JP2012026776A - Coriolis-type mass flowmeter - Google Patents

Coriolis-type mass flowmeter Download PDF

Info

Publication number
JP2012026776A
JP2012026776A JP2010163622A JP2010163622A JP2012026776A JP 2012026776 A JP2012026776 A JP 2012026776A JP 2010163622 A JP2010163622 A JP 2010163622A JP 2010163622 A JP2010163622 A JP 2010163622A JP 2012026776 A JP2012026776 A JP 2012026776A
Authority
JP
Japan
Prior art keywords
vibration
tube
detection sensor
oscillation
coriolis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010163622A
Other languages
Japanese (ja)
Inventor
Tetsuhisa Yamada
哲久 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2010163622A priority Critical patent/JP2012026776A/en
Publication of JP2012026776A publication Critical patent/JP2012026776A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a coriolis-type mass flowmeter for making it difficult to receive the influence of disturbance oscillation or a signal noise or the like, and for reducing a circuit scale at low costs.SOLUTION: This coriolis-type mass flowmeter is configured such that measurement object fluid is made to flow in an oscillating oscillation tube, and that the oscillation tube is made to deform and oscillate with a coriolis force generated by the flow and the angular oscillation of the oscillation tube, and that the oscillation of the oscillation tube is detected by an oscillation detection sensor, and that the mass flow rate of the measurement object fluid flowing in the oscillation tube is measured, and provided with: an oscillation means for making the oscillation tube perform resonant oscillation in a secondary mode; a first oscillation detection sensor for detecting the amplitude of the oscillation tube which performs resonant oscillation in the secondary mode; a second oscillation detection sensor for detecting the amplitude of the vertical oscillation of the oscillation tube with the coriolis force; and an arithmetic control means for calculating the mass flow rate of the measurement object fluid based on the detection signal of the first oscillation detection sensor, and the oscillation means is characterized to adjust the amplitude of the oscillation based on the detection signal of the first oscillation detection sensor.

Description

本発明は、コイルおよびマグネットからなる振動手段(励振手段)により振動する振動チューブ(センサチューブ)内に被測定流体を流し、その流れと振動チューブの角振動によって生じるコリオリ力により、振動チューブを変形振動させ、振動チューブの変位を第1の振動検出センサおよび第2の振動検出センサにより検出して振動チューブ内を流れる被測定流体の質量流量を測定するコリオリ質量流量計に関し、低コストで回路規模が小さいコリオリ式質量流量計、低コストで回路規模が小さく外乱振動や信号ノイズ等の影響を受けにくいコリオリ式質量流量計に関する。   The present invention allows a fluid to be measured to flow in a vibration tube (sensor tube) that is vibrated by vibration means (excitation means) composed of a coil and a magnet, and deforms the vibration tube by the Coriolis force generated by the flow and the angular vibration of the vibration tube. A Coriolis mass flowmeter that measures the mass flow rate of a fluid to be measured that flows through the vibration tube by detecting the displacement of the vibration tube with the first vibration detection sensor and the second vibration detection sensor, and is low-cost and circuit scale The present invention relates to a Coriolis mass flow meter having a small size, a low cost, small circuit scale, and being hardly affected by disturbance vibrations or signal noise.

図4は、従来のコリオリ式質量流量計の一例を示す構成説明図であり、(A)は全体構成図、(B)、(C)は振動チューブの振動の説明図である。
図4において、従来のコリオリ式質量流量計は、被測定流体が流れる振動チューブ(センサチューブ)1を振動手段(励振手段)2により振動させ、流量に比例したコリオリ力による振動チューブ1の相対変位を2つの振動検出センサ3、4(電磁ピックアップ等)により検出する。
4A and 4B are configuration explanatory views showing an example of a conventional Coriolis mass flow meter, where FIG. 4A is an overall configuration diagram, and FIGS. 4B and 4C are explanatory diagrams of vibrations of a vibration tube.
In FIG. 4, a conventional Coriolis type mass flow meter is configured to vibrate a vibrating tube (sensor tube) 1 through which a fluid to be measured flows by a vibrating means (exciting means) 2 and relative displacement of the vibrating tube 1 by Coriolis force proportional to the flow rate. Is detected by two vibration detection sensors 3 and 4 (electromagnetic pickup or the like).

また、従来のコリオリ式質量流量計は、振動検出センサ3、4による検出信号に基づき、コリオリ力により生じた振動チューブのねじれ角に相当する量を位相差検出により算出し、質量流量を算出する演算制御手段(図示しない)も備える。   Further, the conventional Coriolis type mass flowmeter calculates the mass flow rate by calculating the amount corresponding to the torsion angle of the vibration tube caused by the Coriolis force based on the detection signals from the vibration detection sensors 3 and 4 by phase difference detection. Arithmetic control means (not shown) is also provided.

振動チューブ1は、一端に流入口を、他端に流出口(図示略)を有するベース5上に設けられ、これらの流入口および流出口と連通するように両端部がベース5に連結されたU字形のセンサ用のチューブである。
振動手段2、振動検出センサ3、4は、共にコイルおよび永久磁石などのマグネットから構成される(ボイスコイル型の振動機構、検出機構)。
The vibration tube 1 is provided on a base 5 having an inlet at one end and an outlet (not shown) at the other end, and both ends are connected to the base 5 so as to communicate with these inlet and outlet. This is a U-shaped sensor tube.
The vibration means 2 and the vibration detection sensors 3 and 4 are both composed of a magnet such as a coil and a permanent magnet (voice coil type vibration mechanism and detection mechanism).

振動チューブ1には、被測定流体の流れの方向に沿って、振動検出センサ3、振動手段2、振動検出センサ4の順にそれぞれ設置される。特に振動検出センサ3、4は、振動チューブ1のU字形状の直管部位であって互いに対向する位置に設けられる。   In the vibration tube 1, the vibration detection sensor 3, the vibration means 2, and the vibration detection sensor 4 are installed in this order along the flow direction of the fluid to be measured. In particular, the vibration detection sensors 3 and 4 are U-shaped straight tube portions of the vibration tube 1 and are provided at positions facing each other.

上記のように構成したコリオリ式質量流量計10は、主に、以下のように被測定流体の質量流量を計測する。
(1)被測定流体が、ベース5の流入口を介し振動チューブ1内に流入する。
(2)振動手段2の励振コイル等(図示せず)に(交番)電流を供給し、マグネット(図示せず)との電磁作用で振動チューブ1を振動させる。
具体的には、図4(B)のように、振動手段2は振動チューブ1を、固定端を中心にして方持ち梁状に上下に共振周波数で振動させる。
The Coriolis mass flow meter 10 configured as described above mainly measures the mass flow rate of the fluid to be measured as follows.
(1) The fluid to be measured flows into the vibrating tube 1 through the inlet of the base 5.
(2) An (alternating) current is supplied to an excitation coil or the like (not shown) of the vibration means 2 and the vibrating tube 1 is vibrated by electromagnetic action with a magnet (not shown).
Specifically, as shown in FIG. 4B, the vibration means 2 vibrates the vibration tube 1 up and down like a cantilever beam around the fixed end at a resonance frequency.

(3)振動チューブ1の上昇または下降に伴う振動速度によって被測定流体の質量に応じた大きさのコリオリ力が振動チューブ1に作用する。
このコリオリ力は、被測定流体の流入側と流出側とで反対方向を向くので、図4(C)のようにねじれが生じ、振動チューブ1は、ねじれながら振動する。このねじれ角は被測定流体の質量流量に比例する。
(3) Coriolis force having a magnitude corresponding to the mass of the fluid to be measured is applied to the vibration tube 1 due to the vibration speed associated with the rising or lowering of the vibration tube 1.
Since this Coriolis force is directed in the opposite direction on the inflow side and the outflow side of the fluid to be measured, the twist occurs as shown in FIG. 4C, and the vibration tube 1 vibrates while being twisted. This twist angle is proportional to the mass flow rate of the fluid to be measured.

ここで、振動手段2の振動方向の角速度「ω」、測定流体の流速「V」(以下、「」で囲まれた記号はベクトル量を表す。)とするとコリオリ力が働いた振動の振幅はFc=−2m「ω」×「V」で表すことができる。このため、振動検出センサ3、4によりコリオリ力に比例した振動の振幅を測定すれば、質量流量を測定することが出来る。   Here, when the angular velocity “ω” in the vibration direction of the vibration means 2 and the flow velocity “V” of the measurement fluid (hereinafter, the symbol surrounded by “” represents a vector quantity), the amplitude of the vibration caused by the Coriolis force is Fc = −2 m “ω” × “V”. For this reason, if the amplitude of vibration proportional to the Coriolis force is measured by the vibration detection sensors 3 and 4, the mass flow rate can be measured.

しかし、一般には、コリオリ力に比例した振動の振幅は、加振による振動の振幅より極めて小さく、コリオリ力に比例した振動の振幅を直接検出することが出来ない。
そこで従来のコリオリ式質量流量計は、以下の(4)、(5)のように振動検出センサ3、4で変位を検出し、チューブの変位の位相差が(コリオリ力に比例した振動の振幅)/(加振による振動の振幅)に比例することを利用してコリオリ力を測定する。
However, in general, the amplitude of vibration proportional to the Coriolis force is extremely smaller than the amplitude of vibration caused by excitation, and the amplitude of vibration proportional to the Coriolis force cannot be directly detected.
Therefore, in the conventional Coriolis type mass flow meter, the displacement is detected by the vibration detection sensors 3 and 4 as in the following (4) and (5), and the phase difference of the displacement of the tube (the amplitude of vibration proportional to the Coriolis force). ) / (Coriolis force is measured using the fact that it is proportional to the amplitude of vibration due to vibration).

(4)振動検出センサ3、4は、振動チューブ1の振動を検出し、その検出信号を信号線(図示せず)を介して制御装置(図示せず)内の演算制御手段(演算回路)へ送出する。 (4) The vibration detection sensors 3 and 4 detect the vibration of the vibration tube 1 and an operation control means (arithmetic circuit) in a control device (not shown) via a signal line (not shown) of the detection signal. To send.

(5)演算制御手段は、振動検出センサ3、4からの検出信号に基づき、位相差(時間差)から被測定流体の質量流量を算出し、その結果を表示手段(図示せず)に表示する。
なお位相差は波形がゼロをクロスする時間の差Δtとして測定出来るので、結果としてコリオリ力が測定出来る。
(5) The calculation control means calculates the mass flow rate of the fluid under measurement from the phase difference (time difference) based on the detection signals from the vibration detection sensors 3 and 4 and displays the result on the display means (not shown). .
Since the phase difference can be measured as the time difference Δt when the waveform crosses zero, the Coriolis force can be measured as a result.

このように、従来のコリオリ式質量流量計は、コイルおよびマグネットからなる振動手段(励振手段)により振動する振動チューブ(センサチューブ)内に被測定流体を流し、その流れと該振動チューブの角振動によって生じるコリオリ力により、振動チューブを変形振動させ、振動チューブの変位を第1の振動検出センサおよび第2の振動検出センサにより検出して振動チューブ内を流れる被測定流体の質量流量を測定できる。   As described above, the conventional Coriolis type mass flowmeter allows a fluid to be measured to flow in a vibration tube (sensor tube) that is vibrated by vibration means (excitation means) composed of a coil and a magnet, and the flow and angular vibration of the vibration tube. The vibration tube is deformed and vibrated by the Coriolis force generated by, and the mass flow rate of the fluid to be measured flowing through the vibration tube can be measured by detecting the displacement of the vibration tube by the first vibration detection sensor and the second vibration detection sensor.

たとえば、従来のコリオリ式質量流量計に関連する先行技術文献として下記の特許文献1がある。   For example, there is Patent Document 1 below as a prior art document related to a conventional Coriolis mass flow meter.

特開平6−317444号公報JP-A-6-317444

しかしながら、従来のコリオリ式質量流量計では、2つの振動検出センサの位相差は、数urad〜数mrad程度と大変小さく、高精度な位相差測定が必要となり、位相差演算回路の回路規模が大きく、コストの負担も大きくなってしまうという問題点があった。   However, in the conventional Coriolis type mass flowmeter, the phase difference between the two vibration detection sensors is very small, about several urads to several mrad, and high-precision phase difference measurement is required, and the circuit scale of the phase difference calculation circuit is large. There was a problem that the burden of cost would also become large.

また、従来のコリオリ式質量流量計では、コリオリ力による変位は、駆動による変位に比較し、約1/1000程度と小さいので、外乱振動が加わり、コリオリ力による変位と重なると、振動検出センサからの出力が大きく乱れてしまうという問題点があった。このため、高精度に質量流量の計測ができないという問題点があった。   In addition, in the conventional Coriolis type mass flow meter, the displacement due to the Coriolis force is as small as about 1/1000 compared to the displacement due to the drive, so when a disturbance vibration is applied and overlaps with the displacement due to the Coriolis force, the vibration detection sensor There was a problem that the output of was greatly disturbed. Therefore, there is a problem that the mass flow rate cannot be measured with high accuracy.

たとえば、振動検出センサからの出力を乱す要因としては、外乱振動のほかに、振動検出センサに混入する電磁界等による信号ノイズや、振動検出センサ出力の増幅等を行う信号処理回路の信号ノイズも、出力を乱す原因となる。   For example, factors that disturb the output from the vibration detection sensor include signal noise due to electromagnetic fields mixed in the vibration detection sensor and signal noise of the signal processing circuit that amplifies the vibration detection sensor output in addition to disturbance vibration. Cause disturbance of the output.

このような外乱振動やノイズ等による信号と、真に計りたい信号とを分離するためには、一般的にはフィルタ回路を用いるが、この回路の回路規模は大きく、コストの負担も大きいという問題点があった。   A filter circuit is generally used to separate a signal caused by such disturbance vibration or noise from a signal that is truly desired to be measured. However, this circuit has a large circuit scale and a high cost burden. There was a point.

本発明は、このような問題点を解決するものであり、その目的は、低コストで回路規模が小さいコリオリ式質量流量計、低コストで回路規模が小さく外乱振動や信号ノイズ等の影響を受けにくいコリオリ式質量流量計を実現することである。   The present invention solves such problems, and its purpose is low-cost and small-scale Coriolis mass flowmeter, low-cost and small-scale circuit, affected by disturbance vibration and signal noise. It is to realize a difficult Coriolis mass flow meter.

上記目的を達成するために、本発明のうち請求項1に記載の発明は、
振動する振動チューブ内に被測定流体を流し、その流れと該振動チューブの角振動によって生じるコリオリ力により、前記振動チューブを変形振動させ、前記振動チューブの振動を振動検出センサにより検出して前記振動チューブ内を流れる被測定流体の質量流量を測定するコリオリ質量流量計において、前記振動チューブを2次モードで共振振動させる振動手段と、2次モードで共振振動する前記振動チューブの振幅を検出する第1の振動検出センサと、コリオリ力による前記振幅チューブの上下振動の振幅を検出する第2の振動検出センサと、前記第2の振動検出センサの検出信号に基づき、被測定流体の質量流量を算出する演算制御手段を備え、前記振動手段は、前記第2の振動検出センサによる検出信号に基づいて前記振動の振幅を調整することを特徴とする。
In order to achieve the above object, the invention described in claim 1 of the present invention is:
A fluid to be measured is caused to flow through the vibrating tube, and the vibrating tube is deformed and vibrated by the flow and the Coriolis force generated by the angular vibration of the vibrating tube, and the vibration of the vibrating tube is detected by a vibration detection sensor. In a Coriolis mass flow meter for measuring a mass flow rate of a fluid to be measured flowing in a tube, a vibration means for resonantly vibrating the vibrating tube in a secondary mode and an amplitude of the vibrating tube for resonantly vibrating in the secondary mode are detected. The mass flow rate of the fluid to be measured is calculated based on the detection signal of the first vibration detection sensor, the second vibration detection sensor that detects the amplitude of the vertical vibration of the amplitude tube due to the Coriolis force, and the detection signal of the second vibration detection sensor. And a vibration control unit configured to control the amplitude of the vibration based on a detection signal from the second vibration detection sensor. Characterized by an integer.

請求項2記載の発明は、請求項1に記載のコリオリ式質量流量計において、
前記振動チューブは、U字形状から成り、前記振動手段は、前記振動チューブのU字形状の一方の直管部位に配置され、前記第1の振動検出センサは、前記振動チューブのU字形状の他方の直管部位に配置され、前記第2の振動検出センサは、前記振動チューブのU字形状の曲管部位に配置されることを特徴とする。
The invention according to claim 2 is the Coriolis type mass flow meter according to claim 1,
The vibration tube is formed in a U shape, the vibration means is disposed in one U-shaped straight tube portion of the vibration tube, and the first vibration detection sensor is formed in a U shape of the vibration tube. It is arranged in the other straight pipe part, and the second vibration detection sensor is arranged in a U-shaped curved pipe part of the vibration tube.

請求項3記載の発明は、請求項1または2に記載のコリオリ式質量流量計において、
前記振動手段は、前記第2の振動検出センサによる検出信号に基づき、前記振動チューブの2次モードの共振振動の振幅を所定の振幅に保つように調整することを特徴とする。
The invention according to claim 3 is the Coriolis mass flowmeter according to claim 1 or 2,
The vibration means adjusts the amplitude of the resonance vibration of the secondary mode of the vibration tube to a predetermined amplitude based on a detection signal from the second vibration detection sensor.

請求項4記載の発明は、請求項1〜3のいずれかに記載のコリオリ式質量流量計において、前記振動手段の前記コイルに印加される駆動信号又は前記第2の振動検出センサによる検出信号を参照信号として前記第1の振動検出センサの検出信号を同期検波する信号処理手段を備えることを特徴とする。   According to a fourth aspect of the present invention, in the Coriolis mass flowmeter according to any one of the first to third aspects, a drive signal applied to the coil of the vibration means or a detection signal from the second vibration detection sensor is provided. Signal processing means for synchronously detecting the detection signal of the first vibration detection sensor as a reference signal is provided.

請求項5記載の発明は、請求項4に記載のコリオリ式質量流量計において、前記参照信号は、前記第2の振動検出センサ付近の上下振動の周波数と略等しいことを特徴とする。   According to a fifth aspect of the present invention, in the Coriolis mass flow meter according to the fourth aspect, the reference signal is substantially equal to a frequency of vertical vibration in the vicinity of the second vibration detection sensor.

本発明によれば、振動チューブを2次モードで共振振動させる振動手段と、2次モードで共振振動する振動チューブの振幅を検出する第1の振動検出センサと、コリオリ力による振幅チューブの上下振動の振幅を検出する第2の振動検出センサと、第2の振動検出センサの検出信号に基づき、被測定流体の質量流量を算出する演算制御手段を備え、振動手段は、第1の振動検出センサによる検出信号に基づいて振動の振幅を調整することにより、質量流量に比例するコリオリ力を振動振幅により測定できるので、低コストで回路規模が小さいコリオリ式質量流量計を実現できる。   According to the present invention, the vibration means for resonating vibration of the vibration tube in the secondary mode, the first vibration detection sensor for detecting the amplitude of the vibration tube resonating in the secondary mode, and the vertical vibration of the amplitude tube by Coriolis force. And a calculation control means for calculating a mass flow rate of the fluid to be measured based on a detection signal of the second vibration detection sensor. The vibration means is a first vibration detection sensor. The Coriolis force proportional to the mass flow rate can be measured by the vibration amplitude by adjusting the amplitude of the vibration based on the detection signal by the above, so that a Coriolis type mass flow meter with a small circuit scale can be realized at a low cost.

請求項4、5によれば、振動チューブを2次モードで共振振動させる振動手段と、2次モードで共振振動する振動チューブの振幅を検出する第1の振動検出センサと、コリオリ力による振幅チューブの上下振動の振幅を検出する第2の振動検出センサと、第2の振動検出センサの検出信号に基づき被測定流体の質量流量を算出する演算制御手段を備え、振動手段は、第1の振動検出センサによる検出信号に基づいて振動の振幅を調整し、振動手段のコイルに印加される駆動信号又は第2の振動検出センサによる検出信号を参照信号として第1の振動検出センサの検出信号を同期検波する信号処理手段を備えることにより、質量流量に比例するコリオリ力を振動振幅で検出できること、コリオリ力による振動周波数が振動手段による振動周波数と等しくなることを利用することで外乱振動や信号ノイズ等の影響を受けにくく低コストで回路規模が小さいコリオリ式質量流量計を実現できる。   According to the fourth and fifth aspects, the vibration means for resonantly vibrating the vibration tube in the secondary mode, the first vibration detection sensor for detecting the amplitude of the vibration tube that resonantly vibrates in the secondary mode, and the amplitude tube based on Coriolis force A second vibration detection sensor for detecting the amplitude of the vertical vibration of the fluid, and an arithmetic control means for calculating the mass flow rate of the fluid to be measured based on the detection signal of the second vibration detection sensor. The amplitude of the vibration is adjusted based on the detection signal from the detection sensor, and the detection signal of the first vibration detection sensor is synchronized with the drive signal applied to the coil of the vibration means or the detection signal from the second vibration detection sensor as a reference signal. By providing signal processing means for detection, Coriolis force proportional to mass flow rate can be detected by vibration amplitude, and vibration frequency by Coriolis force is vibration frequency by vibration means. Utilizing be equal can be realized, the circuit scale is small Coriolis mass flowmeter in affected hardly cost of such disturbance vibration and signal noise.

本発明のコリオリ式質量流量計の一実施例を示す構成説明図である。It is composition explanatory drawing which shows one Example of the Coriolis type | mold mass flowmeter of this invention. 図1のコリオリ式質量流量計の振動チューブの振動状態の説明図である。It is explanatory drawing of the vibration state of the vibration tube of the Coriolis type | mold mass flowmeter of FIG. 本発明に係るコリオリ式質量流量計のその他の実施例の構成説明図である。It is composition explanatory drawing of the other Example of the Coriolis type | mold mass flowmeter which concerns on this invention. 従来のコリオリ式質量流量計の一例を示す構成説明図である。It is composition explanatory drawing which shows an example of the conventional Coriolis type | mold mass flowmeter.

以下、図面を参照して、本発明を詳細に説明する。図1は本発明のコリオリ式質量流量計の一実施例を示す構成説明図であり、図4と共通する部分は同一の符号を付し、適宜説明を省略する。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a structural explanatory view showing an embodiment of the Coriolis mass flow meter of the present invention. The same parts as those in FIG.

図1と図4との相違点は、振動チューブを2次モードで共振振動させる振動手段と、2次モードで共振振動する振動チューブの振幅を検出する第1の振動検出センサと、コリオリ力による振幅チューブの上下振動の振幅を検出する第2の振動検出センサと、第2の振動検出センサの検出信号に基づき、被測定流体の質量流量を算出する演算制御手段を備え、振動手段は、第1の振動検出センサによる検出信号に基づいて振動の振幅を調整することを特徴とする点、振動手段のコイルに印加される駆動信号又は第2の振動検出センサによる検出信号を参照信号として第1の振動検出センサの検出信号を同期検波する信号処理手段を備える点である。   The difference between FIG. 1 and FIG. 4 is that the vibration means for resonating the vibration tube in the secondary mode, the first vibration detection sensor for detecting the amplitude of the vibration tube resonating in the secondary mode, and the Coriolis force are used. A second vibration detection sensor for detecting an amplitude of vertical vibration of the amplitude tube; and an arithmetic control means for calculating a mass flow rate of the fluid to be measured based on a detection signal of the second vibration detection sensor. The feature is that the amplitude of vibration is adjusted based on the detection signal from the first vibration detection sensor, the drive signal applied to the coil of the vibration means or the detection signal from the second vibration detection sensor as the first reference signal. It is a point provided with the signal processing means which carries out synchronous detection of the detection signal of this vibration detection sensor.

(構成の説明)
図1において、本発明に係るコリオリ式質量流量計20は、主に、被測定流体が流れる振動チューブ1と、振動チューブ1を振動させる振動手段(励振手段)6と、2次モードで共振振動する振動チューブ1の振幅を検出する第1のピックアップ等の第1の振動検出センサ7と、流量に比例したコリオリ力による振幅チューブの上下振動の振幅(変位)を検出する第2の振動検出センサ8と、一端に流入口、他端に流出口(図示せず)を有する流体が流れる支持管等のベース5と、振動手段6のコイルに印加される駆動信号または第1の振動検出センサ7による検出信号を参照信号として第2の振動検出センサ8の検出信号を同期検波する信号処理手段9と、検波された第2の振動検出センサ8の検出信号に基づき、被測定流体の質量流量を算出する演算制御手段(図示せず)、を備える。
(Description of configuration)
In FIG. 1, a Coriolis mass flow meter 20 according to the present invention mainly includes a vibration tube 1 through which a fluid to be measured flows, a vibration means (excitation means) 6 that vibrates the vibration tube 1, and resonance vibration in a secondary mode. A first vibration detection sensor 7 such as a first pickup for detecting the amplitude of the vibrating tube 1 to be detected, and a second vibration detection sensor for detecting the amplitude (displacement) of the vertical vibration of the amplitude tube due to the Coriolis force proportional to the flow rate. 8, a base 5 such as a support tube through which a fluid having an inflow port at one end and an outflow port (not shown) at the other end, a drive signal applied to the coil of the vibration means 6, or a first vibration detection sensor 7 The signal processing means 9 for synchronously detecting the detection signal of the second vibration detection sensor 8 using the detection signal by the reference signal as the reference signal, and the mass flow rate of the fluid to be measured based on the detected detection signal of the second vibration detection sensor 8 Arithmetic control means for output (not shown), and a.

なお本発明のコリオリ式質量流量計20は、信号処理手段9を必須の構成要素とするものではない。たとえば、第2の振動検出センサ8の検出信号が外乱振動や信号ノイズの影響をほとんど受けない場合等には、信号処理手段9を備えていても備えていなくても良い。   The Coriolis mass flow meter 20 of the present invention does not include the signal processing means 9 as an essential component. For example, when the detection signal of the second vibration detection sensor 8 is hardly affected by disturbance vibration or signal noise, the signal processing means 9 may or may not be provided.

振動チューブ1は、一端に流入口を、他端に流出口(図示せず)をそれぞれ有するベース5上に設けられ、これらの流入口および流出口と連通するように両端部がベース5に連結されたU字形のセンサ用のチューブである。   The vibration tube 1 is provided on a base 5 having an inlet at one end and an outlet (not shown) at the other end, and both ends are connected to the base 5 so as to communicate with these inlet and outlet. It is the tube for the U-shaped sensor made.

振動手段6、第1の振動検出センサ7、第2の振動検出センサ8は、共にコイルおよび永久磁石などのマグネットから構成される(ボイスコイル型の振動機構、検出機構)。   The vibration means 6, the first vibration detection sensor 7, and the second vibration detection sensor 8 are all composed of a magnet such as a coil and a permanent magnet (voice coil type vibration mechanism, detection mechanism).

ベース5の内部には、流入口から伸延する流入側流路と流出口に連結する流出側流路(図示せず)とが形成されており、振動チューブ1の両端部が、これら流入側流路および流出側流路に連通するようにベース5に連結される。
したがって、流入口からベース5内に供給された被測定流体は、流入側流路を介して振動チューブ1に流入し、さらに流出側流路を介して流出口で外部へ流出する。
An inflow side flow path extending from the inflow port and an outflow side flow channel (not shown) connected to the outflow port are formed inside the base 5, and both ends of the vibration tube 1 are connected to the inflow side flow. The base 5 is connected so as to communicate with the channel and the outflow side flow path.
Therefore, the fluid to be measured supplied into the base 5 from the inflow port flows into the vibration tube 1 through the inflow side flow channel, and further flows out to the outside through the outflow side flow channel at the outflow port.

振動手段6は、振動チューブ1を2次モードで共振振動させる。振動手段6は、たとえば図1に示すように、振動チューブ1の流体の流入側におけるU字形状の直管部位に設置される。また振動手段6のマグネットは、たとえば振動検出センサ1と同様に、同磁極が励振コイルに挿入されるように配置されている。   The vibration means 6 causes the vibration tube 1 to resonate in a secondary mode. For example, as shown in FIG. 1, the vibration means 6 is installed in a U-shaped straight pipe portion on the fluid inflow side of the vibration tube 1. The magnet of the vibration means 6 is arranged so that the same magnetic pole is inserted into the excitation coil, for example, similarly to the vibration detection sensor 1.

振動手段6の(励振)コイルには、振動チューブ1の固有振動数にほぼ等しい振動数の(交番)電流が供給され、この電流供給によりマグネットに対して吸引力および反発力が作用し、両者の電磁的な相互作用によって振動チューブ1が振動する。   The (excitation) coil of the vibration means 6 is supplied with an (alternating) current having a frequency substantially equal to the natural frequency of the vibration tube 1, and by this current supply, an attractive force and a repulsive force act on the magnet. The vibration tube 1 vibrates due to the electromagnetic interaction.

また振動手段6は、第1の振動検出センサ7による検出信号に基づいて振動チューブ1の2次モードの共振振動の振幅を所定の振幅に保つように振動の振幅を調整する。
すなわちコリオリ式質量流量計20は、第1の振動検出センサ7が振動手段6による振動を検出し、この検出信号を振動手段6に出力し、振動手段6が検出信号に基づきフィードバックをかけることにより振動チューブ1の振動振幅を一定に保っている。
Further, the vibration means 6 adjusts the amplitude of the vibration based on the detection signal from the first vibration detection sensor 7 so as to keep the amplitude of the secondary mode resonance vibration of the vibration tube 1 at a predetermined amplitude.
That is, in the Coriolis mass flow meter 20, the first vibration detection sensor 7 detects the vibration caused by the vibration means 6, and outputs this detection signal to the vibration means 6, and the vibration means 6 applies feedback based on the detection signal. The vibration amplitude of the vibration tube 1 is kept constant.

第1の振動検出センサ7は、振動チューブ1の振幅(変位)を検出する。第1の振動検出センサ7は、たとえば図1に示すように、振動チューブ1のU字形状の流体の流出側の直管部位に設置される。   The first vibration detection sensor 7 detects the amplitude (displacement) of the vibration tube 1. For example, as shown in FIG. 1, the first vibration detection sensor 7 is installed in a straight tube portion on the outflow side of the U-shaped fluid of the vibration tube 1.

第2の振動検出センサ8は、振動チューブ1のコリオリ力により生じた上下振動の振幅(変位)を検出する。第2の振動検出センサ8は、たとえば図1に示すように、振動チューブ1のU字形状の曲管部位付近に設置される。   The second vibration detection sensor 8 detects the amplitude (displacement) of the vertical vibration generated by the Coriolis force of the vibration tube 1. For example, as shown in FIG. 1, the second vibration detection sensor 8 is installed in the vicinity of a U-shaped curved tube portion of the vibration tube 1.

第1の振動検出センサ7、第2の振動検出センサ8は、振動チューブ1に取付けられた検出コイルとマグネットとから構成される。各マグネットは、たとえば同磁極が検出コイルに挿入されるように配置されている。第1の振動検出センサ7、第2の振動検出センサ8は、検出コイルとマグネットとの間に相対変位が生じると、検出コイルに電磁誘導電流が流れ、振動チューブ1の振動(速度)に応じた大きさの検出信号を出力する。   The first vibration detection sensor 7 and the second vibration detection sensor 8 include a detection coil and a magnet attached to the vibration tube 1. Each magnet is arranged such that, for example, the same magnetic pole is inserted into the detection coil. In the first vibration detection sensor 7 and the second vibration detection sensor 8, when a relative displacement is generated between the detection coil and the magnet, an electromagnetic induction current flows through the detection coil, and the first vibration detection sensor 7 and the second vibration detection sensor 8 correspond to the vibration (speed) of the vibration tube 1. The detection signal of the specified size is output.

信号処理手段9は、振動手段6のコイルに印加される駆動信号または第1の振動検出センサ7による検出信号を参照信号として第2の振動検出センサ8の検出信号を同期検波する。このため、外乱振動や信号ノイズの影響について、第2の振動検出センサ8付近の上下振動の周波数以外の振動周波数成分を信号処理で除去できる。
ここで、振動手段6が振動チューブ1を2次モードで共振振動させてチューブの直管部を上下振動させているので、流体が流入して生じるコリオリ力による振動周波数は、振動手段による振動周波数と等しくなる。
つまり、上述の参照信号(駆動信号等)の振動周波数は、第2の振動検出センサ8付近の上下振動の周波数と略等しいものであることがいえる。
The signal processing means 9 synchronously detects the detection signal of the second vibration detection sensor 8 using the drive signal applied to the coil of the vibration means 6 or the detection signal from the first vibration detection sensor 7 as a reference signal. For this reason, vibration frequency components other than the vertical vibration frequency in the vicinity of the second vibration detection sensor 8 can be removed by signal processing with respect to the influence of disturbance vibration and signal noise.
Here, since the vibration means 6 causes the vibration tube 1 to resonate and vibrate in the secondary mode to vertically vibrate the straight tube portion of the tube, the vibration frequency due to the Coriolis force generated when the fluid flows in is the vibration frequency by the vibration means. Is equal to
That is, it can be said that the vibration frequency of the above-described reference signal (drive signal or the like) is substantially equal to the vertical vibration frequency in the vicinity of the second vibration detection sensor 8.

図示しない演算制御手段は、検波された第2の振動検出センサ8の検出信号に基づき、コリオリ力を測定し、被測定流体の質量流量を算出する。   An arithmetic control unit (not shown) measures the Coriolis force based on the detected detection signal of the second vibration detection sensor 8 and calculates the mass flow rate of the fluid to be measured.

図2は、図1のコリオリ式質量流量計の振動チューブの振動状態の説明図である。
図2において、振動チューブ1は、以下の説明のように振動する。
振動手段6により2次モードで励振された振動チューブ1は、内部を流れる流体の流量が0(ゼロ)のときには、U字形状の2つの直管部位が交互に上下に振動する(上昇または下降して振動する)。この振動チューブ1のU字形状の2つの直管部位は、たとえば、U字形状の曲管部位の中央部付近を基準に対称に上下に振動する。
FIG. 2 is an explanatory diagram of the vibration state of the vibration tube of the Coriolis mass flow meter of FIG.
In FIG. 2, the vibration tube 1 vibrates as described below.
When the flow rate of the fluid flowing through the vibration tube 1 excited in the secondary mode by the vibration means 6 is 0 (zero), the two U-shaped straight pipe portions vibrate up and down alternately (up or down). And vibrate). The two U-shaped straight tube portions of the vibration tube 1 vibrate up and down symmetrically with respect to, for example, the vicinity of the central portion of the U-shaped bent tube portion.

振動手段6により2次モードで励振された振動チューブ1は、内部に流体が流れ込むと、上述の振動によりコリオリ力が発生し、振動チューブ1のU字形状の曲管部位(第2の振動検出センサ8の位置)付近が、振動手段6による振動の周波数と同じ周波数で上下振動を始める。この上下振動の振幅は、流体の質量流量に比例するコリオリ力に比例する。   When a fluid flows into the vibration tube 1 excited in the secondary mode by the vibration means 6, a Coriolis force is generated by the vibration described above, and a U-shaped curved tube portion (second vibration detection) of the vibration tube 1 is generated. The vicinity of the position of the sensor 8) starts vertical vibration at the same frequency as the frequency of vibration by the vibration means 6. The amplitude of this vertical vibration is proportional to the Coriolis force proportional to the mass flow rate of the fluid.

具体的には、振動チューブ1は流体が流れ込むと、U字形状の各直管部位の上下振動にコリオリ力が加わることでねじれながら振動し、U字形状の曲管部位(第2の振動検出センサ8の位置)付近が振動手段6による振動の周波数と同じ周波数で上下振動する。   Specifically, when a fluid flows, the vibration tube 1 vibrates while being twisted by applying Coriolis force to the vertical vibration of each U-shaped straight tube portion, and the U-shaped curved tube portion (second vibration detection) The vicinity of the position of the sensor 8 vibrates up and down at the same frequency as the vibration frequency of the vibration means 6.

本発明のコリオリ式質量流量計20は、演算制御手段が、第2の振動検出チューブ8により検出された、振動チューブ1のコリオリ力に比例する上下振動振幅に基づき、被測定流体の質量流量を測定する。
いいかえれば、コリオリ式質量流量計20は、上述の構成とすることにより、質量流量に比例するコリオリ力を、振動振幅により検出できる。従って、演算制御手段の回路構成が従来のコリオリ式質量流量計のように「数urad〜数mrad程度の大変小さい位相差」を測定するための回路規模およびコストの負担が大きい位相差演算回路を必要としないで、掛け算器を主体とする構成となるので、回路規模が小さくなる点で有効である。
In the Coriolis type mass flow meter 20 of the present invention, the calculation control means determines the mass flow rate of the fluid to be measured based on the vertical vibration amplitude proportional to the Coriolis force of the vibration tube 1 detected by the second vibration detection tube 8. taking measurement.
In other words, the Coriolis type mass flow meter 20 can detect the Coriolis force proportional to the mass flow rate by the vibration amplitude by adopting the above-described configuration. Therefore, the circuit configuration of the calculation control means is a phase difference calculation circuit with a large circuit scale and cost burden for measuring “a very small phase difference of about several urads to several mrad” like a conventional Coriolis mass flowmeter. This is not necessary and is mainly composed of a multiplier, which is effective in reducing the circuit scale.

なお、第1の振動検出センサ7と振動手段6とは、接続線を介して電気的に接続される。演算制御手段は、信号処理手段9と接続線を介して電気的に接続される。また、信号処理手段9は、第1の振動検出センサ7および第2の振動検出センサ8と接続線を介してそれぞれ電気的に接続される。演算制御手段は、第1の振動検出センサ7と第2の振動検出センサ8と接続線を介してそれぞれ電気的に接続されるものでもよい。   Note that the first vibration detection sensor 7 and the vibration means 6 are electrically connected via a connection line. The arithmetic control means is electrically connected to the signal processing means 9 via a connection line. Further, the signal processing means 9 is electrically connected to the first vibration detection sensor 7 and the second vibration detection sensor 8 via connection lines, respectively. The arithmetic control means may be electrically connected to the first vibration detection sensor 7 and the second vibration detection sensor 8 via connection lines, respectively.

(動作の説明)
本発明のコリオリ質量流量計20は、上述のような構成で、主に、以下のように被測定流体の質量流量を計測する。
(1)振動手段6の励振コイル等(図示せず)に電流を供給し、マグネット(図示せず)との電磁作用により振動チューブ1を2次モードで共振振動させる。
(2)第1の振動検出センサ7は、振動チューブ1の振幅(変位)を検出し、この検出信号を振動手段6に出力する。
(Description of operation)
The Coriolis mass flowmeter 20 of the present invention has the configuration as described above, and mainly measures the mass flow rate of the fluid to be measured as follows.
(1) A current is supplied to an excitation coil or the like (not shown) of the vibration means 6 to resonate and vibrate the vibration tube 1 in the secondary mode by electromagnetic action with a magnet (not shown).
(2) The first vibration detection sensor 7 detects the amplitude (displacement) of the vibration tube 1 and outputs this detection signal to the vibration means 6.

(3)振動手段6は、第1の振動検出センサ7からの検出信号に基づきフィードバックをかけることにより振動チューブ1の振動振幅を一定に保つ。
このとき(流量が0のとき)、U字形状の2つの直管部位が交互に上下に振動し、たとえば、U字形状の2つの直管部位は、U字形状の曲管部位の中央部付近を基準に対称に上下に振動する。
(3) The vibration means 6 keeps the vibration amplitude of the vibration tube 1 constant by applying feedback based on the detection signal from the first vibration detection sensor 7.
At this time (when the flow rate is 0), the two U-shaped straight pipe portions vibrate up and down alternately. For example, the two U-shaped straight pipe portions are at the center of the U-shaped curved pipe portion. Vibrates up and down symmetrically around the vicinity.

(4)被測定流体が、ベース5の流入口を介し振動チューブ1内に流入する。このとき(流体が流入したとき)、振動チューブ1は、U字形状の2つの直管部位の上下振動にコリオリ力が加わることでねじれながら振動し、U字形状の曲管部位(第2の振動検出センサ8の位置)付近が振動手段6による振動の周波数と同じ周波数で上下振動する。
(5)第2の振動検出センサ8は、振動チューブ1のコリオリ力により生じた上下振動の振幅(変位)を検出する。
(4) The fluid to be measured flows into the vibrating tube 1 through the inlet of the base 5. At this time (when the fluid flows in), the vibrating tube 1 vibrates while twisting by applying Coriolis force to the vertical vibration of the two U-shaped straight tube portions, and the U-shaped bent tube portion (second The vicinity of the position of the vibration detection sensor 8 vibrates up and down at the same frequency as the vibration frequency of the vibration means 6.
(5) The second vibration detection sensor 8 detects the amplitude (displacement) of the vertical vibration generated by the Coriolis force of the vibration tube 1.

(6)信号処理手段9は、振動手段6のコイルに印加される駆動信号または第1の振動検出センサ7による検出信号を参照信号として第2の振動検出センサ8の検出信号を同期検波する。
このため、外乱振動や信号ノイズの影響について、第2の振動検出センサ8付近の上下振動の周波数以外の振動周波数成分を信号処理で除去できる。
(7)演算制御手段は、検波された第2の振動検出センサ8の検出信号に基づき、被測定流体の質量流量を算出し、その結果を表示手段(図示せず)に表示する。
(6) The signal processing means 9 synchronously detects the detection signal of the second vibration detection sensor 8 using the drive signal applied to the coil of the vibration means 6 or the detection signal from the first vibration detection sensor 7 as a reference signal.
For this reason, vibration frequency components other than the vertical vibration frequency in the vicinity of the second vibration detection sensor 8 can be removed by signal processing with respect to the influence of disturbance vibration and signal noise.
(7) The calculation control means calculates the mass flow rate of the fluid to be measured based on the detected detection signal of the second vibration detection sensor 8, and displays the result on the display means (not shown).

この結果、本発明に係るコリオリ式質量流量計は、振動チューブを2次モードで共振振動させる振動手段と、2次モードで共振振動する振動チューブの振幅を検出する第1の振動検出センサと、コリオリ力による振幅チューブの上下振動の振幅を検出する第2の振動検出センサと、第2の振動検出センサの検出信号に基づき、被測定流体の質量流量を算出する演算制御手段を備え、振動手段は、第1の振動検出センサによる検出信号に基づいて振動の振幅を調整することにより、質量流量に比例するコリオリ力を振動振幅により測定できるので、低コストで回路規模が小さいコリオリ式質量流量計を実現できる。   As a result, the Coriolis mass flowmeter according to the present invention includes a vibration unit that resonates and vibrates the vibration tube in the secondary mode, a first vibration detection sensor that detects the amplitude of the vibration tube that resonates and vibrates in the secondary mode, A second vibration detection sensor for detecting the amplitude of the vertical vibration of the amplitude tube due to the Coriolis force, and an arithmetic control means for calculating the mass flow rate of the fluid to be measured based on the detection signal of the second vibration detection sensor; Adjusts the amplitude of vibration based on the detection signal from the first vibration detection sensor, so that the Coriolis force proportional to the mass flow rate can be measured by the vibration amplitude. Can be realized.

つまり、本発明によれば、上述のような構成としたことにより質量流量に比例するコリオリ力を振動振幅で検出できるので、従来のコリオリ式質量流量計のように「数urad〜数mrad程度の大変小さい位相差」を測定するための回路規模およびコストの負担が大きい位相差演算回路を必要せずに、外乱振動や信号ノイズの影響を受けにくいコリオリ流量計を実現できる点で有効である。   That is, according to the present invention, since the Coriolis force proportional to the mass flow rate can be detected by the vibration amplitude by adopting the above-described configuration, it is “a few urad to several mrad or so, as in the conventional Coriolis mass flowmeter. This is effective in that a Coriolis flowmeter that is less susceptible to disturbance vibration and signal noise can be realized without requiring a phase difference calculation circuit that requires a large circuit scale and cost for measuring a “very small phase difference”.

また、本発明に係るコリオリ式質量流量計は、本発明に係るコリオリ式質量流量計は、振動チューブを2次モードで共振振動させる振動手段と、2次モードで共振振動する振動チューブの振幅を検出する第1の振動検出センサと、コリオリ力による振幅チューブの上下振動の振幅を検出する第2の振動検出センサと、第2の振動検出センサの検出信号に基づき、被測定流体の質量流量を算出する演算制御手段を備え、振動手段は、第1の振動検出センサによる検出信号に基づいて振動の振幅を調整し、振動手段のコイルに印加される駆動信号又は第2の振動検出センサによる検出信号を参照信号として第2の振動検出センサの検出信号を同期検波する信号処理手段を備えることにより、外乱振動や信号ノイズ等の影響を受けにくく、低コストで回路規模が小さいコリオリ式質量流量計を実現できる。   Further, the Coriolis mass flow meter according to the present invention is the same as the Coriolis mass flow meter according to the present invention in that the vibration means for resonating vibration of the vibration tube in the secondary mode and the amplitude of the vibration tube resonating in the secondary mode are used. Based on the detection signal of the first vibration detection sensor for detection, the second vibration detection sensor for detecting the amplitude of the vertical vibration of the amplitude tube due to the Coriolis force, and the detection signal of the second vibration detection sensor, the mass flow rate of the fluid to be measured is determined. Computation control means for calculating is provided, and the vibration means adjusts the amplitude of vibration based on the detection signal from the first vibration detection sensor, and the drive signal applied to the coil of the vibration means or detection by the second vibration detection sensor By providing a signal processing means for synchronously detecting the detection signal of the second vibration detection sensor using the signal as a reference signal, it is less susceptible to disturbance vibration and signal noise, and is low in cost. Possible to realize a small circuit scale Coriolis mass flowmeter.

つまり、本発明によれば、上述のような構成としたことにより質量流量に比例するコリオリ力を振動振幅により測定すること、及び、コリオリ力による振動周波数が振動手段による振動周波数と等しくなること、を利用すれば、従来のコリオリ式質量流量計のように、振動による変位と比較して約1/1000程度と小さいコリオリ力による変位を振動検出センサに混入する信号ノイズや外乱振動による信号を分離して取得するための回路規模およびコストの負担が大きいフィルタ回路を必要とせずに、外乱振動や信号ノイズの影響を受けにくいコリオリ流量計を実現できる点で有効である。   That is, according to the present invention, the Coriolis force proportional to the mass flow rate is measured by the vibration amplitude by the configuration as described above, and the vibration frequency by the Coriolis force is equal to the vibration frequency by the vibration means. Can be used to separate signal noise and disturbance vibration signals that are mixed in the vibration detection sensor with displacement due to Coriolis force, which is about 1/1000 smaller than the displacement caused by vibration, as in conventional Coriolis mass flowmeters. Therefore, it is effective in that a Coriolis flowmeter that is not easily affected by disturbance vibration and signal noise can be realized without requiring a filter circuit having a large circuit scale and cost burden for acquisition.

なお、本発明に係るコリオリ式質量流量計は、振動チューブ1の形状はU字形チューブに限らず図3のように直管形状であってもよい。
図3は本発明に係るコリオリ式質量流量計のその他の実施例の構成説明図であり、図1と共通する部分は同一の符号を付し、適宜説明を省略する。図3おいて、振動チューブ1は直管状に形成される。振動チューブ1には、被測定流体の流れの方向に沿って、振動手段6、第1の振動検出センサ7、第2の振動検出センサ8の順にそれぞれ設置される。
In the Coriolis mass flow meter according to the present invention, the shape of the vibration tube 1 is not limited to the U-shaped tube, and may be a straight tube shape as shown in FIG.
FIG. 3 is an explanatory view of the configuration of another embodiment of the Coriolis mass flow meter according to the present invention, and the same parts as those in FIG. In FIG. 3, the vibration tube 1 is formed in a straight tube shape. In the vibration tube 1, the vibration means 6, the first vibration detection sensor 7, and the second vibration detection sensor 8 are installed in this order along the direction of flow of the fluid to be measured.

20 コリオリ質量流量計
1 振動チューブ
5 ベース
6 振動手段
7 第1の振動検出センサ
8 第2の振動検出センサ
9 信号処理手段
DESCRIPTION OF SYMBOLS 20 Coriolis mass flowmeter 1 Vibrating tube 5 Base 6 Vibrating means 7 1st vibration detection sensor 8 2nd vibration detection sensor 9 Signal processing means

Claims (5)

振動する振動チューブ内に被測定流体を流し、その流れと該振動チューブの角振動によって生じるコリオリ力により、前記振動チューブを変形振動させ、前記振動チューブの振動を振動検出センサにより検出して前記振動チューブ内を流れる被測定流体の質量流量を測定するコリオリ質量流量計において、
前記振動チューブを2次モードで共振振動させる振動手段と、
2次モードで共振振動する前記振動チューブの振幅を検出する第1の振動検出センサと、
コリオリ力による前記振幅チューブの上下振動の振幅を検出する第2の振動検出センサと、
前記第2の振動検出センサの検出信号に基づき、被測定流体の質量流量を算出する演算制御手段を備え、
前記振動手段は、前記第2の振動検出センサによる検出信号に基づいて前記振動の振幅を調整することを特徴とするコリオリ式質量流量計。
A fluid to be measured is caused to flow through the vibrating tube, and the vibrating tube is deformed and vibrated by the flow and the Coriolis force generated by the angular vibration of the vibrating tube, and the vibration of the vibrating tube is detected by a vibration detection sensor. In the Coriolis mass flowmeter that measures the mass flow rate of the fluid to be measured flowing in the tube,
Vibration means for resonantly vibrating the vibration tube in a secondary mode;
A first vibration detection sensor that detects an amplitude of the vibration tube that resonates in a secondary mode;
A second vibration detection sensor for detecting the amplitude of vertical vibration of the amplitude tube due to Coriolis force;
Computation control means for calculating the mass flow rate of the fluid to be measured based on the detection signal of the second vibration detection sensor,
The Coriolis mass flowmeter, wherein the vibration means adjusts an amplitude of the vibration based on a detection signal from the second vibration detection sensor.
前記振動チューブは、U字形状から成り、
前記振動手段は、前記振動チューブのU字形状の一方の直管部位に配置され、
前記第1の振動検出センサは、前記振動チューブのU字形状の他方の直管部位に配置され、
前記第2の振動検出センサは、前記振動チューブのU字形状の曲管部位に配置されることを特徴とする請求項1記載のコリオリ式質量流量計。
The vibrating tube has a U shape,
The vibration means is disposed in one U-shaped straight tube portion of the vibration tube,
The first vibration detection sensor is disposed on the other U-shaped straight tube portion of the vibration tube,
2. The Coriolis mass flow meter according to claim 1, wherein the second vibration detection sensor is disposed in a U-shaped curved pipe portion of the vibration tube.
前記振動手段は、前記第2の振動検出センサによる検出信号に基づき、前記振動チューブの2次モードの共振振動の振幅を所定の振幅に保つように調整することを特徴とする請求項1または2記載のコリオリ式質量流量計。   The said vibration means adjusts so that the amplitude of the resonant vibration of the secondary mode of the said vibration tube may be maintained to predetermined | prescribed amplitude based on the detection signal by the said 2nd vibration detection sensor. Coriolis type mass flow meter as described. 前記振動手段の前記コイルに印加される駆動信号又は前記第2の振動検出センサによる検出信号を参照信号として前記第1の振動検出センサの検出信号を同期検波する信号処理手段を備えることを特徴とする請求項1〜3のいずれかに記載のコリオリ式質量流量計。   And a signal processing means for synchronously detecting the detection signal of the first vibration detection sensor using a drive signal applied to the coil of the vibration means or a detection signal from the second vibration detection sensor as a reference signal. The Coriolis type mass flowmeter according to any one of claims 1 to 3. 前記参照信号は、前記第2の振動検出センサ付近の上下振動の周波数と略等しいことを特徴とする請求項4記載のコリオリ式質量流量計。   5. The Coriolis mass flowmeter according to claim 4, wherein the reference signal is substantially equal to a frequency of vertical vibration in the vicinity of the second vibration detection sensor.
JP2010163622A 2010-07-21 2010-07-21 Coriolis-type mass flowmeter Pending JP2012026776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010163622A JP2012026776A (en) 2010-07-21 2010-07-21 Coriolis-type mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010163622A JP2012026776A (en) 2010-07-21 2010-07-21 Coriolis-type mass flowmeter

Publications (1)

Publication Number Publication Date
JP2012026776A true JP2012026776A (en) 2012-02-09

Family

ID=45779899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010163622A Pending JP2012026776A (en) 2010-07-21 2010-07-21 Coriolis-type mass flowmeter

Country Status (1)

Country Link
JP (1) JP2012026776A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113196016A (en) * 2018-12-21 2021-07-30 恩德斯+豪斯流量技术股份有限公司 Coriolis mass flowmeter with magnetic field detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113196016A (en) * 2018-12-21 2021-07-30 恩德斯+豪斯流量技术股份有限公司 Coriolis mass flowmeter with magnetic field detector

Similar Documents

Publication Publication Date Title
US6883387B2 (en) Magnetic circuit arrangement for a transducer
KR101277309B1 (en) Coriolis flow meter with improved mode separation
KR101744480B1 (en) Collocated sensor for a vibrating fluid meter
KR20100099321A (en) Method and apparatus for force balancing of a coriolis flow meter
JP2008064544A (en) Oscillation-type measuring apparatus
KR101359295B1 (en) Method and apparatus for vibrationaly separating driver and pick-offs of a vibrating-type flow sensor assembly
EP1729099B1 (en) Tertiary mode oscillatory coriolis flowmeter
JP2012510072A (en) Method and apparatus for vibrating a flow tube of a vibratory flow meter
JP5247048B2 (en) Coriolis mass flow meter
JP2012026776A (en) Coriolis-type mass flowmeter
KR101250855B1 (en) A flow meter including a balanced reference member
JP2007263859A (en) Vibration type measurement device
RU2155939C2 (en) Coriolis flowmeter and method of measurement of flow rate with its use ( variants )
JP2007024505A (en) Coriolis flowmeter equipped with flow tube of double loop structure
JP2012013648A (en) Coriolis mass flowmeter
JPH1151733A (en) Vibration type measuring device
JP6161644B2 (en) Method and apparatus for vibrating a flow tube of a vibratory flow meter
JP2012026775A (en) Coriolis-type mass flowmeter
JP2014006230A (en) Coriolis flowmeter
JP2012184994A (en) Coriolis flowmeter
JP2007051942A (en) Mass flowmeter
JP2005164264A (en) Oscillation-type measurement apparatus
JP2004294090A (en) Oscillating type measuring device
JP2010223804A (en) Vibration-type measuring device