WO2002097376A1 - Coriolis flowmeter - Google Patents

Coriolis flowmeter Download PDF

Info

Publication number
WO2002097376A1
WO2002097376A1 PCT/JP2002/005161 JP0205161W WO02097376A1 WO 2002097376 A1 WO2002097376 A1 WO 2002097376A1 JP 0205161 W JP0205161 W JP 0205161W WO 02097376 A1 WO02097376 A1 WO 02097376A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
coriolis flowmeter
alloy composition
measuring tube
measurement
Prior art date
Application number
PCT/JP2002/005161
Other languages
French (fr)
Japanese (ja)
Inventor
Kazumasa Ohnishi
Akihisa Inoue
Original Assignee
Kazumasa Ohnishi
Inoe Akihisa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kazumasa Ohnishi, Inoe Akihisa filed Critical Kazumasa Ohnishi
Publication of WO2002097376A1 publication Critical patent/WO2002097376A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits
    • G01F1/8495Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits with multiple measuring conduits

Definitions

  • the present invention relates to a Coriolis flow meter.
  • Flow meters are used in a variety of fields, such as metering various fluids in plants or measuring gas and tap water consumed at home. Flow meters are classified into volume flow meters and mass flow meters. Mass flow meters have the advantage that they are less susceptible to fluctuations in fluid temperature and pressure, and are attracting attention as flow meters that exhibit higher measurement accuracy than volume flow meters.
  • a Coriolis flowmeter which is a type of mass flowmeter, is a flowmeter that measures the mass flow rate of a fluid by detecting Corioliska generated in the fluid flowing inside a vibrating measurement tube.
  • the Coriolis flowmeter is composed of a measurement tube through which the fluid to be measured is to flow, a vibration generator for vibrating the measurement tube to generate Coriolis in the fluid, and a sensor for detecting the Coriolis.
  • Coriolis is proportional to the product of fluid mass and velocity. Therefore, the mass flow rate of the fluid can be measured by detecting Coriolis. Due to the Coriolis force generated in the fluid, the measuring tube undergoes elastic deformation such as bending and torsion. Coreica is detected by measuring the amount of natural deformation of the measuring tube.
  • the measurement tube is made of a metal material such as titanium, zirconium, and stainless steel.
  • An object of the present invention is to provide a Coriolis flowmeter exhibiting high measurement sensitivity. [Disclosure of the Invention].
  • the present inventor studied the material of the measurement tube of the Coriolis flowmeter, and as a result, formed the measurement tube from an alloy composition having a small Young's modulus and a high yield strength, thereby providing a Coriolis flowmeter exhibiting high measurement sensitivity.
  • the present invention relates to a Coriolis flowmeter for measuring a mass flow rate of a fluid by detecting Coriolisa generated in a fluid having a flow measurement symmetry, which flows inside a measurement tube in an oscillating state, wherein the measurement tube has a Young's modulus.
  • a Coriolis flowmeter characterized by being formed from an alloy composition having an OGPa of not more than 9 and a yield strength of not less than 10 OMPa.
  • Preferred embodiments of the Coriolis flow meter of the present invention are as follows.
  • the alloy yarn composition contains 40 atomic% or more of titanium.
  • the alloy composition has a composition represented by the following formula.
  • M is one or both of Zr and H ⁇
  • M ' is one or both of Nb and Ta
  • the alloy composition further has a composition represented by the following formula.
  • the present invention also includes a straight tube-type measuring tube provided with a sensor and through which a fluid to be measured flows, and two counter rods arranged in parallel on both sides of the measuring tube with a space therebetween.
  • One end of the measuring tube and one end of each counter rod are fixed to a support, and the other end of the measuring tube and the other end of each counter rod are separate.
  • a vibration generator that vibrates the measurement tube and each counter port so that the vibration phases are opposite to each other, and the measurement tube and each counter port are provided with a vibration generator.
  • Both of the above supports are fixed on a rigid substrate, and the measuring tube has a Young's modulus of 90 GPa or less.
  • Coriolis flowmeter characterized by being formed from an alloy composition having a lower yield strength of 10 O MPa or more. The preferred embodiment of the alloy composition is the same as the above-mentioned Coriolis flowmeter.
  • the present invention also includes a curved measuring tube provided with a sensor through which a fluid to be subjected to flow rate measurement flows, and a support for fixing both ends of the measuring tube, and supported on each of both ends of the measuring tube.
  • a Coriolis flowmeter provided with a flow path for flowing a fluid through a body, wherein two auxiliary vibrators that are curved in the same shape as the measurement tube are arranged in parallel on both sides of the measurement tube with an interval therebetween.
  • the measuring tube and each auxiliary vibrator each include a vibration generator that vibrates the measuring tube and each auxiliary vibrating body so that the vibration phases are opposite to each other.
  • the Coriolis flowmeter is also characterized in that the tube is formed from an alloy composition having a Young's modulus of 90 GPa or less and a yield strength of 10 OMPa or more.
  • the preferred embodiment of the alloy composition is the same as that of the above-mentioned Coriolis flowmeter.
  • FIG. 1 is a perspective view showing a configuration of an example of a Coriolis flow meter according to the present invention.
  • Figure 2 is a cross-sectional view of the Coriolis flow meter of Figure 1.
  • the Coriolis flowmeter shown in Fig. 1 and Fig. 2 is a U-shaped measuring tube 1 through which the fluid to be measured flows, a vibration generator 2 that vibrates the measuring tube 1, and a ⁇ 1 "raw deformation of the measuring tube 1. It consists of sensors 3a and 3b that detect Corioliska from the amount, etc.
  • a Coriolis flowmeter uses a flange 5 to control the flow rate of the fluid to be measured.
  • the measurement tube 1 through which the fluid to be measured flows is vibrated by the vibration generator 2, and the elastic deformation of the measurement tube 1 detected by the sensors 3a and 3b Obtain the mass flow rate of the fluid from the amount (deflection, twist, etc.)
  • the configuration of the Coriolis flow meter shown in Fig. 1 and Fig. 2 is well known.
  • a Young's modulus of 9 0 GP a less and yield strength you formed from the alloy composition is 1 0 0 MP a more.
  • an electromagnetic oscillator including a coil and a magnet is used as the vibration generator 2.
  • an electromagnetic pickup As the sensors 3a and 3b, an electromagnetic pickup, a piezoelectric element, or the like that detects Coriolis from the amount of elastic deformation of the measurement tube 1 is used. There is also known a method for detecting Coriolis from the speed at which the measurement tube elastically deforms using an electromagnetic pickup. Details of vibration generators and sensors are described in “Flow Measurement A to Z” (edited by Japan Federation of Metrology Instruments, Chapter 10, 1995).
  • Equation (1) shows that if the Young's modulus of the beam material is halved, the deflection is doubled. That is, for example, if the Young's modulus of the material forming the U-shaped measurement tube is halved, the deflection of the measurement tube is about twice even if the size of the Coriolisa generated in the fluid is the same. It is supposed to be. That is, it is presumed that the measurement sensitivity of the Coriolis flowmeter becomes twice as high.
  • the measurement sensitivity of the Coriolis flowmeter is four It is estimated to be about twice as high.
  • the measurement tube of a conventional Coriolis flowmeter is formed from materials such as stainless steel, zirconium, and titanium. These materials are selected from the viewpoint of mechanical strength and corrosion resistance to withstand the vibration of the measuring tube.
  • the present inventor has studied formation of the measurement tube from various metal materials (eg, aluminum) having a smaller Young's modulus than these metal materials. However, metal materials with low Young's modulus often have low mechanical strength (yield strength, hardness, etc.), indicating that the vibrations that generate Coriolis force may cause the measurement tube to be plastically deformed. Was. If the measuring tube is plastically deformed, the amount of elastic deformation of the measuring tube due to Corioliser cannot be measured accurately.
  • Table 1 shows the Young's modulus and yield strength of typical materials (titanium, zirconium, and stainless steel) that form the measurement tube of the conventional Coriolis flowmeter.
  • Table 1 shows the Young's modulus and yield strength of aluminum as a typical example of a metal having a low Young's modulus.
  • the present inventor has proposed a method of increasing the measurement sensitivity up to now by forming the measurement tube of the Coriolis flow meter from an alloy composition having a small Young's modulus and a large yield strength (eg, increasing the sensitivity of a sensor). Higher sensitivity of Coriolis flowmeter Found that Specifically, the measurement tube of the Coriolis flowmeter was
  • the Young's modulus of the alloy composition forming the measurement tube shall be 90 GPa or less.
  • the Young's modulus is preferably 80 GPa or less, more preferably 70 GPa or less, and even more preferably 60 GPa or less. If the Young's modulus is extremely low, the measuring tube will bend due to vibration in the operating environment, and noise will be generated in the sensor output. Therefore, the Young's modulus of the alloy composition forming the measurement tube is preferably 4 OGPa or more.
  • the yield strength of the alloy composition forming the measuring tube is 10 OMPa or more.
  • the yield strength is preferably at least 25 OMPa, more preferably at least 500 MPa. The higher the yield strength, the better, but it is generally less than 2000 MPa.
  • An alloy composition having a yield strength of 10 OMPa or more can be used without problems as a material for forming a measurement tube.
  • the measurement tube By forming the measurement tube from an alloy composition satisfying the above characteristics, the measurement sensitivity of the Coriolis flowmeter can be increased.
  • the alloy composition a known alloy composition having the above characteristics can be used.
  • the alloy composition contains 40 atoms of titanium. / 0 or more is preferable.
  • the measurement tube formed from the alloy composition containing titanium has excellent corrosion resistance.
  • the alloy thread may be crystalline or amorphous.
  • the alloy composition When the alloy composition is amorphous, it may have a mixed phase structure in which a crystal phase having an average particle size of less than 1 ⁇ m is dispersed in the amorphous phase.
  • An alloy composition containing an amorphous phase is obtained by quenching after melt-mixing each composition of the alloy composition.
  • An alloy composition containing an amorphous phase has advantages of high mechanical strength and excellent corrosion resistance.
  • Coriolis flow meters are used in various environments such as homes and plants. Therefore, it is preferable to adjust the Young's modulus and the yield strength to appropriate values in consideration of the sensitivity of the flow meter and the vibration in the use environment.
  • the alloy yarn and the composition may be subjected to a heat treatment. Examples of heat treatment include quenching, tempering, annealing, and normalizing.
  • the alloy composition preferably has a composition represented by the following formula.
  • M is one or both of Zr and Hf
  • M ' is one or both of Nb and Ta
  • S is one or more elements selected from the group consisting of n, where a, b, c, and d are 5 ⁇ a ⁇ 40, 1 ⁇ b ⁇ 30, 0 ⁇ c ⁇ 10, 0 ⁇ d ⁇ 20, 10 ⁇ a + b + c + d ⁇ 60.
  • the alloy composition represented by the above formula (1) and containing at least Ti, ⁇ , ⁇ ′ exhibits the values of the aforementioned Young's modulus and yield strength.
  • the alloy composition contains one or more of Cr, Mo, W, and Sn elements. , 0 to 10 atoms. /. It is preferable to include it in the range.
  • the alloy composition preferably contains V in the range of 0 to 20 atomic%.
  • FIG. 3 is a perspective view showing a configuration of another example of the Coriolis flow meter according to the present invention.
  • FIG. 4 is a cross-sectional view of the Coriolis flow meter of FIG.
  • the Coriolis flowmeter shown in FIGS. 3 and 4 has the same configuration as the Coriolis flowmeter of FIG. 1 except that a straight tube type measurement tube 11 is used.
  • An electromagnetic oscillator composed of a magnet 7 and two coils 8 is used for the vibration generator 2 of the Coriolis flowmeter shown in FIG.
  • Each of the coils 8 described an image of the cross section of the coil (the same applies to the following drawings).
  • the configuration of the Coriolis flow meter shown in FIGS. 3 and 4 is well known.
  • the measuring tube 11 is formed of an alloy composition having a Young's modulus of 9 OGPa or less and a yield strength of 10 OMPa or more in order to degrade the measurement sensitivity of the Coriolis flowmeter. I do. Coriolis flowmeters using straight-tube measuring tubes have the advantages of low fluid pressure loss and easy cleaning.
  • FIG. 5 is a perspective view showing a configuration of another example of the Coriolis flow meter according to the present invention.
  • FIG. 6 is a plan view of the Coriolis flow meter of FIG. The vibration generator and sensor are shown only in Fig. 6.
  • the Coriolis flowmeter shown in FIGS. 5 and 6 is composed of a straight tube-type measuring tube 11 through which a fluid having a symmetric flow rate flows, and two counter rods 12a and 12b.
  • the measurement tube 11 is formed from the above alloy composition.
  • a straight tube is used as the counter rod.
  • the counter rods 12 a and 12 b are respectively arranged in parallel on the ⁇ side of the measuring tube 11. One end of the measuring tube 11 and one end of each counter rod are fixed to a support 13a. The other end of the measurement tube 11 and the other end of each counter rod are fixed to a support 13b. The supports 13 a and 13 b are fixed on the rigid substrate 14.
  • the measurement tube 11 is connected to a flow rate measuring system (plant or the like) by flanges 5 provided at both ends thereof.
  • a measurement tube 1 1, between the respective counter rod 1 2 a ⁇ Pi 1 2 b, the vibration generator 2 a and 2 b consisting of the magnet and the coil are arranged.
  • Vibration generator 2a, measuring tube 1 1 and counter When the rod 12a is pulled, the vibration generator 2b keeps the measuring tube 11 and the counter rod 12b away.
  • the measuring tube 11 is provided with sensors 3a and 3b for detecting Coriolisa.
  • the sensors 3a and 3b are symmetrically arranged on both sides of the vibration generator 2a. Piezoelectric elements are used as the sensors 3a and 3b.
  • the supports 13a and 13b and the counter rods 12a and 12b can be formed from a metal material such as stainless steel or Hastelloy, or an alloy composition.
  • the counter rods 12a and 12b are preferably formed from an alloy composition used for the measurement tube. Examples of the material for forming the rigid substrate 14 include a metal material and ceramics.
  • the cross-sectional shape of the tube used as the counter rod is not limited to a circle, but may be a polygon or an ellipse. Since it is not necessary to supply a fluid to the counter rod, a rod shape may be used.
  • the shape and mass of the two counter rods are preferably equal to each other. It is preferable that the shape and mass of the measuring tube and each counter rod are equal to each other.
  • the mass of the measuring tube means the mass when the fluid to be measured is filled inside the measuring tube.
  • the vibration generating device and the sensor are arranged on the measuring tube and the counter rod, it is further preferable that the shape and the mass of the measuring tube and each of the counter rods are equal to each other in a state where they are arranged.
  • each counter rod is symmetrically arranged on both sides of the measuring tube to obtain the vibration mode of the tripod tuning fork vibrator.
  • Tripod tuning fork vibrators are known to provide very stable vibrations and are widely used in resonators and the like.
  • the primary bending vibration mode of the tripod tuning fork vibrator is used to generate vibration of the measuring tube and counter port, and the tripod tuning fork vibrator is used to detect the amount of elastic deformation of the measuring tube.
  • the second-order bending vibration mode is used.
  • the length of the support (L 2) with respect to the length of the measurement tube (L 1) It is preferable that the ratio (L 2 LI) be 3 Z 10 or more.
  • the length of the support is preferably as long as possible. However, if the length of the support is extremely long, there is a disadvantage that the flow meter becomes large. Therefore, practically, it is preferable that the upper limit of L 2 / L 1 is about 10 ⁇ 10.
  • the length (L 2) of the support means the length of the support along the longitudinal direction of the measurement tube 11.
  • FIG. 7 is a perspective view showing the configuration of still another example of the Coriolis flowmeter according to the present invention.
  • the measurement tube 11 is formed from the above alloy composition.
  • each of the supports 13a and 13b is preferably fixed to the rigid substrate 14 via an elastic body 15 (eg, silicone rubber). With such a configuration, the Coriolis flowmeter can be protected from external vibration in the use environment.
  • FIG. 8 is a perspective view showing a configuration of still another example of the Coriolis flowmeter according to the present invention.
  • FIG. 9 is a plan view of the Coriolis flow meter of FIG.
  • the measurement tube 11 is formed from the alloy composition described above. Straight tubular tubes are used as the counter rods and 12a and 12b.
  • each of the supports 13 a and 13 b is fixed to the rigid substrate 14 via the elastic body 15.
  • the thickness of each of the supports 13 a and 13 b is preferably larger than the diameter of the measurement tube 11. It is also preferable that the thickness of each of the supports 13a and 13b is larger than the diameter of each of the counter rods 12a and 12b.
  • the thickness of the support means the length of the support in a direction perpendicular to the plane formed by the measurement tube and the two counter rods.
  • a vibration generating device including a magnet 7a and a coil 8a, and a magnet 7b and a coil 8b is disposed between the measuring tube 11 and the counter rods 12a and 12b.
  • Each counter rod is provided with a magnet 7c and a sensor 3c as balance weights on both sides thereof.
  • the magnets, coils, and sensors are described only in FIG. In FIG. 9, the sensor 3c provided on the measuring tube and two counter rods is provided to make the shape and mass of the measuring tube 11 and each counter rod equal to each other (obtain stable vibration). .
  • the sensor 3c arranged in the measurement tube 11 can also detect the amount of elastic deformation of the measurement tube caused by Coriolis.
  • FIG. 10 is a perspective view showing a configuration of still another example of the Coriolis flowmeter according to the present invention.
  • the Coriolis flowmeter shown in FIG. 10 includes a curved measurement tube 21 through which a fluid to be measured flows, and a support 27 fixing both ends thereof. Each of the two ends of the measurement tube 21 is provided with a flow path for flowing a fluid through the support 27.
  • the measurement tube 21 is formed from the above alloy composition.
  • the measuring tube 21 is provided with sensors 3a and 3b for detecting the amount of elastic deformation of the tube caused by Coriolis, and the like.
  • auxiliary vibrators 22 a and 22 b On both sides of the measurement tube, two net tang auxiliary vibrators 22 a and 22 b that are curved in the same shape as the curved measurement tube 21 are arranged in parallel with an interval therebetween.
  • Each of the measurement tube and each of the auxiliary vibrators is provided with vibration generators 2a and 2b that vibrate the measurement tube and each of the auxiliary vibrators so that the vibration phases are opposite.
  • the measurement tube 21 is connected to a flow rate measuring system (a plant or the like) via an inflow port 23 and an outflow port 24 of a flow path provided at both ends thereof. It is preferable to attach a flange to each of the inlet 23 and the outlet P 24.
  • the curved measuring tube through which the fluid to be measured flows and each auxiliary vibrator are vibrated by the vibration generators 2a and 2b so that the vibration phases are reversed, and the elastic deformation and strain of the measuring tube are measured.
  • the mass flow rate of the fluid can be obtained.
  • the two auxiliary vibrators In order to obtain stable vibration of the measurement tube and the two auxiliary vibrators, it is preferable that the two auxiliary vibrators have the same shape and mass. It is more preferable that the distances from the measuring tube to the respective auxiliary vibrators are equal to each other. Further, it is more preferable to use the same tube as the measurement tube as the two auxiliary vibrators. When tubes are used as the two auxiliary vibrators, it is more preferable to seal the same fluid as the fluid whose flow rate is to be measured inside each of the tubes.
  • the measuring tube 21 is not limited to a U-shaped measuring tube, and a known curved measuring tube such as a triangle type can be used.
  • the thickness of the support 27 is preferably at least twice the diameter of the measuring tube 21.
  • the thickness of the support means the thickness of the support along the direction perpendicular to the plane on which the measuring tube is fixed.
  • the vibration generators 2a and 2b for vibrating the measuring tube and the auxiliary vibrator are composed of a magnet and a coil.
  • the vibration generator 2a vibrates the measurement tube 21 and the auxiliary vibrator 22a.
  • the vibration generator 2a includes a coil 28a and magnets 27a and 27b.
  • the vibration generator 2b vibrates the measuring tube 21 and the auxiliary vibrator 22b.
  • the configuration of the vibration generator 2b is the same as that of the vibration generator 2a.
  • Fig. 11 (a) shows an example of the drive mode (vibration mode of the measurement tube and auxiliary vibrator) of the Coriolis flowmeter of Fig. 10.
  • This drive mode corresponds to the primary bending vibration mode of a tripod tuning fork vibrator.
  • the measurement tube 21 and the auxiliary vibrator 22a are moved away from each other by the vibration generator 2a, the measurement tube 21 and the auxiliary vibrator are used by the vibration generator 2b. It is obtained by vibrating the measuring tube and each auxiliary vibrator so that 22b attracts each other.
  • the dotted line in Fig. 11 (a) shows the displacement of the measurement tube and each auxiliary vibrator, and the dashed line shows the displacement of the measurement tube and the tip of each auxiliary vibrator.
  • Fig. 11 (b) shows an example of the Coriolis flow meter detection mode of the Coriolis flowmeter.
  • This detection mode corresponds to the primary torsional vibration mode of the tripod tuning fork vibrator.
  • the detection mode shown in Fig. 11 (b) is generated by Coriolis when the fluid to be measured flows inside the measurement tube 21 in the drive mode.
  • the dotted line in Fig. 11 (b) shows the displacement of the measuring tube and each auxiliary vibrator, and the dashed line shows the displacement of the measuring tube and the tip of each auxiliary vibrator.
  • the Coriolis flowmeter shown in Fig. 10 uses the bending vibration mode and the torsional vibration mode of the tripod tuning fork vibrator. High sensitivity and sensitivity because it is hardly affected by external vibrations.
  • FIG. 12 is a perspective view showing a configuration of still another example of the Coriolis flowmeter according to the present invention.
  • the Coriolis flowmeter in Fig. 12 uses a tube that is curved in the same shape as the measurement tube as the auxiliary vibrator, and the direction of fluid flow in all three tubes is the same on the support 27.
  • the channels 25b and 25c connecting the three tubes in series, the channel 25a supplying fluid through the support to one end of the tubes connected in series, and the channels connected in series It has the same configuration as the Coriolis flowmeter of FIG. 10 except that a flow path 25 d for discharging the fluid from the other end of the tube through the support is provided.
  • Fluid is supplied to flow paths 25b and 25c connecting measurement tube 21 and two auxiliary vibrators 22a and 22b in series, and to one end of three tubes connected in series It is not necessary to provide the flow channel 25a for discharging the fluid and the flow channel 25d for discharging the fluid from the other end inside the support body 27. That is, by additionally providing a pipe below the support, three tubes can be connected in series outside the support, and fluid can be supplied and discharged from below the support.
  • the Coriolis flowmeter shown in Fig. 12 exhibits high measurement sensitivity because Coriolisa acts on both the measurement tube 21 and the auxiliary oscillators 22a and 22b.
  • the Coriolis flowmeter of the present invention is characterized by using an alloy composition suitable for a measuring tube. Therefore, the configuration of a known Coriolis flow meter can be applied to the Coriolis flow meter of the present invention.
  • FIG. 1 is a perspective view showing a configuration of an example of a Coriolis flow meter according to the present invention.
  • FIG. 2 is a cross-sectional view of the Coriolis flow meter of FIG.
  • FIG. 3 is a perspective view showing a configuration of another example of the Coriolis flow meter according to the present invention.
  • FIG. 4 is a cross-sectional view of the Coriolis flow meter of FIG.
  • FIG. 5 is a perspective view showing a configuration of still another example of the Coriolis flowmeter according to the present invention.
  • FIG. 6 is a plan view of the Coriolis flow meter of FIG.
  • FIG. 7 is a perspective view showing a configuration of still another example of the Coriolis flowmeter according to the present invention. '
  • FIG. 8 is a perspective view showing the configuration of still another example of the Coriolis flowmeter according to the present invention.
  • FIG. 9 is a plan view of the Coriolis flow meter of FIG.
  • FIG. 10 is a perspective view showing a configuration of still another example of the Coriolis flow meter according to the present invention.
  • FIG. 11A is a diagram illustrating a driving vibration mode of the Coriolis flowmeter of FIG. 10, and FIG. 11B is a diagram illustrating a detection vibration mode of the same Coriolis flowmeter.
  • FIG. 12 is a perspective view showing a configuration of still another example of the Coriolis flowmeter according to the present invention. Next, the present invention will be specifically described with reference to examples.
  • each metal material forming the alloy composition shown in Table 2 was charged into an arc furnace, and each composition was melted and mixed by arc heating, and then poured into a mold, and each alloy composition (sample Nos. 1 to 9) was used. ) was prepared. A sample was cut out from the prepared ingot and analyzed by X-ray diffraction. As a result, it was confirmed that all the prepared alloy compositions were single-phase solid solutions and had a body-centered cubic structure.
  • E Young's modulus
  • ay is the yield strength
  • ⁇ u is the ultimate tensile strength (breaking strength)
  • ⁇ ⁇ is the elastic elongation limit
  • Hv is the Vickers hardness.
  • ⁇ y ZE and ⁇ v ZE are effective for judging whether or not the alloy composition is preferable as a material for forming a measurement tube, and the larger these values are, the more preferable.
  • the value of ⁇ is preferably not less than 0.010, and more preferably not less than 0.015.
  • the value of ⁇ is preferably at least 0.05.
  • Young's modulus of the alloy composition prepared is (referring to the value of EZE T i as described in Table 2) almost half of the net T i that has been used in the measurement tube of the Coriolis flowmeter to which Ru der.
  • the yield strength of the prepared alloy composition is at least five times that of titanium conventionally used for measurement tubes, and at least three times that of zirconium or stainless steel, indicating that it is sufficiently strong for practical use. Therefore, it can be seen that the prepared alloy composition is preferable as a material for forming the measurement tube of the Coriolis flowmeter.
  • the obtained ingot was rolled to produce a thin plate, which was bent into a tube and welded to form a tube. This tube was cut to make a straight tube type measurement tube. The obtained tube was bent to produce a U-shaped measurement tube.
  • a Coriolis flowmeter having the configuration shown in FIGS. 1, 10, and 12 was manufactured.
  • the same tube as the measurement tube formed from the alloy composition was used as the auxiliary vibrator.
  • Coriolis flowmeters having the configurations shown in FIGS. 3, 5, 7, and 8 were produced using the obtained straight tube measurement tubes.
  • a tube formed from the above-described alloy composition was used as a counter rod.
  • a Coriolis flowmeter with the configuration shown in Fig. 1, Fig. 3, Fig. 5, Fig. 7, Fig. 8, Fig. 10 and Fig. 12 was fabricated using a pure Ti measurement tube. did.
  • a Coriolis flowmeter having high measurement sensitivity is formed by forming a measurement tube from an alloy composition having a Young's modulus of 9 ° GPa or less and a yield strength of 10 OMPa or more. It has gained. According to the present invention, a Coriolis flowmeter exhibiting a higher measurement sensitivity than before can be easily provided only by changing the material forming the measurement tube.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

A high-sensitivity Coriolis flowmeter measuring the mass flow rate of a fluid by detecting a Coriolis force generated in a fluid for measuring the flow rate flowing through a measuring tube under oscillatory state, in which the measuring tube can be formed of an alloy composition having a Young’s modulus of not higher than 90 Gpa and an yield strength of not lower than 100 Mpa.

Description

明 細 書 コリオリ流量計  Description Coriolis flowmeter
[技術分野] , [Technical field] ,
本発明は、 コリオリ流量計に関する。  The present invention relates to a Coriolis flow meter.
[背景技術] [Background technology]
流量計は、 プラントにおける各種流体の計量、 あるいは家庭において消費され るガスや水道水の計量など、 様々な分野に用いられている。 流量計は、 体積流量 計と質量流量計とに分類される。 質量流量計は、 流体の温度や圧力の変動の影響 を受けにくい利点があり、 体積流量計よりも高い測定精度を示す流量計として注 目されている。  Flow meters are used in a variety of fields, such as metering various fluids in plants or measuring gas and tap water consumed at home. Flow meters are classified into volume flow meters and mass flow meters. Mass flow meters have the advantage that they are less susceptible to fluctuations in fluid temperature and pressure, and are attracting attention as flow meters that exhibit higher measurement accuracy than volume flow meters.
質量流量計の一種類であるコリオリ流量計は、 振動状態にある計測チューブの 内部を流れる流体に発生するコリオリカを検出することによって、 流体の質量流 量を測定する流量計である。 コリオリ流量計は、 流量測定対象の流体を流す計測 チューブ、 計測チューブを振動させて流体にコリオリカを発生させるための振動 発生装置、 そしてコリオリカを検出するためのセンサなどから構成されている。 コリオリカは、 流体の質量と速度の積に比例する。 従って、 コリオリカを検出 することにより、 流体の質量流量を測定することができる。 流体に発生するコリ オリ力により、 計測チューブには、 たわみやねじれなどの弾性変形を生じる。. コ リオリカは、 計測チューブの弹性変形量などを測定することにより検出する。 一 般に、 計測チューブは、 チタン、 ジルコニウム、 ステンレススチールなどの金属 材料から形成されている。  A Coriolis flowmeter, which is a type of mass flowmeter, is a flowmeter that measures the mass flow rate of a fluid by detecting Corioliska generated in the fluid flowing inside a vibrating measurement tube. The Coriolis flowmeter is composed of a measurement tube through which the fluid to be measured is to flow, a vibration generator for vibrating the measurement tube to generate Coriolis in the fluid, and a sensor for detecting the Coriolis. Coriolis is proportional to the product of fluid mass and velocity. Therefore, the mass flow rate of the fluid can be measured by detecting Coriolis. Due to the Coriolis force generated in the fluid, the measuring tube undergoes elastic deformation such as bending and torsion. Coreica is detected by measuring the amount of natural deformation of the measuring tube. Generally, the measurement tube is made of a metal material such as titanium, zirconium, and stainless steel.
流体に発生するコリオリカは微弱であるため、 コリオリカによる計測チューブ の弹性変形量は僅かである。 従って、 コリオリ流量計の流量の測定感度を高める ために、 計測チューブの形状、 コリオリカの検出方法、 あるいはセンサの高感度 化などについて検討がされている。  Since the Coriolisa generated in the fluid is very weak, the amount of unidirectional deformation of the measurement tube by the Coriolisa is small. Therefore, in order to increase the flow rate measurement sensitivity of the Coriolis flowmeter, studies are being made on the shape of the measurement tube, the method of detecting Coriolis, or the enhancement of the sensor sensitivity.
本発明は、 高い測定感度を示すコリオリ流量計を提供することにある。 [発明の開示] . An object of the present invention is to provide a Coriolis flowmeter exhibiting high measurement sensitivity. [Disclosure of the Invention].
本発明者は、 コリオリ流量計の計測チューブの材料について研究した結果、 ャ ング率が小さく且つ降伏強さが大きい合金組成物から計測チューブを形成するこ とにより、 高い測定感度を示すコリオリ流量計を提供できることを見出した。 本発明は、 振動状態にある計測チューブの内部を流れる流量測定対称の流体に 発生するコリオリカを検出することによって、 流体の質量流量を測定するコリオ リ流量計において、 該計測チューブが、 ヤング率が 9 OGP a以下であり、 且つ 降伏強さが 10 OMP a以上である合金組成物から形成されていることを特徴と するコリオリ流量計にある。 本発明のコリオリ流量計の好ましい態様は、 下記の 通りである。  The present inventor studied the material of the measurement tube of the Coriolis flowmeter, and as a result, formed the measurement tube from an alloy composition having a small Young's modulus and a high yield strength, thereby providing a Coriolis flowmeter exhibiting high measurement sensitivity. Can be provided. The present invention relates to a Coriolis flowmeter for measuring a mass flow rate of a fluid by detecting Coriolisa generated in a fluid having a flow measurement symmetry, which flows inside a measurement tube in an oscillating state, wherein the measurement tube has a Young's modulus. A Coriolis flowmeter characterized by being formed from an alloy composition having an OGPa of not more than 9 and a yield strength of not less than 10 OMPa. Preferred embodiments of the Coriolis flow meter of the present invention are as follows.
(1) 合金糸且成物が、 チタンを 40原子%以上含む。  (1) The alloy yarn composition contains 40 atomic% or more of titanium.
(2) 合金組成物が、 次式で表される組成を有する。  (2) The alloy composition has a composition represented by the following formula.
Τ ί ! 00-a -b-c-dMaM' bM,, c V d Τ ί! 00-a -bc-dM a M ' b M ,, c V d
[但し、 Mは、 Z r、 H ίのいずれか一方又は両方であり、 M' は、 Nb、 T a のいずれか一方又は両方であり、 M" は、 C r、 Mo、 W、 及ぴ Snからなる群 から選ばれる一種又は二種以上の元素であり、 a、 b、 c、 そして dはそれぞれ 、 5≤ a≤ 40, 1≤ b≤ 30, 0≤ c≤ 10, 0≤ d≤ 20, 10≤ a + b + c + d≤ 60を満たす数値である。 ]  [However, M is one or both of Zr and H}, M 'is one or both of Nb and Ta, and M "is Cr, Mo, W, and Is one or more elements selected from the group consisting of Sn, where a, b, c, and d are 5≤a≤40, 1≤b≤30, 0≤c≤10, 0≤d≤ 20, 10≤ a + b + c + d ≤ 60.]
(3) 合金組成物が、 さらに次式で表される組成を有する。  (3) The alloy composition further has a composition represented by the following formula.
T i! oo-a-b-c-d Z r aM' bM" c Vd T i! oo-abcd Z r a M ' b M "c Vd
本発明はまた、 センサを備えた流量測定対象の流体が流れる直管型の計測チュ ーブ、 そして該計測チューブの両側に間隔を介してそれぞれ平行に配置された二 本のカウンタロッドカ らなり、 該計測チューブの一方の端部と各カウンタロッド の一方の端部とがー方の支持体に固定され、 また該計測チューブの他方の端部と 各カウンタロッドの他方の端部とが別の支持体に固定されており、 該計測チュー ブと各カウンタ口ッドのそれぞれには計測チューブと各カウンタ口ッドとを振動 位相が逆となるように振動させる振動発生装置が備えられ、 上記の両支持体が剛 性基板上に固定されており、 そして該計測チューブが、 ヤング率が 90 GP a以 下であり、 且つ降伏強さが 1 0 O MP a以上である合金組成物から形成されてい ることを特徴とするコリオリ流量計にもある。 なお、 合金組成物の好ましい態様 については、 前記のコリオリ流量計と同様である。 The present invention also includes a straight tube-type measuring tube provided with a sensor and through which a fluid to be measured flows, and two counter rods arranged in parallel on both sides of the measuring tube with a space therebetween. One end of the measuring tube and one end of each counter rod are fixed to a support, and the other end of the measuring tube and the other end of each counter rod are separate. A vibration generator that vibrates the measurement tube and each counter port so that the vibration phases are opposite to each other, and the measurement tube and each counter port are provided with a vibration generator. Both of the above supports are fixed on a rigid substrate, and the measuring tube has a Young's modulus of 90 GPa or less. There is also a Coriolis flowmeter characterized by being formed from an alloy composition having a lower yield strength of 10 O MPa or more. The preferred embodiment of the alloy composition is the same as the above-mentioned Coriolis flowmeter.
本発明はまた、 センサを備えた流量測定対象の流体が流れる湾曲型の計測チュ ーブ、 そして該計測チューブの両端部を固定する支持体からなり、 そして計測チ ユーブの両端部のそれぞれに支持体を通じて流体を流す流路が設けられているコ リオリ流量計であって、 該計測チューブと同形に湾曲している二つの補助振動体 が、 計測チューブの両側に間隔を介してそれぞれ平行に配置されており、 計測チ ユーブと各補助振動体のそれぞれには計測チューブと各捕助振動体とを振動位相 が逆となるように振動させる振動発生装置が備えられており、 そして該計測チュ ーブが、 ヤング率が 9 0 G P a以下であり、 且つ降伏強さが 1 0 O M P a以上で ある合金組成物から形成されていることを特徴とするコリオリ流量計にもある。 なお、 合金組成物の好ましい態様については、 前記のコリオリ流量計と同様であ る。  The present invention also includes a curved measuring tube provided with a sensor through which a fluid to be subjected to flow rate measurement flows, and a support for fixing both ends of the measuring tube, and supported on each of both ends of the measuring tube. A Coriolis flowmeter provided with a flow path for flowing a fluid through a body, wherein two auxiliary vibrators that are curved in the same shape as the measurement tube are arranged in parallel on both sides of the measurement tube with an interval therebetween. The measuring tube and each auxiliary vibrator each include a vibration generator that vibrates the measuring tube and each auxiliary vibrating body so that the vibration phases are opposite to each other. The Coriolis flowmeter is also characterized in that the tube is formed from an alloy composition having a Young's modulus of 90 GPa or less and a yield strength of 10 OMPa or more. The preferred embodiment of the alloy composition is the same as that of the above-mentioned Coriolis flowmeter.
本発明のコリオリ流量計を、 添付の図面を用いて説明する。 図 1は、 本発明に 従うコリオリ流量計の一例の構成を示す斜視図である。 図 2は、 図 1の.コリオリ 流量計の断面図である。 図 1及ぴ図 2に示すコリオリ流量計は、 流量測定対象の 流体が流れる U字型の計測チューブ 1、 計測チューブ 1を振動させる振動発生装 置 2、 そして計測チューブ 1の弹 1"生変形量などからコリオリカを検出するセンサ 3 a及ぴ 3 bなどからなる。 U字型の計測チューブ 1の両端のそれぞれには、 配 コリオリ流量計は、 フランジ 5を用いて、 流量測定対象の流体が流れる系 (プ ラントなど) に接続される。 そして流量測定対象の流体が流れる計測チューブ 1 を振動発生装置 2により振動させて、 センサ 3 a及ぴ 3 bにより検出される計測 チューブ 1の弾性変形 (たわみやねじれなど) 量などから、 流体の質量流量を得 る。 図 1及び図 2に示すコリオリ流量計の構成は周知である。 本発明では、 コリ オリ流量計の測定感度を高くするために、 計測チューブ 1を、 ヤング率が 9 0 G P a以下であり、 且つ降伏強さが 1 0 0 MP a以上である合金組成物から形成す る。 合金組成物の詳細については、 後述する。 一般に、 振動発生装置 2としては、 コイルとマグネットからなる電磁オシレー タが用いられる。 センサ 3 a及び 3 bとしては、 計測チューブ 1の弾性変形量な どからコリオリカを検出する電磁ピックアップゃ圧電素子などが用いられる。 ま た、 電磁ピックアップを用いて計測チューブが弾性変形する速度からコリオリカ を検出する方法も知られている。 振動発生装置やセンサの詳細については、 「流 量計測 A t o Z」 (日本計量機器工業連合会編、 第 1 0章、 1 9 9 5 ) に記載さ れている。 The Coriolis flowmeter of the present invention will be described with reference to the attached drawings. FIG. 1 is a perspective view showing a configuration of an example of a Coriolis flow meter according to the present invention. Figure 2 is a cross-sectional view of the Coriolis flow meter of Figure 1. The Coriolis flowmeter shown in Fig. 1 and Fig. 2 is a U-shaped measuring tube 1 through which the fluid to be measured flows, a vibration generator 2 that vibrates the measuring tube 1, and a 弹 1 "raw deformation of the measuring tube 1. It consists of sensors 3a and 3b that detect Corioliska from the amount, etc. At each end of the U-shaped measuring tube 1, a Coriolis flowmeter uses a flange 5 to control the flow rate of the fluid to be measured. It is connected to a flowing system (such as a plant), and the measurement tube 1 through which the fluid to be measured flows is vibrated by the vibration generator 2, and the elastic deformation of the measurement tube 1 detected by the sensors 3a and 3b Obtain the mass flow rate of the fluid from the amount (deflection, twist, etc.) The configuration of the Coriolis flow meter shown in Fig. 1 and Fig. 2 is well known. To The measuring tube 1, and a Young's modulus of 9 0 GP a less and yield strength you formed from the alloy composition is 1 0 0 MP a more. For more information on the alloy composition will be described later. Generally, an electromagnetic oscillator including a coil and a magnet is used as the vibration generator 2. As the sensors 3a and 3b, an electromagnetic pickup, a piezoelectric element, or the like that detects Coriolis from the amount of elastic deformation of the measurement tube 1 is used. There is also known a method for detecting Coriolis from the speed at which the measurement tube elastically deforms using an electromagnetic pickup. Details of vibration generators and sensors are described in “Flow Measurement A to Z” (edited by Japan Federation of Metrology Instruments, Chapter 10, 1995).
次に、 U字型の計測チューブ 1を形成する材料のャング率と、 コリオリ流量計 の測定感度との関係について記載する。 U字型の計測チューブ 1を単純な片持梁 と仮定した場合、 梁のたわみは、 下記の式 (1 ) で表される。  Next, the relationship between the Young's modulus of the material forming the U-shaped measurement tube 1 and the measurement sensitivity of the Coriolis flowmeter will be described. Assuming that the U-shaped measurement tube 1 is a simple cantilever, the deflection of the beam is expressed by the following equation (1).
( 1 ) y = p L 3 / 3 E I (1) y = p L 3 /3 EI
式 (1 ) において、 yはたわみ、 pは荷重、 Lは梁の長さ、 Eはヤング率、 そ して Ϊは断面二次モーメントを表す。 式 (1 ) 力 ら、 梁の材料のヤング率が半分 となれば、 たわみは二倍になることがわかる。 即ち、 例えば、 U字型の計測チュ ーブを形成する材料のヤング率が半分となれば、 流体に発生するコリオリカの大 きさが同じであっても、 計測チューブのたわみは二倍程度になると推測される。 即ち、 コリオリ流量計の測定感度が二倍 ¾度に高くなることが推測される。  In equation (1), y is the deflection, p is the load, L is the length of the beam, E is the Young's modulus, and Ϊ is the second moment of area. Equation (1) shows that if the Young's modulus of the beam material is halved, the deflection is doubled. That is, for example, if the Young's modulus of the material forming the U-shaped measurement tube is halved, the deflection of the measurement tube is about twice even if the size of the Coriolisa generated in the fluid is the same. It is supposed to be. That is, it is presumed that the measurement sensitivity of the Coriolis flowmeter becomes twice as high.
次に U字型の計測チューブの振動角速度を Ω、 計測チューブの内部を移動する 流体の単位質量を Δπι、 流体の移動速度を Vとすると、 流体に発生するコリオリ 力 A Fは、 卞記の式 (2 ) で表される。  Next, assuming that the oscillation angular velocity of the U-shaped measuring tube is Ω, the unit mass of the fluid moving inside the measuring tube is Δπι, and the moving speed of the fluid is V, Coriolis force AF generated in the fluid is It is represented by (2).
( 2 ) Δ F == 2 X Δ πι Χ Ω X V ,  (2) Δ F == 2 X Δ πι Χ Ω X V,
式 (2 ) から、 例えば、 計測チューブのヤング率が半分となれば、 計測チュー ブが振動発生装置 2の駆動力により約二倍たわむために、 振動角速度 Ωは約二倍 となる。 従って、 計測チューブのヤング率を半分とすることで、 同じ流量の流体 に発生するコリオリカ Δ Fが約二倍となり、 コリオリ流量計の測定感度が二倍程 度に高くなると推測される。  From equation (2), for example, if the Young's modulus of the measuring tube is reduced by half, the measuring tube bends approximately twice by the driving force of the vibration generator 2, so that the vibration angular velocity Ω is approximately doubled. Therefore, by halving the Young's modulus of the measuring tube, it is estimated that the Coriolis flower ΔF generated in the fluid with the same flow rate is approximately doubled, and the measurement sensitivity of the Coriolis flowmeter is approximately doubled.
このように、 計測チューブに用いられる材料のヤング率を、 例えば、 半分にす ることで、 流体に発生するコリオリカの大きさは二倍となり、 コリオリカによる 計測チューブの弾性変形量も二倍となるために、 コリオリ流量計の測定感度は四 倍程度にまで高くなると推測される。 In this way, by halving the Young's modulus of the material used for the measurement tube, for example, halving the size of the Coriolisa generated in the fluid, the amount of elastic deformation of the measurement tube by the Corioliser also doubles Therefore, the measurement sensitivity of the Coriolis flowmeter is four It is estimated to be about twice as high.
従来のコリオリ流量計の計測チューブは、 ステンレススチール、 ジルコニウム 、 チタンなどの材料から形成されている。 これらの材料は、 計測チューブの振動 に耐えるための機械的強度や耐食性などの観点から選定されている。 本発明者は, 、 これらの金属材料よりヤング率の小さい様々な金属材料 (例:アルミニウム) から計測チューブを形成することについて検討した。 ところが、 ヤング率が小さ い金属材料は機械的強度 (降伏強さや硬さなど) が小さい場合が多く、 コリオリ 力を発生させるための振動により計測チューブが塑性変形してしまう場合がある ことがわかった。 計測チューブが塑性変形すると、 コリオリカによる計測チュー ブの弾性変形量を正確に測定することができない。 第 1表に、 従来のコリオリ流 量計の計測チュ一ブを形成する代表的な材料 (チタン、 ジルコニウム、 及ぴステ ンレス) のヤング率と降伏強さを示す。 また第 1表に、 ヤング率が小さい金属の 代表例として、 アルミニウムのヤング率と降伏強さを示す。 第 1表  The measurement tube of a conventional Coriolis flowmeter is formed from materials such as stainless steel, zirconium, and titanium. These materials are selected from the viewpoint of mechanical strength and corrosion resistance to withstand the vibration of the measuring tube. The present inventor has studied formation of the measurement tube from various metal materials (eg, aluminum) having a smaller Young's modulus than these metal materials. However, metal materials with low Young's modulus often have low mechanical strength (yield strength, hardness, etc.), indicating that the vibrations that generate Coriolis force may cause the measurement tube to be plastically deformed. Was. If the measuring tube is plastically deformed, the amount of elastic deformation of the measuring tube due to Corioliser cannot be measured accurately. Table 1 shows the Young's modulus and yield strength of typical materials (titanium, zirconium, and stainless steel) that form the measurement tube of the conventional Coriolis flowmeter. Table 1 shows the Young's modulus and yield strength of aluminum as a typical example of a metal having a low Young's modulus. Table 1
Figure imgf000007_0001
第 1表に示すように、 従来のコリオリ流量計の計測チューブを形成する材料よ りヤング率の小さいアルミニウムは、 降伏強さなどの機械的強度が極端に小さい ことがわかる。 本発明者は、 ヤング率の小さい様々な金属材料について検討を行 つたが、 コリオリ流量計に適する金属材料はなかった。
Figure imgf000007_0001
As shown in Table 1, it can be seen that aluminum, which has a lower Young's modulus than the material forming the measurement tube of the conventional Coriolis flowmeter, has extremely low mechanical strength such as yield strength. The present inventor studied various metal materials having a small Young's modulus, but found no metal material suitable for a Coriolis flowmeter.
本発明者は、 コリオリ流量計の計測チューブを、 ヤング率が小さく、 且つ降伏 強さが大きい合金組成物から形成することによって、 これまでの測定感度を高め る方法 (センサの高感度化など) よりも簡便に、 コリオリ流量計の測定感度を高 められることを見出した。 具体的には、 コリオリ流量計の計測チューブを、 ヤンThe present inventor has proposed a method of increasing the measurement sensitivity up to now by forming the measurement tube of the Coriolis flow meter from an alloy composition having a small Young's modulus and a large yield strength (eg, increasing the sensitivity of a sensor). Higher sensitivity of Coriolis flowmeter Found that Specifically, the measurement tube of the Coriolis flowmeter was
'グ率が 9 0 G P a以下であり、 且つ降伏強さが 1 0 0 M P a以上である合金糸且成 物から形成する。 And a yield rate of not more than 100 MPa and a yield strength of not less than 100 MPa.
計測チューブを形成する合金組成物のヤング率は、 9 0 G P a以下とする。 ャ ング率は、 8 0 G P a以下であることが好ましく、 7 0 G P a以下であることが より好ましく、 6 O G P a以下であることがさらに好ましい。 ヤング率が極端に 小さいと、 使用環境における振動により計測チューブにたわみを生じ、 センサの 出力にノイズを発生する。 従って計測チューブを形成する合金組成物のヤング率 は、 4 O G P a以上であることが好ましい。  The Young's modulus of the alloy composition forming the measurement tube shall be 90 GPa or less. The Young's modulus is preferably 80 GPa or less, more preferably 70 GPa or less, and even more preferably 60 GPa or less. If the Young's modulus is extremely low, the measuring tube will bend due to vibration in the operating environment, and noise will be generated in the sensor output. Therefore, the Young's modulus of the alloy composition forming the measurement tube is preferably 4 OGPa or more.
計測チューブを形成する合金組成物の降伏強さは、 1 0 O M P a以上とする。 降伏強さは、 2 5 O M P a以上であることが好ましく、 5 0 0 M P a以上である ことがさらに好ましい。 降伏強さは高いほど好ましいが、 2 0 0 0 M P a以下で あることが一般的である。 降伏強さが 1 0 O M P a以上の合金組成物は、 計測チ ユーブを形成する材料として問題なく用いることができる。  The yield strength of the alloy composition forming the measuring tube is 10 OMPa or more. The yield strength is preferably at least 25 OMPa, more preferably at least 500 MPa. The higher the yield strength, the better, but it is generally less than 2000 MPa. An alloy composition having a yield strength of 10 OMPa or more can be used without problems as a material for forming a measurement tube.
上記の特性を満足する合金組成物から計測チューブを形成することにより、 コ リオリ流量計の測定感度を高くすることができる。 合金組成物としては、 上記の 特性を有する公知の合金組成物を用いることができる。 合金組成物は、 チタンを 4 0原子。 /0以上含むことが好ましい。 チタンが含まれる合金組成物から形成され た計測チューブは、 耐食性に優れている。 By forming the measurement tube from an alloy composition satisfying the above characteristics, the measurement sensitivity of the Coriolis flowmeter can be increased. As the alloy composition, a known alloy composition having the above characteristics can be used. The alloy composition contains 40 atoms of titanium. / 0 or more is preferable. The measurement tube formed from the alloy composition containing titanium has excellent corrosion resistance.
合金糸且成物は、 結晶質でも非晶質でもよい。 合金組成物が非晶質の場合には、 非晶質相中に平均粒径が 1 β m未満の結晶相が分散された混相組織を有していて もよい。 非晶質相を含む合金組成物は、 合金組成物の各組成物を溶融混合した後 に急冷することで得られる。 非晶質相を含む合金組成物は、 機械的な強度が大き く、 そして耐食性に優れる利点を有する。  The alloy thread may be crystalline or amorphous. When the alloy composition is amorphous, it may have a mixed phase structure in which a crystal phase having an average particle size of less than 1 βm is dispersed in the amorphous phase. An alloy composition containing an amorphous phase is obtained by quenching after melt-mixing each composition of the alloy composition. An alloy composition containing an amorphous phase has advantages of high mechanical strength and excellent corrosion resistance.
コリオリ流量計は、 家庭やプラントなど様々な環境で用いられる。 従って、 流 量計の感度と使用環境における振動とを考慮してヤング率や降伏強さを適当な値 に調節することが好ましい。 ヤング率及ぴ降伏強さを調節するために、 合金糸且成 物に熱処理を施しもよい。 熱処理の例としては、 焼入れ、 焼き戻し、 焼きなまし 、 及ぴ焼きならしなどが挙げられる。 合金組成物は、 次式で表される組成を有することが好ましい。 Coriolis flow meters are used in various environments such as homes and plants. Therefore, it is preferable to adjust the Young's modulus and the yield strength to appropriate values in consideration of the sensitivity of the flow meter and the vibration in the use environment. In order to adjust the Young's modulus and the yield strength, the alloy yarn and the composition may be subjected to a heat treatment. Examples of heat treatment include quenching, tempering, annealing, and normalizing. The alloy composition preferably has a composition represented by the following formula.
T i ] oo -b-c-dMoM' bM" c Vd  T i] oo -b-c-dMoM 'bM "c Vd
[但し、 Mは、 Z r、 H f のいずれか一方又は両方であり、 M' は、 Nb、 T a のいずれか一方又は両方であり、 M" は、 C r、 Mo、 W、 及び S nからなる群 から選ばれる一種又は二種以上の元素であり、 a、 b、 c、 そして dはそれぞれ 、 5≤ a≤40, 1≤ b≤ 30 , 0≤ c≤ 10, 0≤ d≤ 20, 10≤ a + b + c + d≤60を満たす数値である。 ]  [However, M is one or both of Zr and Hf, M 'is one or both of Nb and Ta, and M "is Cr, Mo, W, and S is one or more elements selected from the group consisting of n, where a, b, c, and d are 5≤a≤40, 1≤b≤30, 0≤c≤10, 0≤d≤ 20, 10≤a + b + c + d≤60.]
上記式 (1) で示される、 少なくとも T i、 Μ、 Μ' を含む合金組成物は、 前 記のヤング率と降伏強さの値を示す。 ヤング率や降伏強さなど機械的特性、 靭性 、 そして耐食性を微調節するために、 合金組成物は、 C r、 Mo、 W及び S nの ^ちのいずれか一種類又は二種以上の元素を、 0乃至 10原子。 /。の範囲で含むこ とが好ましい。 同様の理由により、 合金組成物は、 Vを 0乃至 20原子%の範囲 で含むことが好ましい。  The alloy composition represented by the above formula (1) and containing at least Ti, Μ, Μ ′ exhibits the values of the aforementioned Young's modulus and yield strength. In order to fine-tune mechanical properties such as Young's modulus and yield strength, toughness, and corrosion resistance, the alloy composition contains one or more of Cr, Mo, W, and Sn elements. , 0 to 10 atoms. /. It is preferable to include it in the range. For the same reason, the alloy composition preferably contains V in the range of 0 to 20 atomic%.
本発明のコリオリ流量計の別の一例について説明する。 図 3は、 本発明に従う コリオリ流量計の別の一例の構成を示す斜視図である。 図 4は、 図 3のコリオリ 流量計の断面図である。 図 3及ぴ図 4に示すコリオリ流量計は、 直管型の計測チ ユーブ 1 1を用いること以外は、 図 1のコリオリ流量計と同様の構成である。 図 4のコリオリ流量計の振動発生装置 2には、 マグネット 7と、 二つのコイル 8からなる電磁オシレータが用いられている。 コイル 8のそれぞれは、 コイルの 断面のイメージを記載した (以降の図面も同様) 。 図 3及ぴ図 4に示すコリオリ 流量計の構成は周知である。 本発明においては、 コリオリ流量計の測定感度を高 くずるために、 計測チューブ 1 1を、 ヤング率が 9 OGP a以下であり、 且つ降 伏強さが 10 OMP a以上の合金組成物から形成する。 直管型の計測チューブを 用いたコリオリ流量計は、 流体の圧力損失が小さい、 洗浄が容易であるなどの利 点がある。  Another example of the Coriolis flowmeter of the present invention will be described. FIG. 3 is a perspective view showing a configuration of another example of the Coriolis flow meter according to the present invention. FIG. 4 is a cross-sectional view of the Coriolis flow meter of FIG. The Coriolis flowmeter shown in FIGS. 3 and 4 has the same configuration as the Coriolis flowmeter of FIG. 1 except that a straight tube type measurement tube 11 is used. An electromagnetic oscillator composed of a magnet 7 and two coils 8 is used for the vibration generator 2 of the Coriolis flowmeter shown in FIG. Each of the coils 8 described an image of the cross section of the coil (the same applies to the following drawings). The configuration of the Coriolis flow meter shown in FIGS. 3 and 4 is well known. In the present invention, the measuring tube 11 is formed of an alloy composition having a Young's modulus of 9 OGPa or less and a yield strength of 10 OMPa or more in order to degrade the measurement sensitivity of the Coriolis flowmeter. I do. Coriolis flowmeters using straight-tube measuring tubes have the advantages of low fluid pressure loss and easy cleaning.
図 3及ぴ図 4に示すコリオリ流量計においては、 直管型の計測チューブ 1 1の 両端が支持されている。 直管型の計測チューブを単純支持梁と仮定した場合、 梁 のたわみは、 下記の式 (3) で表される。  In the Coriolis flowmeter shown in FIGS. 3 and 4, both ends of the straight tube type measurement tube 11 are supported. Assuming that the straight tube type measuring tube is a simple support beam, the deflection of the beam is expressed by the following equation (3).
(3) y max = p L3 /48 E I 式 (3 ) において、 yはたわみ、 pは荷重、 Lは梁の長さ、 Eはヤング率、 そ して Iは断面二次モーメントを表す。 (3) y max = p L 3/48 EI In equation (3), y is the deflection, p is the load, L is the length of the beam, E is the Young's modulus, and I is the second moment of area.
式 ( 3 ) と前記の式 (1 ) から、 同じ材料から形成された、 同じ長さの梁の場 合には、 同じ荷重に対して、 単純支持梁のほうがたわみが小さいことがわかる。 従って、 直管型の計測チューブには、 先に述べた利点 (流体の圧力損失が小さい など) があるものの、 U字型の計測チューブに比べてたわみが小さい、 即ちコリ オリ力を検出する感度が小さいという欠点がある。 直管型の計測チューブを前記 の合金組成物から形成することにより、 直管型の計測チューブの欠点を補うこと ができる。 U字型の計測チューブと同様に、 前記の合金靼成物から直感型の計測 チューブを形成することにより、 流体に発生するコリオリカと、 コリオリカによ る計測チューブのたわみはそれぞれ二倍程度となり、 コリオリ流量計の測定感度 は四倍程度に高くなると推測される。  From equation (3) and equation (1) above, it can be seen that for beams of the same length and made of the same material, the deflection of the simply supported beam is smaller for the same load. Therefore, although the straight-tube type measurement tube has the above-mentioned advantages (small pressure loss of fluid, etc.), the deflection is smaller than that of the U-shaped measurement tube, that is, the sensitivity for detecting Coriolis force. Has the disadvantage of being small. By forming the straight tube type measurement tube from the above alloy composition, it is possible to make up for the drawbacks of the straight tube type measurement tube. As with the U-shaped measurement tube, forming the intuitive measurement tube from the alloy tartar described above makes it possible to double the Coriolisa generated in the fluid and the deflection of the measurement tube due to the Coriolisa about twice, respectively. It is estimated that the measurement sensitivity of the Coriolis flowmeter is about four times higher.
直管型の計測チューブを備えた本発明のコリオリ流量計の好ましい構成につい て説明する。 図 5は、 本発明に従うコリオリ流量計の別の一例の構成を示す斜視 図である。 そして図 6は、 図 5のコリオリ流量計の平面図である。 振動発生装置 とセンサは、 図 6にのみ記載をした。 図 5及ぴ図 6に示すコリオリ流量計は、 流 量測定対称の流体が流れる直管型の計測チューブ 1 1と、 二つのカウンタロッド 1 2 a及び 1 2 bから構成されている。 計測チューブ 1 1は、 前記の合金組成物 から形成されている。 図 5及び図 6に示すコリオリ流量計においては、 カウンタ ロッドとして、, 直管型のチューブを用いている。 カウンタロッド 1 2 a及び 1 2 bは、 計測チューブ 1 1の两側にそれぞれ平行に配置されている。 計測チューブ 1 1の一端と、 それぞれのカウンタロッドの一端は、 支持体 1 3 aに固定されて いる。 計測チューブ 1 1の他方の端と、 それぞれのカウンタロッドの他方の端は 、 支持体 1 3 bに固定されている。 そして支持体 1 3 a及ぴ 1 3 bは、 剛性基板 1 4の上に固定されている。  A preferred configuration of the Coriolis flowmeter of the present invention including a straight tube type measurement tube will be described. FIG. 5 is a perspective view showing a configuration of another example of the Coriolis flow meter according to the present invention. FIG. 6 is a plan view of the Coriolis flow meter of FIG. The vibration generator and sensor are shown only in Fig. 6. The Coriolis flowmeter shown in FIGS. 5 and 6 is composed of a straight tube-type measuring tube 11 through which a fluid having a symmetric flow rate flows, and two counter rods 12a and 12b. The measurement tube 11 is formed from the above alloy composition. In the Coriolis flowmeter shown in Figs. 5 and 6, a straight tube is used as the counter rod. The counter rods 12 a and 12 b are respectively arranged in parallel on the 两 side of the measuring tube 11. One end of the measuring tube 11 and one end of each counter rod are fixed to a support 13a. The other end of the measurement tube 11 and the other end of each counter rod are fixed to a support 13b. The supports 13 a and 13 b are fixed on the rigid substrate 14.
計測チューブ 1 1は、 その両端に設けられたフランジ 5により、 流量を測定す る系 (プラントなど) に接続される。 計測チューブ 1 1と、 それぞれのカウンタ ロッド 1 2 a及ぴ 1 2 bの間には、 マグネットとコイルからなる振動発生装置 2 aおよび 2 bが配置される。 振動発生装置 2 aが、 計測チューブ 1 1とカウンタ ロッド 1 2 aを引きつける時に、 振動発生装置 2 bは、 計測チューブ 1 1とカウ ンタロッド 1 2 bを遠ざける。 そして計測チューブ 1 1には、 コリオリカを検出 するためのセンサ 3 a及び 3 bが備えられている。 センサ 3 a及ぴ 3 bは、 振動 発生装置 2 aの両側に対称に配置される。 センサ 3 a及ぴ 3 bとしては、 圧電素 子が用いられている。 The measurement tube 11 is connected to a flow rate measuring system (plant or the like) by flanges 5 provided at both ends thereof. A measurement tube 1 1, between the respective counter rod 1 2 a及Pi 1 2 b, the vibration generator 2 a and 2 b consisting of the magnet and the coil are arranged. Vibration generator 2a, measuring tube 1 1 and counter When the rod 12a is pulled, the vibration generator 2b keeps the measuring tube 11 and the counter rod 12b away. The measuring tube 11 is provided with sensors 3a and 3b for detecting Coriolisa. The sensors 3a and 3b are symmetrically arranged on both sides of the vibration generator 2a. Piezoelectric elements are used as the sensors 3a and 3b.
支持体 1 3 a及ぴ 1 3 b、 そしてカウンタロッド 1 2 a及び 1 2 b 、 ステン レスやハステロイなどの金属材料、 あるいは合金組成物から形成することができ る。 カウンタロッド 1 2 a及び 1 2 bは、 計測チューブに用いる合金組成物から 形成することが好ましい。 剛性基板 1 4を形成する材料の例としては、 金属材料 やセラミッタスが挙げられる。  The supports 13a and 13b and the counter rods 12a and 12b can be formed from a metal material such as stainless steel or Hastelloy, or an alloy composition. The counter rods 12a and 12b are preferably formed from an alloy composition used for the measurement tube. Examples of the material for forming the rigid substrate 14 include a metal material and ceramics.
カウンタロッドとして用いるチューブの断面形状は、 円形に限らず、 多角形や 楕円形でもよい。 カウンタロッドには流体を流す必要はないので、 棒状でもよい 。 二つのカウンタロッ ドの形状と質量は、 互いに等しいことが好ましい。 計測チ ユーブと各カウンタロッドの形状と質量は、 互いに等しいことが好ましい。 計測 チューブの質量とは、 計測チューブの内部に測定する流体が満たされた状態にお ける質量を意味する。 計測チューブやカウンタロッドに振動発生装置やセンサが 配置されている場合には、 それらが配置された状態で、 計測チューブと各カウン タロッドの形状と質量が、 互いに等しいことがさらに好ましい。 カウンタロッ ド として、 直管型のチューブを用いる場合には、 チューブの内部に測定対彖の流体 と同じ流体を封入することが好ましい。 ' 各カウンタロッドは、 三脚音叉型振動子の振動モードが得られるよう計測チュ ーブの両側に対称的に配置されている。 三脚音叉型振動子は、 非常に安定した振 動が得られることが知られており、 レゾネーター等に広く用いられている。 図 5 のコリオリ流量計においては、 計測チューブ及びカウンタ口ッ ドの振動の発生に 三脚音叉型振動子の一次の曲げ振動モ ドが、 そして計測チューブの弾性変形量 の検出に三脚音叉型振動子の二次の曲げ振動モードが用いられている。  The cross-sectional shape of the tube used as the counter rod is not limited to a circle, but may be a polygon or an ellipse. Since it is not necessary to supply a fluid to the counter rod, a rod shape may be used. The shape and mass of the two counter rods are preferably equal to each other. It is preferable that the shape and mass of the measuring tube and each counter rod are equal to each other. The mass of the measuring tube means the mass when the fluid to be measured is filled inside the measuring tube. When the vibration generating device and the sensor are arranged on the measuring tube and the counter rod, it is further preferable that the shape and the mass of the measuring tube and each of the counter rods are equal to each other in a state where they are arranged. When a straight tube is used as the counter rod, it is preferable to fill the inside of the tube with the same fluid as the fluid of the measurement component. '' Each counter rod is symmetrically arranged on both sides of the measuring tube to obtain the vibration mode of the tripod tuning fork vibrator. Tripod tuning fork vibrators are known to provide very stable vibrations and are widely used in resonators and the like. In the Coriolis flowmeter shown in Fig. 5, the primary bending vibration mode of the tripod tuning fork vibrator is used to generate vibration of the measuring tube and counter port, and the tripod tuning fork vibrator is used to detect the amount of elastic deformation of the measuring tube. The second-order bending vibration mode is used.
計測チューブあるいはカウンタロッドに励起された振動の一部は、 支持体に伝 わってロスとなり、 コリオリカの検出感度を低下させる。 このような振動のロス を抑えるために、 計測チューブの長さ (L 1 ) に対する支持体の長さ (L 2 ) の 比 (L 2ノ L I ) を、 3 Z 1 0以上とすることが好ましい。 支持体の長さは、 長 ければ長いほど好ましい。 しかし支持体の長さが極端に長いと、 流量計が大型と なる欠点がある。 従って、 実用上、 L 2 / L 1の上限は、 1 0ノ1 0程度である ことが好ましい。 なお、 支持体の長さ (L 2 ) とは、 計測チューブ 1 1の長手方 向に沿った支持体の長さを意味する。 Some of the vibrations excited by the measuring tube or counter rod are transmitted to the support, causing loss, and lowering the Coriolisa detection sensitivity. In order to suppress such vibration loss, the length of the support (L 2) with respect to the length of the measurement tube (L 1) It is preferable that the ratio (L 2 LI) be 3 Z 10 or more. The length of the support is preferably as long as possible. However, if the length of the support is extremely long, there is a disadvantage that the flow meter becomes large. Therefore, practically, it is preferable that the upper limit of L 2 / L 1 is about 10−10. The length (L 2) of the support means the length of the support along the longitudinal direction of the measurement tube 11.
図 7は、 本発明に従ぅコリオリ流量計のさらに別の一例の構成を示す斜視図で ある。 計測チューブ 1 1は、 前記の合金組成物から形成されている。 図.7に示す ように、 支持体 1 3 a及び 1 3 bのそれぞれは、'弾性体 1 5 (例:シリコンゴム ) を介して剛性基板 1 4に固定されていることが好ましい。 このような構成によ り、 使用環境における外部の振動からコリオリ流量計を保護することができる。 図 8は、 本発明に従うコリオリ流量計のさらに別の一例の構成を示す斜視図で ある。 図 9は、 図 8のコリオリ流量計の平面図である。 計測チューブ 1 1は、 前 記の合金組成物から形成されている。 カウンタロッドと 1 2 a及び 1 2 bとして は、 直管状のチューブが用いられている。  FIG. 7 is a perspective view showing the configuration of still another example of the Coriolis flowmeter according to the present invention. The measurement tube 11 is formed from the above alloy composition. As shown in FIG. 7, each of the supports 13a and 13b is preferably fixed to the rigid substrate 14 via an elastic body 15 (eg, silicone rubber). With such a configuration, the Coriolis flowmeter can be protected from external vibration in the use environment. FIG. 8 is a perspective view showing a configuration of still another example of the Coriolis flowmeter according to the present invention. FIG. 9 is a plan view of the Coriolis flow meter of FIG. The measurement tube 11 is formed from the alloy composition described above. Straight tubular tubes are used as the counter rods and 12a and 12b.
支持体 1 3 a及び 1 3 bのそれぞれは、 弾性体 1 5を介して剛性基板 1 4に固 定されている。 支持体 1 3 a及び 1 3 bのそれぞれの厚みは、 計測チューブ 1 1 の直径より厚いことが好ましい。 また、 支持体 1 3 a及ぴ 1 3 bのそれぞれの厚 みは、 カウンタロッド 1 2 a及び 1 2 bのそれぞれの直径より厚いことも好まし い。 ここで支持体の厚みとは、 計測チューブと二つのカウンタロッドにより形成 される平面に垂直な方向の支持体の長さを意味する。  Each of the supports 13 a and 13 b is fixed to the rigid substrate 14 via the elastic body 15. The thickness of each of the supports 13 a and 13 b is preferably larger than the diameter of the measurement tube 11. It is also preferable that the thickness of each of the supports 13a and 13b is larger than the diameter of each of the counter rods 12a and 12b. Here, the thickness of the support means the length of the support in a direction perpendicular to the plane formed by the measurement tube and the two counter rods.
計測チューブ 1 1と、 カウンタロッド 1 2 a及ぴ 1 2 bのそれぞれの間には、 マグネット 7 aとコイル 8 a、 マグネット 7 bとコイル 8 bからなる振動発生装 置が配置されている。 それぞれのカウンタロッドには、 その両側にバランス錘と してマグネット 7 cとセンサ 3 cが配置されている。 なお、 マグネット、 コイル 、 及びセンサは、 図 9にのみ記載をし'た。 図 9において、 計測チューブと二つの カウンタロッドに設けられたセンサ 3 cは、 計測チューブ 1 1と各カウンタロッ ドの形状と質量を互いに等しくする (安定した振動を得る) ために付設されてい る。 計測チューブ 1 1に配置されたセンサ 3 cは、 コリオリカによる計測チュー プの弾性変形量を検出することもできる。 図 1 0は、 本発明に従うコリオリ流量計のさらに別の一例の構成を示す斜視図 である。 図 1 0のコリオリ流量計は、 流量測定対象の流体が流れる湾曲型の計測 チューブ 2 1、 そしてその両端部を固定する支持体 2 7などからなる。 そして計 測チューブ 2 1の両端部のそれぞれには、 支持体 2 7を通じて流体を流す流路が 設けられている。 計測チューブ 2 1は、 前記の合金組成物から形成されている。 そして計測チューブ 2 1には、 コリオリカにより生じたチューブの弾性変形量な どを検出するセンサ 3 a及ぴ 3 bが備えられている。 A vibration generating device including a magnet 7a and a coil 8a, and a magnet 7b and a coil 8b is disposed between the measuring tube 11 and the counter rods 12a and 12b. Each counter rod is provided with a magnet 7c and a sensor 3c as balance weights on both sides thereof. The magnets, coils, and sensors are described only in FIG. In FIG. 9, the sensor 3c provided on the measuring tube and two counter rods is provided to make the shape and mass of the measuring tube 11 and each counter rod equal to each other (obtain stable vibration). . The sensor 3c arranged in the measurement tube 11 can also detect the amount of elastic deformation of the measurement tube caused by Coriolis. FIG. 10 is a perspective view showing a configuration of still another example of the Coriolis flowmeter according to the present invention. The Coriolis flowmeter shown in FIG. 10 includes a curved measurement tube 21 through which a fluid to be measured flows, and a support 27 fixing both ends thereof. Each of the two ends of the measurement tube 21 is provided with a flow path for flowing a fluid through the support 27. The measurement tube 21 is formed from the above alloy composition. The measuring tube 21 is provided with sensors 3a and 3b for detecting the amount of elastic deformation of the tube caused by Coriolis, and the like.
計測チューブの両側には、 湾曲型の計測チューブ 2 1と同形に湾曲している二 つのネ唐助振動体 2 2 a及ぴ 2 2 bが、 間隔を介してそれぞれ平行に配置される。 計測チューブと各補助振動体のそれぞれには、 計測チューブと各補助振動体とを 振動位相が逆となるように振動させる振動発生装置 2 a及ぴ 2 bが備えられてい る。 計測チューブ 2 1は、 その両端のそれぞれに設けられた流路の流入口 2 3及 び流出口 2 4を介して、 流量を測定する系 (プラントなど) と接続される。 流入 口 2 3及ぴ流出 P 2 4のそれぞれには、 フランジを付設することが好ましい。 測定対象の流体が流れる湾曲型の計測チューブと各補助振動体とを、 振動位相 が逆となるように振動発生装置 2 a及び 2 bにより振動させ、 計測チューブの弾 性変形やひずみなどをセンサ 3 a及ぴ 3 bにより検出することにより、 流体の質 量流量が得られる。  On both sides of the measurement tube, two net tang auxiliary vibrators 22 a and 22 b that are curved in the same shape as the curved measurement tube 21 are arranged in parallel with an interval therebetween. Each of the measurement tube and each of the auxiliary vibrators is provided with vibration generators 2a and 2b that vibrate the measurement tube and each of the auxiliary vibrators so that the vibration phases are opposite. The measurement tube 21 is connected to a flow rate measuring system (a plant or the like) via an inflow port 23 and an outflow port 24 of a flow path provided at both ends thereof. It is preferable to attach a flange to each of the inlet 23 and the outlet P 24. The curved measuring tube through which the fluid to be measured flows and each auxiliary vibrator are vibrated by the vibration generators 2a and 2b so that the vibration phases are reversed, and the elastic deformation and strain of the measuring tube are measured. By detecting with 3a and 3b, the mass flow rate of the fluid can be obtained.
計測チューブと二つの補助振動体の安定した振動を得るために、 二つの補助振 動体の形状および質量が、 互いに等しいことが好ましい。 そして、 計測チューブ から、 それぞれの補助振動体までの距離が互いに等しいことがより好ましい。 そ して二つの補助振動体として..、 計測チューブと同一のチューブを用いることがさ らに好ましい。 二つの補助振動体としてチューブを用いる場合は、 それぞれのチ ユープの内部に、 流量測定対象の流体と同じ流体を密封することがさらに好まし い。  In order to obtain stable vibration of the measurement tube and the two auxiliary vibrators, it is preferable that the two auxiliary vibrators have the same shape and mass. It is more preferable that the distances from the measuring tube to the respective auxiliary vibrators are equal to each other. Further, it is more preferable to use the same tube as the measurement tube as the two auxiliary vibrators. When tubes are used as the two auxiliary vibrators, it is more preferable to seal the same fluid as the fluid whose flow rate is to be measured inside each of the tubes.
湾曲型の計測チューブ 2 1としては、 図 1 0に示すように U字型の計測チュー ブを用いることが好ましい。 計測チューブ 2 1としては、 U字型の計測チューブ に限らず、 トライアングル型などの公知の湾曲型の計測チューブを用いることが できる。 支持体 2 7の厚さは、 計測チューブ 2 1の直径の二倍以上であることが好まし レ、。 支持体の厚さとは、 計測チューブが固定されている面に垂直な方向に沿った 支持体の厚さを意味する。 As the curved measurement tube 21, it is preferable to use a U-shaped measurement tube as shown in FIG. The measuring tube 21 is not limited to a U-shaped measuring tube, and a known curved measuring tube such as a triangle type can be used. The thickness of the support 27 is preferably at least twice the diameter of the measuring tube 21. The thickness of the support means the thickness of the support along the direction perpendicular to the plane on which the measuring tube is fixed.
計測チューブと補助振動体を振動させるための振動発生装置 2 a及び 2 bは、 マグネットとコィルから構成されている。 振動発生装置 2 aは、 計測チューブ 2 1と補助振動体 2 2 aを振動させる。 振動発生装置 2 aは、 コィノレ 2 8 aとマグ ネット 2 7 a及ぴ 2 7 bからなる。 振動発生装置 2 bは、 計測チューブ 2 1と補 助振動体 2 2 bを振動させる。 振動発生装置 2 bの構成は、 振動発生装置 2 aと 同様である。 振動発生装置 2 aにより計測チューブ 2 1と補助振動体 2 2 aを互 いに遠ざける時に、 振動発生装置 2 b より計測チューブ 2 1と補助振動体 2 2 bを互いに引きつけるようにして、 計測チューブと二つの補助振動体とを振動位 相が逆となるように振動させる。  The vibration generators 2a and 2b for vibrating the measuring tube and the auxiliary vibrator are composed of a magnet and a coil. The vibration generator 2a vibrates the measurement tube 21 and the auxiliary vibrator 22a. The vibration generator 2a includes a coil 28a and magnets 27a and 27b. The vibration generator 2b vibrates the measuring tube 21 and the auxiliary vibrator 22b. The configuration of the vibration generator 2b is the same as that of the vibration generator 2a. When the measurement tube 21 and the auxiliary vibrator 22a are moved away from each other by the vibration generator 2a, the measurement tube 21 and the auxiliary vibrator 22b are attracted to each other by the vibration generator 2b, and the measurement tube And the two auxiliary vibrators are vibrated so that the vibration phases are opposite.
図 1 1 ( a ) に、 図 1 0のコリオリ流量計の駆動モード (計測チューブと補助 振動体の振動モード) の一例を示す。 この駆動モードは、 三脚音叉型振動子の一 次の曲げ振動モードに対応している。 図 1 1 ( a ) に示す駆動モードは、 振動発 生装置 2 aにより計測チューブ 2 1と補助振動体 2 2 aを互いに遠ざける時に、 振動発生装置 2 bにより計測チューブ 2 1と捕助振動体 2 2 bを互いに引きつけ るようにして、 計測チューブと各補助振動体を振動させることで得られる。 図 1 1 ( a ) に記入した点線は、 計測チュ^"プ及ぴ各補助振動体の変位を示し、 一点 鎖線は、 計測チューブ及ぴ各補助振動体の先端部分の変位を示している。  Fig. 11 (a) shows an example of the drive mode (vibration mode of the measurement tube and auxiliary vibrator) of the Coriolis flowmeter of Fig. 10. This drive mode corresponds to the primary bending vibration mode of a tripod tuning fork vibrator. In the drive mode shown in Fig. 11 (a), when the measurement tube 21 and the auxiliary vibrator 22a are moved away from each other by the vibration generator 2a, the measurement tube 21 and the auxiliary vibrator are used by the vibration generator 2b. It is obtained by vibrating the measuring tube and each auxiliary vibrator so that 22b attracts each other. The dotted line in Fig. 11 (a) shows the displacement of the measurement tube and each auxiliary vibrator, and the dashed line shows the displacement of the measurement tube and the tip of each auxiliary vibrator.
図 1 1 ( b ) に、 コリオリ流量計のコリオリカの検出モードの一例を示す。 こ の検出モードは、 三脚音叉型振動子の一次のねじり振動モードに対応している。 図 1 1 ( b ) に示す検出モードは、 駆動モードにおいて計測チューブ 2 1の内部 に測定対象の流体が流れたときのコリオリカにより生じる。 図 1 1 ( b ) に記入 した点線は、 計測チューブ及び各捕助振動体の変位を示し、 一点鎖線は、 計測チ ユーブ及ぴ各補助振動体の先端部分の変位を示している。 このねじり振動をセン サ 3 a及ぴ 3 bで検出することにより、 流体の質量流量を測定する。  Fig. 11 (b) shows an example of the Coriolis flow meter detection mode of the Coriolis flowmeter. This detection mode corresponds to the primary torsional vibration mode of the tripod tuning fork vibrator. The detection mode shown in Fig. 11 (b) is generated by Coriolis when the fluid to be measured flows inside the measurement tube 21 in the drive mode. The dotted line in Fig. 11 (b) shows the displacement of the measuring tube and each auxiliary vibrator, and the dashed line shows the displacement of the measuring tube and the tip of each auxiliary vibrator. By detecting this torsional vibration with sensors 3a and 3b, the mass flow rate of the fluid is measured.
図 1 0のコリオリ流量計は、 三脚音叉型振動子の曲げ振動モードとねじり振動 モードを利用しているので、 振動のロスが小さく、 そして流量計の使用環境にお ける外部振動の影響をほとんど受けないために高レ、感度を示す。 The Coriolis flowmeter shown in Fig. 10 uses the bending vibration mode and the torsional vibration mode of the tripod tuning fork vibrator. High sensitivity and sensitivity because it is hardly affected by external vibrations.
図 1 2は、 本発明に従うコリオリ流量計のさらに別の一例の構成を示す斜視図 である。 図 1 2のコリオリ流量計は、 補助振動体として計測チューブと同形に湾 曲しているチューブを用いること、 支持体 2 7に三つのチューブ内の流体の流れ る方向が全て同一方向となるように、 三つのチューブを直列に接続する流路 2 5 b及び 2 5 c、 直列に接続されたチューブの一方の端部に支持体を通じて流体を 供給する流路 2 5 a、 および直列に接続されたチューブの他方の端部から支持体 を通じて流体を排出する流路 2 5 dが設けられていること以外は、 図 1 0のコリ オリ流量計と同様の構成を有する。  FIG. 12 is a perspective view showing a configuration of still another example of the Coriolis flowmeter according to the present invention. The Coriolis flowmeter in Fig. 12 uses a tube that is curved in the same shape as the measurement tube as the auxiliary vibrator, and the direction of fluid flow in all three tubes is the same on the support 27. In addition, the channels 25b and 25c connecting the three tubes in series, the channel 25a supplying fluid through the support to one end of the tubes connected in series, and the channels connected in series It has the same configuration as the Coriolis flowmeter of FIG. 10 except that a flow path 25 d for discharging the fluid from the other end of the tube through the support is provided.
計測チューブ 2 1と二つの補助振動体 2 2 a及び 2 2 bを直列に接続する流路 2 5 b及び 2 5 c、 そして直列に接続された三つのチューブの一方の端部に流体 を供給する流路 2 5 a、 そして他方の端部から流体を排出する流路 2 5 dは、 必 ずしも支持体 2 7の内部に設ける必要はない。 即ち、 支持体の下方にさらに配管 を付設することによ.り、 支持体の外部において三つのチューブを直列に接続した り、 支持体の下方から流体を供給そして排出することもできる。  Fluid is supplied to flow paths 25b and 25c connecting measurement tube 21 and two auxiliary vibrators 22a and 22b in series, and to one end of three tubes connected in series It is not necessary to provide the flow channel 25a for discharging the fluid and the flow channel 25d for discharging the fluid from the other end inside the support body 27. That is, by additionally providing a pipe below the support, three tubes can be connected in series outside the support, and fluid can be supplied and discharged from below the support.
図 1 2のコリオリ流量計においては、 コリオリカが、 計測チューブ 2 1と補助 振動体 2 2 a及ぴ 2 2 bの全てに作用するため、 高い測定感度を示す。  The Coriolis flowmeter shown in Fig. 12 exhibits high measurement sensitivity because Coriolisa acts on both the measurement tube 21 and the auxiliary oscillators 22a and 22b.
本発明のコリオリ流量計は、 計測チューブに適した合金組成物を用いることに 大きな特徴がある。 従って、 本発明のコリオリ流量計には、 公知のコリオリ流量 計の構成を適用することができる。  The Coriolis flowmeter of the present invention is characterized by using an alloy composition suitable for a measuring tube. Therefore, the configuration of a known Coriolis flow meter can be applied to the Coriolis flow meter of the present invention.
[図面の簡単な説明] [Brief description of drawings]
図 1は、 本発明に従うコリオリ流量計の一例の構成を示す斜視図である。  FIG. 1 is a perspective view showing a configuration of an example of a Coriolis flow meter according to the present invention.
図 2は、 図 1のコリオリ流量計の断面図である。  FIG. 2 is a cross-sectional view of the Coriolis flow meter of FIG.
図 3は、 本発明に従うコリオリ流量計の別の一例の構成を示す斜視図である。 図 4は、 図 3のコリオリ流量計の断面図である。  FIG. 3 is a perspective view showing a configuration of another example of the Coriolis flow meter according to the present invention. FIG. 4 is a cross-sectional view of the Coriolis flow meter of FIG.
図 5は、 本発明に従うコリオリ流量計のさらに別の一例の構成を示す斜視図で ある。  FIG. 5 is a perspective view showing a configuration of still another example of the Coriolis flowmeter according to the present invention.
図 6は、 図 5のコリオリ流量計の平面図である。 図 7は、 本発明に従うコリオリ流量計のさらに別の一例の構成を示す斜視図で ある。 ' FIG. 6 is a plan view of the Coriolis flow meter of FIG. FIG. 7 is a perspective view showing a configuration of still another example of the Coriolis flowmeter according to the present invention. '
図 8は、 本発明に従ぅコリオリ流量計のさらに別の一例の構成を示す斜視図で ある。  FIG. 8 is a perspective view showing the configuration of still another example of the Coriolis flowmeter according to the present invention.
図 9は、 図 8のコリオリ流量計の平面図である。  FIG. 9 is a plan view of the Coriolis flow meter of FIG.
図 10は、 本発明に従うコリオリ流量計のさらに別の一例の構成を示す斜視図 である。  FIG. 10 is a perspective view showing a configuration of still another example of the Coriolis flow meter according to the present invention.
図 1 1の (a) は、 図 10のコリオリ流量計の駆動振動モードを示す図であり 、 (b) は、 同じコリオリ流量計の検出振動モードを示す図である。  11A is a diagram illustrating a driving vibration mode of the Coriolis flowmeter of FIG. 10, and FIG. 11B is a diagram illustrating a detection vibration mode of the same Coriolis flowmeter.
図 12は、 本発明に従うコリオリ流量計のさらに別の一例の構成を示す斜視図 である。 . 次に、 実施例を挙げて本発明を具体的に説明する。  FIG. 12 is a perspective view showing a configuration of still another example of the Coriolis flowmeter according to the present invention. Next, the present invention will be specifically described with reference to examples.
[実施例]  [Example]
第 2表に記載の合金組成物を形成する各金属材料をアーク炉に装入し、 アーク 加熱により各組成物を溶融混合した後に铸型に流し込み、 各合金組成物 (試料番 号 1〜9) のインゴッ トを作製した。 作製したインゴッ トからサンプルを切り出 し、 X線回折法により分析した結果、 作製した全ての合金組成物は、 単相固溶体 であり、 そして体心立方構造であることが確認された。  Each metal material forming the alloy composition shown in Table 2 was charged into an arc furnace, and each composition was melted and mixed by arc heating, and then poured into a mold, and each alloy composition (sample Nos. 1 to 9) was used. ) Was prepared. A sample was cut out from the prepared ingot and analyzed by X-ray diffraction. As a result, it was confirmed that all the prepared alloy compositions were single-phase solid solutions and had a body-centered cubic structure.
作製した合金組成物のそれぞれについて、 ヤング率 E、 降伏強さ c y、 極限引 張り強さ (破断強さ) σ ιι、 弾性伸ぴ限界 £ e、 破断伸ぴ ε f 、 及びビッカース 強さ Hvを測定した。 測定結果を第 2表に示す。 また、 合金組成物のヤング率 ( Τ) と純 T iのヤング率 (ET I) の比 (ΕΖΕ'Γ ) 、 合金組成物のヤング率に対 する降伏強さの比 ( σ y/E) 、 そして合金組成物のヤング率に対するピッカー ス硬さの比 (Hv/E) を計算した結果を第 2表に示す。 表 For each of the prepared alloy compositions, Young's modulus E, yield strength cy, ultimate tensile strength (rupture strength) σ ιι, elastic extension limit £ e, fracture extension ε f, and Vickers strength Hv It was measured. Table 2 shows the measurement results. The ratio of the Young's modulus of the alloy composition (Τ) to the Young's modulus of pure Ti (E TI ) (ΕΖΕ'Γ), the ratio of the yield strength to the Young's modulus of the alloy composition (σ y / E) Table 2 shows the results of calculating the ratio of Pickers hardness to Young's modulus of the alloy composition (Hv / E). table
Figure imgf000017_0001
第 2表において、 Eはヤング率、 ayは降伏強さ、 σ uは極限引張り強さ(破断強さ)、 ε θは弾性伸び限界、 は破断伸ぴ、 そして Hvはビッカース硬さを意味する。
Figure imgf000017_0001
In Table 2, E is Young's modulus, ay is the yield strength, σ u is the ultimate tensile strength (breaking strength), ε θ is the elastic elongation limit, is the breaking elongation, and Hv is the Vickers hardness. .
ヤング率が小さい材料でも、 降伏強さゃビッカース硬さが小さいと、 コリオリ 流量計に実際に使用するには好ましくない。 例えば、 計測チューブに、 ヤング率 と降伏強さの両者が小さい材料を用いた場合、 振動発生装置の駆動力により計測 チューブに塑性変形を生じて正確な流量の測定ができなくなる。 σ y ZE及び Η v ZEは、 合金組成物が計測チューブを形成する材料として好ましいかどうかを 判断するために有効であり、 これらの値は大きいほど好ましい。 σ γ ΖΕの値は 、 0 . 0 1 0以上であることが好ましく、 0 . 0 1 5以上であることがより好ま しい。 Η ν ΖΕの値は、 0 . 0 0 5以上であることが好ましい。 Even if the material has a small Young's modulus, if the yield strength / Vickers hardness is small, it is not preferable for practical use in a Coriolis flowmeter. For example, if a material with a small Young's modulus and low yield strength is used for the measurement tube, the measurement tube will be plastically deformed by the driving force of the vibration generator, making it impossible to measure the flow rate accurately. σ y ZE and Η v ZE are effective for judging whether or not the alloy composition is preferable as a material for forming a measurement tube, and the larger these values are, the more preferable. The value of σγΖΕ is preferably not less than 0.010, and more preferably not less than 0.015. The value of {ν} is preferably at least 0.05.
作製した合金組成物のヤング率は、 これまでコリオリ流量計の計測チューブに 用いられていた純 T iのほぼ半分 (第 2表に記載した EZE T iの値を参照) であ る。 また、 作製した合金組成物の降伏強さは、 従来計測チューブに用いられてい たチタンの 5倍以上であり、 ジルコニウムやステンレスの 3倍以上であり、 実用 上充分な強度であることがわかる。 従って、 作製した合金組成物が、 コリオリ流 量計の計測チューブを形成する材料として好ましいことがわかる。 Young's modulus of the alloy composition prepared is (referring to the value of EZE T i as described in Table 2) almost half of the net T i that has been used in the measurement tube of the Coriolis flowmeter to which Ru der. In addition, the yield strength of the prepared alloy composition is at least five times that of titanium conventionally used for measurement tubes, and at least three times that of zirconium or stainless steel, indicating that it is sufficiently strong for practical use. Therefore, it can be seen that the prepared alloy composition is preferable as a material for forming the measurement tube of the Coriolis flowmeter.
次に、 得られたインゴットを圧延して薄板を作製し、 筒状に曲げ加工して溶接 することによりチューブを形成した。 このチューブを切断して、 直管型の計測チ ユーブを作製した。 また、 得られたチューブに曲げ加工を行い、 U字型の計測チ ユーブを作製した。  Next, the obtained ingot was rolled to produce a thin plate, which was bent into a tube and welded to form a tube. This tube was cut to make a straight tube type measurement tube. The obtained tube was bent to produce a U-shaped measurement tube.
得られた U字型の計測チューブを用いて、 図 1、 図 1 0及び図 1 2の構成のコ リオリ流量計を作製した。 図 1 0及び図 1 2のコリオリ流量計の作製においては 、 補助振動体として、 前述の合金組成物から形成した計測チューブと同一のチュ ーブを用いた。 同様にして、 得られた直管型の計測チューブを用いて、 図 3、 図 5、 図 7及ぴ図 8の構成のコリオリ流量計をそれぞれ作製した。 図 5、 図 7及ぴ 図 8のコリオリ流量計の作製においては、 カウンタロッドとして前述の合金組成 物から形成したチューブを用いた。 そして比較のために、 純 T i製の計測チュー ブを用いて、 図 1、 図 3、 図 5、 図 7、 図 8、 図 1 0及び図 1 2の構成のコリオ リ流量計をそれぞれ作製した。  Using the obtained U-shaped measurement tube, a Coriolis flowmeter having the configuration shown in FIGS. 1, 10, and 12 was manufactured. In the production of the Coriolis flowmeter shown in FIGS. 10 and 12, the same tube as the measurement tube formed from the alloy composition was used as the auxiliary vibrator. Similarly, Coriolis flowmeters having the configurations shown in FIGS. 3, 5, 7, and 8 were produced using the obtained straight tube measurement tubes. In manufacturing the Coriolis flowmeter shown in FIGS. 5, 7, and 8, a tube formed from the above-described alloy composition was used as a counter rod. For comparison, a Coriolis flowmeter with the configuration shown in Fig. 1, Fig. 3, Fig. 5, Fig. 7, Fig. 8, Fig. 10 and Fig. 12 was fabricated using a pure Ti measurement tube. did.
作製した各コリオリ流量計の計測チューブに、 測定対象の流体として同じ流量 の水を流した。 本発明に従うコリオリ流量計の計測チューブに付設されたセンサ からの出力電圧は、 純 T iから形成された計測チューブを備えたコリオリ流量計 の場合よりも大きく、 本発明に従うコリオリ流量計の測定感度が高いことを確認 した。 - The same flow rate of water as the fluid to be measured was passed through the measurement tube of each Coriolis flowmeter that was fabricated. A sensor attached to the measuring tube of the Coriolis flow meter according to the invention The output voltage from was higher than that of a Coriolis flowmeter with a measuring tube made of pure Ti, confirming that the Coriolis flowmeter according to the present invention had higher measurement sensitivity. -
[産業上の利用可¾性] [Industrial applicability]
これまで、 コリオリ流量計を高感度とするために、 計測チューブの形状ゃコリ ォリ力の検出方法、 コリオリカを検出するセンサの高感度化など様々な手段が検 討されていた。 本発明においては、 ヤング率が 9◦ G P a以下であり、 且つ降伏 強さが 1 0 O M P a以上である合金組成物から計測チューブを形成することによ り、 測定感度の高いコリオリ流量計を得ている。 本発明に従って、 計測チューブ を形成する材料を変更するのみで、 これまでよりも高い測定感度を示すコリオリ 流量計を容易に提供することができる。  Until now, various means have been studied to increase the sensitivity of Coriolis flowmeters, such as the shape of the measuring tube, the method of detecting the Coriolis force, and increasing the sensitivity of the Corioliser sensor. In the present invention, a Coriolis flowmeter having high measurement sensitivity is formed by forming a measurement tube from an alloy composition having a Young's modulus of 9 ° GPa or less and a yield strength of 10 OMPa or more. It has gained. According to the present invention, a Coriolis flowmeter exhibiting a higher measurement sensitivity than before can be easily provided only by changing the material forming the measurement tube.

Claims

請 求 の 範 囲 The scope of the claims
1. 振動状態にある計測チューブの内部を流れる流量測定対称の流体に発生する コリオリカを検出することによって、 流体の質量流量を測定するコリオリ流量計 において、 該計測チューブが、 ヤング率が 90 G P a以下であり、 且つ降伏強さ が 10 OMP a以上である合金組成物から形成されていることを特徴とするコリ ォリ流量計。 1. In a Coriolis flowmeter that measures the mass flow rate of a fluid by detecting Coriolisa that is generated in a symmetrical fluid that flows through a measuring tube that is vibrating, the measuring tube has a Young's modulus of 90 GPa. A colorimeter which is formed from an alloy composition having a yield strength of not less than 10 OMPa.
2. 合金組成物が、 チタンを 40原子%以上含む請求の範囲 1に記載のコリオリ 流量計。 2. The Coriolis flowmeter according to claim 1, wherein the alloy composition contains at least 40 atomic% of titanium.
3. 合金組成物が、 次式で表される組成を有することを特徴とする請求の範囲 2 に記載のコリオリ流量計。 3. The Coriolis flowmeter according to claim 2, wherein the alloy composition has a composition represented by the following formula.
T i 100-a-b-c-dMaM' bM" c Vd T i 100 - a -bc-dMaM 'bM "c Vd
[但し、 Mは、 Z r、 H f のいずれか一方又は両方であり、 M' は、 Nb、 T a のいずれか一方又は両方であり、 M" は、 C r、 Mo、 W、 及ぴ S nからなる群 から選ばれる一種又は二種以上の元素であり、 a、 b、 c、 そして dはそれぞれ 、 5≤ a≤ 40, l≤b≤3ひ、 0≤ c≤ 10、 0≤ d≤ 20 10≤ a + b + c + d≤ 60を満たす数値である。 ]  [However, M is one or both of Zr and Hf, M 'is one or both of Nb and Ta, and M "is Cr, Mo, W, and Is one or more elements selected from the group consisting of S n, where a, b, c, and d are 5≤a≤40, l≤b≤3, 0≤c≤10, 0≤ d≤ 20 10≤ a + b + c + d≤ 60.]
4. 合金組成物が、 次式で表される組成を有することを特徴とする請求の範囲 3 に記載のコリオリ流量計。 4. The Coriolis flowmeter according to claim 3, wherein the alloy composition has a composition represented by the following formula.
T i lob-.-b-c-d Z r aM' bM" c Vd T i lob -.- bcd Z r a M 'bM "c Vd
5. センサを備えた流量測定対象の流体が流れる直管型の計測チューブ、 そして 該計測チューブの両側に間隔を介してそれぞれ平行に配置された二本のカウンタ 口ッドからなり、 該計測チューブの一方の端部と各カウンタロッドの一方の端部 とが一方の支持体に固定され、 また該計測チューブの他方の端部と各カウンタ口 ッドの他方の端部とが別の支持体に固定されており、 該計測チューブと各カウン タロッドのそれぞれには計測チューブと各カウンタロッドとを振動位相が逆とな るように振動させる振動発生装置が備えられ、 上記の両支持体が剛性基板上に固 定されており、 そして該計測チューブが、 ヤング率が 9 OGP a以下であり、 且 つ降伏強さが 10 OMP a以上である合金組成物から形成されていることを特徴 とするコリオリ流量計。 5. A straight tube type measuring tube provided with a sensor and through which a fluid to be subjected to flow measurement flows, and two counter ports arranged in parallel on both sides of the measuring tube with a space therebetween, and the measuring tube Is fixed to one support, and the other end of the measuring tube and the other end of each counter port are separate supports. The measuring tube and each counter Each of the rods is provided with a vibration generating device for vibrating the measuring tube and each counter rod so that the vibration phases are opposite to each other, and the two supports are fixed on a rigid substrate. A Coriolis flowmeter, wherein the tube is formed of an alloy composition having a Young's modulus of 9 OGPa or less and a yield strength of 10 OMPa or more.
6. 合金組成物が、 チタンを 40原子%以上含む請求の範囲 5に記載のコリオリ 6. The Coriolis according to claim 5, wherein the alloy composition contains at least 40 atomic% of titanium.
7. 合金組成物が、 次式で表される組成を有することを特徴とする請求の範囲 6 に記載のコリオリ流量計。 7. The Coriolis flowmeter according to claim 6, wherein the alloy composition has a composition represented by the following formula.
Τ ϊ , -.-b-c-dMaM' bM" c Vd  Τ ϊ, -.- b-c-dMaM 'bM "c Vd
[但し、 Mは、 Z r、 H f のいずれか一方又は両方であり、 M' は、 Nb、 T a のいずれか一方又は両方であり、 M" は、 C r、 Mo、 W、 及び S nからなる群 から選ばれる一種又は二種以上の元素であり、 a、 b、 c、 そして dはそれぞれ 、 5≤ a≤ 40, 1≤ b≤ 30 0≤ c≤ 10, 0≤ d≤ 20, 1 0≤ a + b + c + d≤ 60を満たす数値である。 ] .  [However, M is one or both of Zr and Hf, M 'is one or both of Nb and Ta, and M "is Cr, Mo, W, and S is one or more elements selected from the group consisting of n, where a, b, c, and d are 5≤a≤40, 1≤b≤30 0≤c≤10, 0≤d≤20, respectively , 1 0≤ a + b + c + d≤ 60.]
8. 合金組成物が、 次式で表される組成を有することを特徴とする請求の範囲 7 に記載のコリオリ流量計。 8. The Coriolis flowmeter according to claim 7, wherein the alloy composition has a composition represented by the following formula.
T i , o o-a -b-c-d Z r ,Μ' bM" cVd T i, o o- a -bcd Z r, Μ 'bM "cVd
9. 二つの支持体のそれぞれが、 弾性体を介して剛性基板に固定されていること を特徴とする請求の範囲 5に記載のコリオリ流量計。 9. The Coriolis flowmeter according to claim 5, wherein each of the two supports is fixed to a rigid substrate via an elastic body.
10. センサを備えた流量測定対象の流体が流れる湾曲型の計測チューブ、 そし て該計測チューブの両端部を固定する支持体からなり、 そして計測チューブの両 端部のそれぞれに支持体を通じて流体を流す流路が設けられている リオリ流量 計であって、 該計測チューブと同形に湾曲している二つの補助振動体が、 計測チ ユーブの両側に間隔を介してそれぞれ平行に配置されており、 計測チューブと各 補助振動体のそれぞれには計測チューブと各補助振動体とを振動位相が逆となる ように振動させる振動発生装置が備えられており、 そして該計測チューブが、 ャ ング率が 9 OGP a以下であり、 且つ降伏強さが 10 OMP a以上である合金組 成物から形成されていることを特徴とするコリオリ流量計。 10. A curved measuring tube equipped with a sensor through which the fluid to be measured flows, and a support for fixing both ends of the measuring tube. Fluid is passed through the support to each of the two ends of the measuring tube. A Rioli flow meter provided with a flow channel, and two auxiliary vibrators that are curved in the same shape as the measurement tube are connected to the measurement tube. Vibration generators are arranged in parallel on both sides of the UBE with a space between them, and each of the measurement tube and each auxiliary vibrator has a vibration generator that vibrates the measurement tube and each auxiliary vibrator so that the vibration phases are opposite. A Coriolis flowmeter, wherein the measurement tube is made of an alloy composition having a Young's modulus of 9 OGPa or less and a yield strength of 10 OMPa or more. .
1 1. 合金組成物が、 チタンを 40原子%以上含む請求の範囲 1◦に記載のコリ ォリ流量計。 1 1. The colorimeter according to claim 1, wherein the alloy composition contains at least 40 atomic% of titanium.
1 2. 合金組成物が、 次式で表される組成を有することを特徴とする請求の範囲 1 1に記載のコリオリ流量計。12. The Coriolis flowmeter according to claim 11, wherein the alloy composition has a composition represented by the following formula.
Figure imgf000022_0001
Figure imgf000022_0001
[但し、 Mは、 Z r、 H f のいずれか一方又は両方であり、 M' は、 Nb、 T a のいずれか一方又は両方であり、 M" は、 C r、 Mo、 W、 及び Snからなる群 から選ばれる一種又は二種以上の元素であり、 a、 b、' c、 そして dはそれぞれ 、 5≤ a≤ 40, 1≤ b≤ 30, 0≤ c≤ 10, 0≤ d≤ 20 , 10≤ a + b + c + d≤60を満たす数値である。 ] '  [However, M is one or both of Zr and Hf, M 'is one or both of Nb and Ta, and M "is Cr, Mo, W, and Sn A, b, 'c, and d are 5≤a≤40, 1≤b≤30, 0≤c≤10, 0≤d≤ 20, 10≤ a + b + c + d≤60.
1 3. 合金組成物が、 次式で表される組成を有することを特徴とする請求の範囲 1 2に記載のコリオリ流量計。 1 3. The Coriolis flowmeter according to claim 12, wherein the alloy composition has a composition represented by the following formula.
T i , 00-a-b_c_d Z r aM' bM" cVd T i, 00 - a - b _ c _d Z r a M 'bM "cVd
PCT/JP2002/005161 2001-05-29 2002-05-28 Coriolis flowmeter WO2002097376A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001160323A JP2002350207A (en) 2001-05-29 2001-05-29 Coriolis flowmeter
JP2001-160323 2001-05-29

Publications (1)

Publication Number Publication Date
WO2002097376A1 true WO2002097376A1 (en) 2002-12-05

Family

ID=19003756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005161 WO2002097376A1 (en) 2001-05-29 2002-05-28 Coriolis flowmeter

Country Status (2)

Country Link
JP (1) JP2002350207A (en)
WO (1) WO2002097376A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004252285A (en) 2003-02-21 2004-09-09 Fuji Photo Film Co Ltd Photosensitive composition and lithographic printing original plate using the same
JP4429116B2 (en) 2004-08-27 2010-03-10 富士フイルム株式会社 Planographic printing plate precursor and lithographic printing plate making method
JP5089866B2 (en) 2004-09-10 2012-12-05 富士フイルム株式会社 Planographic printing method
JP4574506B2 (en) 2005-03-23 2010-11-04 富士フイルム株式会社 Planographic printing plate precursor and its plate making method
JP4524235B2 (en) 2005-03-29 2010-08-11 富士フイルム株式会社 Planographic printing plate precursor
JP4701042B2 (en) 2005-08-22 2011-06-15 富士フイルム株式会社 Photosensitive planographic printing plate
JPWO2007136069A1 (en) * 2006-05-22 2009-10-01 大西 一正 Coriolis flow meter
JP2009086373A (en) 2007-09-28 2009-04-23 Fujifilm Corp Method of developing negative planographic printing plate
JP4994175B2 (en) 2007-09-28 2012-08-08 富士フイルム株式会社 Planographic printing plate precursor and method for producing copolymer used therefor
JP5714544B2 (en) 2011-09-15 2015-05-07 富士フイルム株式会社 Recycling process waste liquid
JP5819275B2 (en) 2011-11-04 2015-11-24 富士フイルム株式会社 Recycling process waste liquid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341319A (en) * 1989-07-10 1991-02-21 Yokogawa Electric Corp Coriolis mass flowmeter
JPH06109512A (en) * 1992-09-30 1994-04-19 Yokogawa Electric Corp Coriolis mass flowmeter
JPH1130543A (en) * 1997-07-11 1999-02-02 Yokogawa Electric Corp Coriolis mass flowmeter
WO2000034748A2 (en) * 1998-12-08 2000-06-15 Emerson Electric Co. Coriolis mass flow controller

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4152050B2 (en) * 1999-04-23 2008-09-17 テルモ株式会社 Ti-Zr alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341319A (en) * 1989-07-10 1991-02-21 Yokogawa Electric Corp Coriolis mass flowmeter
JPH06109512A (en) * 1992-09-30 1994-04-19 Yokogawa Electric Corp Coriolis mass flowmeter
JPH1130543A (en) * 1997-07-11 1999-02-02 Yokogawa Electric Corp Coriolis mass flowmeter
WO2000034748A2 (en) * 1998-12-08 2000-06-15 Emerson Electric Co. Coriolis mass flow controller

Also Published As

Publication number Publication date
JP2002350207A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
DK1759178T3 (en) VIBRATION TYPE TRANSDUCER
US7010989B2 (en) Vibratory transducer
US7360451B2 (en) Measuring transducer of vibration-type
US6666098B2 (en) Vibratory transducer
US8381600B2 (en) Measuring system having a measuring transducer of vibrating-type
US7325462B2 (en) Measuring transducer of vibration-type
JP3541010B2 (en) Method of increasing sensitivity by balance bar and Coriolis flowmeter therewith
RU2292014C2 (en) Vibration type measuring converter, coriolis mass flowmeter and method of operation of measuring converter
KR101649576B1 (en) Thermal stress compensation in a curved tube vibrating flow meter
WO2004099733A1 (en) Coriolis flowmeter
KR20120127491A (en) Methods of manufacturing and temperature calibrating a coriolis mass flow rate sensor
CN100565127C (en) Vibration transducer
JP2002524726A (en) Mass flow meter
WO2002097376A1 (en) Coriolis flowmeter
US9546890B2 (en) Measuring transducer of vibration-type as well as measuring system formed therewith
JP5096366B2 (en) Vibrating measurement transducer
BR112012003654B1 (en) FLOW METER, AND METHOD OF FORMING THE SAME
US4972724A (en) Coriolis-type mass flowmeter having a straight measuring tube
US6807866B2 (en) Transducer of the vibration type, such as an electromechanical transducer of the coriollis type
US7726202B2 (en) Tertiary mode vibration type coriolis flowmeter
DE102005062004A1 (en) Mass converter housing for use in coriolis mass through-flow measurement has an inner section and a vibrating mass pipe which has greater dead-point stability
JPH04291119A (en) Colioris mass flowmeter
JP4112817B2 (en) Vibrating measuring apparatus and method for measuring fluid viscosity
US20010045133A1 (en) Coriolis flowmeter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase