JPS61283827A - Mass flowmeter - Google Patents

Mass flowmeter

Info

Publication number
JPS61283827A
JPS61283827A JP12579085A JP12579085A JPS61283827A JP S61283827 A JPS61283827 A JP S61283827A JP 12579085 A JP12579085 A JP 12579085A JP 12579085 A JP12579085 A JP 12579085A JP S61283827 A JPS61283827 A JP S61283827A
Authority
JP
Japan
Prior art keywords
curved conduit
axis
conduit
curved
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12579085A
Other languages
Japanese (ja)
Other versions
JPH0455250B2 (en
Inventor
Akira Takada
明 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Engineering Co Ltd
Original Assignee
Oval Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Engineering Co Ltd filed Critical Oval Engineering Co Ltd
Priority to JP12579085A priority Critical patent/JPS61283827A/en
Publication of JPS61283827A publication Critical patent/JPS61283827A/en
Publication of JPH0455250B2 publication Critical patent/JPH0455250B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • G01F1/8477Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane with multiple measuring conduits

Abstract

PURPOSE:To increase measuring accuracy by a simple construction by giving a curved conduit a torsional oscillation that is stable against an external oscillation and controlling the amplitude of the curved conduit to an always constant value regardless of a flow rate. CONSTITUTION:A curved conduit 1 comprising a tubular body which has inlet outlet openings 2 and 3, respectively, both for a fluid to be measured and is symmetric with respect to a first axis XX' is fixedly connected to a support member 4 and constructed so as to be rotatable about a second axis YY'. Magnets 51 and 61 are provided in positions C and D, respectively, and, opposing to these magnets, electromagnetic coils 5 and 6 excited by AC currents with phases different from each other by 180 deg. are provided. When AC current flows through the coils 5 and 6, these coils 5 and 6 are alternately attracted and repulsed by the magnets 51 and 61, respectively, and the curved conduit 1 torsionally oscillates about the first axis XX' with a natural frequency omegato produce a Coriolis force in a Z direction, vertically oscillating with another natural frequency. The amplitudes of these oscillations are detected by amplitude detectors 7-1 and 7-2 and controlled to constant values through a phase-shifting circuit 102, a rectifier 104 and the like. The quantity of the control is indicated by an indicator 105 as the Coriolis force, that is, a mass flow rate.

Description

【発明の詳細な説明】 1)産業上の利用分野 本願発明はコリオリの力を利用した質量流量計に関する
DETAILED DESCRIPTION OF THE INVENTION 1) Industrial Application Field The present invention relates to a mass flowmeter that utilizes the Coriolis force.

2)従来技術 流管を流れる流体流に対して振動を与えると。2) Conventional technology When vibration is applied to the fluid flow flowing through the flow tube.

流体流の流れの向きと流管の振動軸とに対して直角方向
にコリオリの力が発生し、このコリオリのカは振動周波
数と流体の質量流量とに比例することが知られており、
特開昭54−52570号公報において開示されている
。この従来例は支持部材に流入口及び流出口をもった湾
曲導管を固着した本体形状をもっており、流体は流入口
より湾曲管を通って流出口より流出する。湾曲導管を導
管面(導管のつくる面)に対して垂直の方向に支持部固
着線(流入口と流出口とが支持されている支持部を結ん
だ線)を軸とし振動を与えると湾曲導管を流れる流体に
コリオリの力が作用し、固着線に対して垂直な軸に関し
てコリオリの力に比例した捩じり振動が生ずる。このコ
リオリの力は湾曲導管の各々の碗部が基準面を通過する
時間差から求めるようにしている。湾曲導管の加振方法
は。
It is known that a Coriolis force is generated in a direction perpendicular to the direction of the fluid flow and the vibration axis of the flow tube, and that this Coriolis force is proportional to the vibration frequency and the mass flow rate of the fluid.
It is disclosed in Japanese Patent Application Laid-Open No. 54-52570. This conventional example has a main body shape in which a curved conduit having an inlet and an outlet is fixed to a support member, and fluid flows from the inlet through the curved pipe and flows out from the outlet. When a curved conduit is vibrated in a direction perpendicular to the conduit surface (the surface on which the conduit is made) about the supporting part fixing line (the line connecting the supporting part where the inlet and outlet are supported) as an axis, the curved conduit becomes curved. A Coriolis force acts on the fluid flowing through it, producing torsional vibrations proportional to the Coriolis force about an axis perpendicular to the anchor line. This Coriolis force is determined from the time difference between each bowl portion of the curved conduit passing through the reference surface. How to excite a curved conduit.

固着線を軸として、湾曲導管と同様の固有振動数を有す
る往復部材との間で各々反対位相で振動するようにして
いる。
The curved conduit and the reciprocating member having the same natural frequency are made to vibrate in opposite phases about the fixed line as an axis.

3)発明が解決しようとする問題点 上述の従来例はコリオリの力を湾曲導管の捩じり量とし
て検出するものであり、そのために湾曲導管は導管面に
垂直方向の振動が加えられるが。
3) Problems to be Solved by the Invention In the conventional example described above, the Coriolis force is detected as the amount of twist of the curved conduit, and as a result, vertical vibrations are applied to the conduit surface of the curved conduit.

加振エネルギを小さくするために、湾曲導管の加振部か
ら支持部材までの間の腕長さを大きくする必要がある。
In order to reduce the excitation energy, it is necessary to increase the arm length between the excitation part of the curved conduit and the support member.

従って外部振動の影響を受は易く。Therefore, it is easily affected by external vibrations.

また往復動部材を付加することは、計測流体の相違によ
る密度差等により実質的な固有振動数が変化するにも拘
わらず、上記往復動部材の固有振動数は固定値である等
の問題点があった。
Additionally, adding a reciprocating member has problems such as the fact that the natural frequency of the reciprocating member is a fixed value, even though the actual natural frequency changes due to density differences due to differences in the fluid to be measured. was there.

4)問題解決の手段 本願発明は、叙上の問題点を解決するため、加振軸を湾
曲導管の固着線に対して垂直な対称軸に選らび、外部振
動に対して安定な捩じり振動を与えるようにし、この捩
じり振動による湾曲導管の振幅を流量の大きさ如何にか
かわらず常に一定に制御することによりこの制御量がコ
リオリの力の大きさ即ち質量流量に比例することを利用
して。
4) Means for solving the problem In order to solve the above-mentioned problems, the present invention selects the excitation axis as an axis of symmetry perpendicular to the fixed line of the curved conduit, and achieves stable torsion against external vibrations. By applying vibration and controlling the amplitude of the curved conduit caused by this torsional vibration to be constant regardless of the flow rate, it can be confirmed that this controlled amount is proportional to the magnitude of the Coriolis force, that is, the mass flow rate. Take advantage of it.

簡単で安定な質量流量計を提供するものである。The present invention provides a simple and stable mass flow meter.

5)実施例 第1図は本願発明の説明図である。湾曲導管1は第1の
軸XX′に関して対称な湾曲した管体であり、計測流体
の流入口2と流出口3とが開口し。
5) Embodiment FIG. 1 is an explanatory diagram of the present invention. The curved conduit 1 is a symmetrical curved tube with respect to the first axis XX', and has an inlet 2 and an outlet 3 for the measurement fluid.

該開口近傍で支持部材4に貫通されて固着されている。It is penetrated and fixed to the support member 4 near the opening.

支持部材4は湾曲導管1を支持するもので固着部A、B
を結んだ線YY’でしめされる第2の軸のまわりに湾曲
導管1が回転可能となっている。湾曲導管の固着部A、
 Bより等間隔の位置C9D点に各々磁石51.61が
固着されている。この磁石51および61と対向して電
磁コイル5(コイル■)および6(コイル■)が各々図
示しない静止面に固設されている。該電磁コイル5.6
は、後述する湾曲導管lの第1の軸XX′まわりの固有
振動数に等しい周波数の位相が1800異なる交流電流
により励磁され、磁石51および61に対する吸引1反
撥を繰返す。交流電流が各々180°異なるので磁石5
1が吸引されるときは磁石61が反撥し、このため湾曲
導管1は第1の軸XX′のまわりに固有振動数ωで捩れ
振動する。
The support member 4 supports the curved conduit 1 and has fixed parts A and B.
The curved conduit 1 is rotatable around a second axis indicated by a line YY' connecting the curved conduit 1. Fixed part A of the curved conduit,
Magnets 51 and 61 are fixed at positions C9D at equal intervals from B, respectively. Opposing the magnets 51 and 61, electromagnetic coils 5 (coil 2) and 6 (coil 2) are fixed to a stationary surface (not shown), respectively. The electromagnetic coil 5.6
is excited by an alternating current having a frequency equal to the natural frequency around the first axis XX' of the curved conduit l, which will be described later, and whose phase differs by 1800, and repeats attraction and repulsion against the magnets 51 and 61. Since the alternating currents differ by 180 degrees, magnet 5
1 is attracted, the magnet 61 is repelled, so that the curved conduit 1 torsionally vibrates around the first axis XX' at a natural frequency ω.

今第′1の軸xx’t、わりの回転が矢印ωの方向であ
る場合、流体の質量流量に比例するコリオリの力がZ方
向に生ずる。一方τの方向の場合のコリオリの力は−Z
の方向に生ずる。即ち第1の軸まわりの回転振動が一周
期の場合、湾曲導管1のxx’軸上の点Pは1往復する
。即ち固有振動数をもって上下振動する。流体の静止時
の0点及びD点の振幅に対してコリオリの力による上下
振動による振幅が加算される。この振幅は差動変圧器の
如き振幅検出器7−1.7−2からの同相分の信号を抽
出することによって検出される。差動変圧器でない光な
どの検出でもよく電磁的な速度変換形の検出器でもよい
。この振幅検出器7の信号は第3図の移相回路101.
増幅器103を介して電磁コイル■5と180°移相す
る移相回路102で移相されて電磁コイルf[6とが励
磁されるように帰還され制御される。一方振幅信号増幅
出力は整流器104で整流され増幅器103に負帰還さ
れ、振幅一定に制御される。この制御量は指示計105
で指示される。この指示量はコリオリの力、即ち質量流
量を指示する。
If the rotation about the '1st axis xx't is now in the direction of the arrow ω, a Coriolis force proportional to the mass flow rate of the fluid will occur in the Z direction. On the other hand, the Coriolis force in the direction of τ is −Z
occurs in the direction of That is, when the rotational vibration around the first axis is one cycle, the point P on the xx' axis of the curved conduit 1 makes one reciprocation. That is, it vibrates vertically with its natural frequency. The amplitude due to the vertical vibration due to the Coriolis force is added to the amplitude at the 0 point and the D point when the fluid is at rest. This amplitude is detected by extracting the in-phase signal from an amplitude detector 7-1, 7-2, such as a differential transformer. Detection of light, etc. other than a differential transformer may be used, and an electromagnetic speed conversion type detector may be used. The signal of this amplitude detector 7 is transmitted to the phase shift circuit 101 of FIG.
The phase shift circuit 102 shifts the phase of the electromagnetic coil f[6 by 180° via the amplifier 103, and is fed back and controlled so that the electromagnetic coil f[6 is excited. On the other hand, the amplitude signal amplification output is rectified by the rectifier 104 and fed back negatively to the amplifier 103, so that the amplitude is controlled to be constant. This control amount is the indicator 105
will be instructed. This indicated quantity indicates the Coriolis force, ie, the mass flow rate.

第2図は本願発明の他の実施例をしめず説明図で上述の
湾曲導管1と同形等大の湾曲導管200が導管面を平行
して配置され、流管8に各々開口固着される。湾曲導管
1 +’ 200の各々固着点A+B+およびAz B
tは第2の軸Y、Y、’及びYz Yz ’を形成し、
湾曲導管1.200を当該軸を中心に回転可能にする。
FIG. 2 is an explanatory view of another embodiment of the present invention, in which curved conduits 200 having the same shape and size as the above-mentioned curved conduit 1 are arranged parallel to each other on the conduit surface, and each opening is fixed to the flow tube 8. Fixation points A+B+ and Az B of curved conduit 1 +' 200, respectively
t forms a second axis Y, Y,' and Yz Yz';
The curved conduit 1.200 is made rotatable about the axis.

流管8内は仕切板9,10によって湾曲導管1.200
の各々に等流量分流するように支切られる6第1図の場
合と同様に磁石51゜61は各々湾曲導管1のC,、D
t点に固着される。電磁コイル5.6はC1,Dr点と
対応する湾曲導管200のCz、Dtの位置に固着され
る。
Inside the flow tube 8, a curved conduit 1.200 mm is formed by partition plates 9 and 10.
Similarly to the case shown in FIG.
It is fixed at point t. The electromagnetic coil 5.6 is fixed at the Cz and Dt positions of the curved conduit 200 corresponding to the C1 and Dr points.

これら電磁コイルの励磁電流は180°位相が相違する
。湾曲導管1,200に矢印方向の流れがある場合、湾
曲導管lと200との捩じり振動は、C1゜Ct点で吸
引、D、、D、で反撥の場合、湾曲導管1はx、x、’
の第1の軸に関してω、湾曲導管200では;の回転と
なる。この振動によるコリオリの力は、湾曲導管1にお
いてZ方向、湾曲導管200において−Z方向の変位に
よりお互いが離間する。反対の振動の場合は吸引する。
The excitation currents of these electromagnetic coils have a phase difference of 180°. When there is a flow in the direction of the arrow in the curved conduit 1, 200, the torsional vibration between the curved conduits 1 and 200 is attracted at C1°Ct point and repelled at D, , D, then the curved conduit 1 is x, x,'
For curved conduit 200, the rotation is about ω about the first axis of . The Coriolis force caused by this vibration causes the curved conduit 1 to be displaced in the Z direction, and the curved conduit 200 to be displaced in the -Z direction, thereby causing the curved conduit 200 to move away from each other. If the vibration is opposite, it will be attracted.

この変位量は、第1図の単一導管の場合の2倍となりS
/N比が向上する。この変位は捩じり振動による変位に
加算されるので、この変位を振幅検出器7−1.7−2
により同相分の信号を抽出することによって検出し、第
1図の場合と同様に第3図の制御方式により質量流量を
指示することができる。
This amount of displacement is twice that of the single conduit shown in Figure 1, and S
/N ratio is improved. This displacement is added to the displacement due to torsional vibration, so this displacement is detected by the amplitude detector 7-1.7-2.
The mass flow rate can be detected by extracting the in-phase signal, and the mass flow rate can be indicated by the control method shown in FIG. 3, as in the case of FIG.

第4図は本発明の更に他の実施例を示しており。FIG. 4 shows yet another embodiment of the invention.

いわば、第1図図示実施例における振幅検出器7−1.
7−2を1つにまとめて、第1図図示P点に配置したも
のに対応している。第1図図示P点における振動成分に
は、上述の捩じり振動にもとづく成分が実質上存在しな
い形となっている。このために、第1図図示実施例の場
合に振幅検出器7−1と7−2との夫々の検出信号のう
ちの同相成分を抽出していたが、このための信号処理が
不要となる。
So to speak, the amplitude detector 7-1 in the embodiment shown in FIG.
7-2 are combined into one and placed at point P shown in FIG. The vibration component at point P shown in FIG. 1 has a form in which there is substantially no component based on the above-mentioned torsional vibration. For this purpose, the in-phase components of the respective detection signals of the amplitude detectors 7-1 and 7-2 were extracted in the case of the embodiment shown in FIG. 1, but signal processing for this purpose is no longer necessary. .

第5図は、第4図図示の本体の駆動と指示との原理を示
すブロック図であって、第3図図示と同じ機能をはたし
ている。第5図図示の場合には光・抵抗変換素子206
を用い、上記P点の振動が一定振幅となるように制御さ
れている状態で指示・計207による指示が読取られる
FIG. 5 is a block diagram showing the principle of driving and directing the main body shown in FIG. 4, and has the same functions as shown in FIG. 3. In the case shown in FIG. 5, the optical/resistance conversion element 206
The instruction by the indicator/meter 207 is read while the vibration at the point P is controlled to have a constant amplitude.

6)効果 畝上の如く本願発明によれば、外部振動に対して影響を
受は難い涙じり駆動するためS/N比が優れ、更に零位
法による計測となるため高精度の質量流量計を最も単純
な形状構成で安価に提供することができる。
6) Effect According to the present invention, the S/N ratio is excellent because the teardrop drive is hardly affected by external vibrations, and the mass flow rate is highly accurate because the measurement is performed using the zero position method. The meter can be provided in the simplest configuration at a low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願発明の実施例、第2図および第4図は夫々
他の実施例、第3図は第1図および第2図図示の本体の
駆動と指示との原理を示すブロック図、第5図は第4図
図示の本体の駆動と指示との原理を示すブロック図であ
る。 図中、1.200は湾曲導管、2.202は流入口。 3.203は流出0.5.51.6.61は加振装置、
7.7−1.7−2は振幅検出器を表す。 特許出願人  オーバル機器工業株式会社代理人弁理士
 森 1) 寛(外2名)牙3図 指示io5
FIG. 1 is an embodiment of the present invention, FIGS. 2 and 4 are other embodiments, and FIG. 3 is a block diagram showing the principle of driving and directing the main body shown in FIGS. 1 and 2, FIG. 5 is a block diagram showing the principle of driving and directing the main body shown in FIG. 4. In the figure, 1.200 is a curved conduit, and 2.202 is an inlet. 3.203 is the outflow 0.5.51.6.61 is the vibration device,
7.7-1.7-2 represents an amplitude detector. Patent applicant Oval Equipment Industry Co., Ltd. Agent Patent attorney Mori 1) Hiroshi (2 others) Fang 3 diagram instruction io5

Claims (2)

【特許請求の範囲】[Claims] (1)第1の軸に対称でかつ当該対称位置に2つの開口
部をもつ可撓性の湾曲導管と、該湾曲導管の開口部近傍
で該湾曲導管を固着しかつ当該固着部を結ぶ第2の軸の
まわりに湾曲導管を回転可能に支持する支持部材とを有
する本体部をそなえると共に、第1の軸のまわりに上記
湾曲導管に捩じり交番振動を与える加振手段と、交番振
動による湾曲導管の上記第2の軸のまわりの振動の振幅
を検出する変位検出器と、該変位検出器の出力を一定と
する制御手段と、該制御手段の制御量を指示する指示部
とをそなえることを特徴とする質量流量計。
(1) A flexible curved conduit that is symmetrical about a first axis and has two openings at symmetrical positions, and a flexible curved conduit that is fixed near the opening of the curved conduit and that connects the fixed parts. a support member rotatably supporting the curved conduit around a second axis; a vibrating means for applying torsional alternating vibration to the curved conduit around a first axis; a displacement detector for detecting the amplitude of vibration of the curved conduit around the second axis, a control means for keeping the output of the displacement detector constant, and an instruction section for instructing the control amount of the control means. A mass flowmeter characterized by:
(2)上記湾曲導管は、第1の湾曲導管と、該第1の湾
曲導管に対して同形等大の第2の湾曲導管とを導管面が
平行するよう配置されて構成されてなることを特徴とす
る特許請求の範囲第(1)項記載の質量流量計。
(2) The curved conduit is configured by a first curved conduit and a second curved conduit having the same shape and size as the first curved conduit and arranged so that the conduit surfaces are parallel to each other. A mass flowmeter according to claim (1).
JP12579085A 1985-06-10 1985-06-10 Mass flowmeter Granted JPS61283827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12579085A JPS61283827A (en) 1985-06-10 1985-06-10 Mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12579085A JPS61283827A (en) 1985-06-10 1985-06-10 Mass flowmeter

Publications (2)

Publication Number Publication Date
JPS61283827A true JPS61283827A (en) 1986-12-13
JPH0455250B2 JPH0455250B2 (en) 1992-09-02

Family

ID=14918929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12579085A Granted JPS61283827A (en) 1985-06-10 1985-06-10 Mass flowmeter

Country Status (1)

Country Link
JP (1) JPS61283827A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0272758A2 (en) * 1986-12-23 1988-06-29 NUOVO PIGNONE-Industrie Meccaniche e Fonderia S.p.A. Improved process for the measurement of weight flowrates and related devices
EP0282217A2 (en) * 1987-03-11 1988-09-14 Schlumberger Industries Limited Mass flow measurement
JPH01136026A (en) * 1987-11-20 1989-05-29 Tokico Ltd Mass flowmeter
EP0329700A1 (en) * 1986-10-28 1989-08-30 Foxboro Co Coriolis-type mass flowmeter.
EP0456801A1 (en) * 1989-12-05 1991-11-21 Foxboro Co Electromagnetic driver and sensor.
JP2005207836A (en) * 2004-01-21 2005-08-04 Oval Corp S-shaped tube coriolis flowmeter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4469008B1 (en) 2008-11-18 2010-05-26 株式会社オーバル Coriolis flow meter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0329700A1 (en) * 1986-10-28 1989-08-30 Foxboro Co Coriolis-type mass flowmeter.
EP0272758A2 (en) * 1986-12-23 1988-06-29 NUOVO PIGNONE-Industrie Meccaniche e Fonderia S.p.A. Improved process for the measurement of weight flowrates and related devices
EP0282217A2 (en) * 1987-03-11 1988-09-14 Schlumberger Industries Limited Mass flow measurement
EP0282217A3 (en) * 1987-03-11 1989-08-23 Schlumberger Industries Limited Mass flow measurement
JPH01136026A (en) * 1987-11-20 1989-05-29 Tokico Ltd Mass flowmeter
JPH0749981B2 (en) * 1987-11-20 1995-05-31 トキコ株式会社 Vibration measuring device
EP0456801A1 (en) * 1989-12-05 1991-11-21 Foxboro Co Electromagnetic driver and sensor.
JP2005207836A (en) * 2004-01-21 2005-08-04 Oval Corp S-shaped tube coriolis flowmeter

Also Published As

Publication number Publication date
JPH0455250B2 (en) 1992-09-02

Similar Documents

Publication Publication Date Title
EP0311610B1 (en) Coriolis mass flowmeters
RU2344377C2 (en) Vibration type measuring transducer for measuring flowing fluid media and measuring device
US6883387B2 (en) Magnetic circuit arrangement for a transducer
US4628744A (en) S-tube Coriolis force flow meter
KR900006408B1 (en) Apparatus & method for continuously measuing mass flow
US4703660A (en) Apparatus and method for continuously measuring mass flow
JPH07104197B2 (en) Ferromagnetic drive and velocity sensor for Coriolis mass flowmeter
GB2208181A (en) Double-loop coriolis type mass flowmeter
JPH0718734B2 (en) Flowmeter for measuring mass flow rate in a flow of matter
JP2009511875A (en) Magnet assembly
EP0381302B1 (en) Measuring mass flow rates of fluid flows
JPS61283827A (en) Mass flowmeter
JP2023536901A (en) Transducer for vibrating fluid meter
JP2557098B2 (en) Convection inertial force flow meter
JPH0341319A (en) Coriolis mass flowmeter
JPH1151733A (en) Vibration type measuring device
JP2984134B2 (en) Coriolis flow meter
JP2801842B2 (en) Coriolis flow meter
JPH0436409Y2 (en)
JPS61102512A (en) Gyroscope device
JP2004061125A (en) Vibration type measurement device
JPH05248910A (en) Coriolis flow meter
JPS61102513A (en) Gyroscope device
JP2012026776A (en) Coriolis-type mass flowmeter
JPS61102514A (en) Gyroscope device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term