定管の中央部付近で
該測定管と前記平板とを結合する結合板と、 前記管軸と前記平板とに直交し前記結合板と前記防振枠
との間に対向して設けられ前記平板を振動させる振動駆
動装置と前記平板の変位速度を測定する速度測定装置と
、 前記測定管の端部と結合板の取付け部との中間部付近に
設けられ該測定管と前記平板との相対変位を検出する相
対変位検出装置と を具備したことを特徴とするコリオリ質量流量計。
[Claims] A Coriolis mass flowmeter that measures mass flow rate using the Coriolis force, comprising: a straight measuring tube through which a measuring fluid flows; a flat plate provided parallel to the axis of the measuring tube; a vibration isolation frame to which a flat plate and both ends of the measuring tube are fixed; a coupling plate provided perpendicularly to the tube axis and connecting the measuring tube and the flat plate near the center of the measuring tube; and the tube axis. and a vibration drive device that is provided perpendicularly to the flat plate and facing between the coupling plate and the vibration isolation frame to vibrate the flat plate, and a speed measuring device that measures the displacement speed of the flat plate; A Coriolis mass flowmeter characterized by comprising a relative displacement detection device that is provided near an intermediate portion between an end portion and a mounting portion of a coupling plate and detects a relative displacement between the measurement tube and the flat plate.
JP34377689A 1989-12-27 1989-12-27 Coriolis mass flowmeter Expired - Lifetime JP2712684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34377689A JP2712684B2 (en) 1989-12-27 1989-12-27 Coriolis mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34377689A JP2712684B2 (en) 1989-12-27 1989-12-27 Coriolis mass flowmeter

Publications (2)

Publication Number Publication Date
JPH03199922A true JPH03199922A (en) 1991-08-30
JP2712684B2 JP2712684B2 (en) 1998-02-16

Family

ID=18364153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34377689A Expired - Lifetime JP2712684B2 (en) 1989-12-27 1989-12-27 Coriolis mass flowmeter

Country Status (1)

Country Link
JP (1) JP2712684B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531126A (en) * 1993-07-21 1996-07-02 Endress + Hauser Flowtec Ag Coriolis-type mass flow sensor with flow condition compensating
WO2009147129A1 (en) * 2008-06-04 2009-12-10 Endress+Hauser Flowtec Ag Device for determining and/or monitoring a flow parameter
CN104792379A (en) * 2015-04-08 2015-07-22 浙江大学 Coriolis mass flowmeter amplitude self-adaptation control method based on fluid state detecting

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531126A (en) * 1993-07-21 1996-07-02 Endress + Hauser Flowtec Ag Coriolis-type mass flow sensor with flow condition compensating
WO2009147129A1 (en) * 2008-06-04 2009-12-10 Endress+Hauser Flowtec Ag Device for determining and/or monitoring a flow parameter
US8590399B2 (en) 2008-06-04 2013-11-26 Endress + Hauser Flowtec Ag Vibration type flow monitoring apparatus including a support plate mechanically coupled with the conduit for indirectly supporting the transducers to the conduit
CN104792379A (en) * 2015-04-08 2015-07-22 浙江大学 Coriolis mass flowmeter amplitude self-adaptation control method based on fluid state detecting
CN104792379B (en) * 2015-04-08 2018-01-12 浙江大学 A kind of Coriolis flowmeter amplitude self-adaptation control method based on fluid state detection

Also Published As

Publication number Publication date
JP2712684B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
US4823614A (en) Coriolis-type mass flowmeter
US4831885A (en) Acoustic wave supressor for Coriolis flow meter
JP2927307B2 (en) Mass flow meter
JP2575203B2 (en) Mass flow meter with improved accuracy by compensating for asymmetry and viscous damping
WO2004099733A1 (en) Coriolis flowmeter
RU2643226C1 (en) Device and method for detecting asymmetric flow in vibration flowmeters
JPH04291119A (en) Colioris mass flowmeter
JPH03199922A (en) Coriolis mass flowmeter
JPH0341319A (en) Coriolis mass flowmeter
CA2335597A1 (en) A coriolis effect fluid flow meter
JP2801826B2 (en) Mass flow meter
JPH0783721A (en) Vibration type measuring apparatus
JPH08122120A (en) Coriolis mass flowmeter
JPH067324Y2 (en) Mass flow meter
CN106989787B (en) Method and mass flow measurement instrument for operating mass flow measuring instrument
JPS63233328A (en) Mass flowmeter
JP2951456B2 (en) Coriolis mass flowmeter
JPH0499918A (en) Mass flowmeter
JPH08278181A (en) Coriolis mass flow meter
JP2984134B2 (en) Coriolis flow meter
JP2951460B2 (en) Coriolis mass flowmeter
JPH04155221A (en) Corioli&#39;s mass flowmeter
JPH0348729A (en) Coriolis mass flowmeter
JPH02206722A (en) Coriolis mass flowmeter
JPH0357920A (en) Coriolis mass flowmeter