JPS58123367A - High voltage power source - Google Patents

High voltage power source

Info

Publication number
JPS58123367A
JPS58123367A JP346282A JP346282A JPS58123367A JP S58123367 A JPS58123367 A JP S58123367A JP 346282 A JP346282 A JP 346282A JP 346282 A JP346282 A JP 346282A JP S58123367 A JPS58123367 A JP S58123367A
Authority
JP
Japan
Prior art keywords
voltage
output
transformer
power supply
load current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP346282A
Other languages
Japanese (ja)
Other versions
JPH0527341B2 (en
Inventor
Koji Suzuki
鈴木 孝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP346282A priority Critical patent/JPS58123367A/en
Publication of JPS58123367A publication Critical patent/JPS58123367A/en
Publication of JPH0527341B2 publication Critical patent/JPH0527341B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To obtain accurate limiting function in a high voltage power source by allowing an output voltage control loop which limits an output voltage at the prescribed value at the time when a load impedance increases to relate to a control loop which maintains the load current constant. CONSTITUTION:When the output power of an attenuator 20 exceeds the prescribed value, and the output of a comparator OA2 is inverted to turn a transistor Tr1 ON, thereby interrupting the input to the primary side power feeding circuit of a transformer T1 by the output of a differential amplifier OA2. Charge stored in a condenser C3 is discharged upon interruption of this input, the output of the comparator OA2 is again inverted to the original state, thereby turning the transistor Tr1 OFF. When the output of the transformer T1 tends to exceed the limit value which is determined by the Zener voltage of a Zener diode ZD1, the transistor Tr1 repeats ON and OFF and maintains the output of the transformer T1 at the limiting value.

Description

【発明の詳細な説明】 本発明は高圧電源装置に関し、特に複写機用定電流出力
高圧電源装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high voltage power supply, and more particularly to a constant current output high voltage power supply for a copying machine.

この種の高圧電源装置は、昇圧トランスを介して高圧出
力を負荷に印加するように構成されており、例えば複写
機の高圧帯電等に適用されている。
This type of high-voltage power supply device is configured to apply high-voltage output to a load via a step-up transformer, and is applied, for example, to high-voltage charging of copying machines.

この場合、感光ドラムや帯電器の絶縁強度一杯まで使用
されることが普通で、特に定電流制御方式の場合には、
負荷電流を一定に制御するため、しばしば印加電圧が絶
縁強度の限界を超えて画像に悪影響を与え、更にはドラ
ムにピンホールができてドラム寿命を低下させることが
しばしばあった。
In this case, it is common to use the photosensitive drum and charger to their full insulation strength, especially in the case of a constant current control method.
In order to control the load current at a constant level, the applied voltage often exceeds the limit of insulation strength, adversely affecting the image, and furthermore, pinholes are formed in the drum, often shortening the life of the drum.

従って、従来このような定電流出力高圧電源装置に於い
ては、昇圧トランスの入力電圧に一定のりミッタをかけ
て、トランス自身の定電圧特性で、負荷への印加電圧の
抑制を計ると共に、負荷開放時にも一定電圧以上出力さ
れないように構成している。しかしながら、この方式に
よると、使用さ性を向上するために、リーケージフラッ
クスの多いトランスを使用すると電力効率が低下する等
の欠点があった。また他の従来例として、負荷への印加
電圧を抑制するためにトランスの2次側に出力電圧検知
用の巻線を設けて、この巻線による検出電圧値に基づい
て入力側のリミッタを動作させているが、トランスの出
力(2次側)巻線に誘起される電圧が高圧であるため、
検知用巻線との結合度を高めることができず、リミッタ
の精度が著しく低下する等の欠点があった。
Therefore, in conventional constant current output high voltage power supplies, a constant limiter is applied to the input voltage of the step-up transformer, and the voltage applied to the load is suppressed using the constant voltage characteristics of the transformer itself. It is configured so that the output voltage does not exceed a certain level even when the circuit is open. However, this system has drawbacks such as reduced power efficiency when a transformer with a large amount of leakage flux is used to improve usability. Another conventional example is to provide a winding for output voltage detection on the secondary side of the transformer in order to suppress the voltage applied to the load, and operate a limiter on the input side based on the voltage value detected by this winding. However, since the voltage induced in the output (secondary side) winding of the transformer is high,
There were drawbacks such as the inability to increase the degree of coupling with the detection winding, and the accuracy of the limiter was significantly reduced.

:): 本発明は上記の点に鑑みてなされたもので、電力効率を
落したりトランスのバラツキで変動することの無い、高
精度の電圧″リミッタ機能を有する高圧電源装置を提供
することを目的とし、この目的を達成するために本発明
では、負荷電流の検出電圧に基づいて負荷電流が一定に
なるように、またトランス2次側の分圧電圧に基づいて
出力が所定範囲になるようにトランス1次側を夫々制御
することを特徴としている。
:): The present invention has been made in view of the above points, and an object thereof is to provide a high-voltage power supply device having a highly accurate voltage limiter function that does not reduce power efficiency or fluctuate due to variations in transformers. In order to achieve this objective, the present invention makes it possible to keep the load current constant based on the detected voltage of the load current, and to keep the output within a predetermined range based on the divided voltage on the secondary side of the transformer. It is characterized by controlling the primary side of each transformer.

以下、本発明の実施例を添付された図面と共に説明する
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は、本発明に係る高圧電源装置の一実施例の回路
図であり、OAlは差動増幅回路10を構成する演算増
幅器で、入力端子P1からの基準入力と後述する負荷電
流に応じた検出電圧の差動増幅を行う。ここで、Dl、
D2は保護用ダイオード、R,IR2,R,は抵抗、C
l=C2はコンデンサ、12は差動増幅回路10の出力
を増幅するダーリントン接続されたトランジスタTr2
. Tr3からなる増幅回路である。なお、R4は演算
増幅器OA1の出力抵抗であり、増幅回路12において
、R6は抵抗、D、。
FIG. 1 is a circuit diagram of an embodiment of the high-voltage power supply device according to the present invention, and OAl is an operational amplifier constituting a differential amplifier circuit 10, which responds to a reference input from an input terminal P1 and a load current to be described later. The detected voltage is differentially amplified. Here, Dl,
D2 is a protection diode, R, IR2, R are resistors, C
l=C2 is a capacitor; 12 is a Darlington-connected transistor Tr2 that amplifies the output of the differential amplifier circuit 10;
.. This is an amplifier circuit consisting of Tr3. Note that R4 is the output resistance of the operational amplifier OA1, and in the amplifier circuit 12, R6 is the resistance D.

D6はダイオード、C3はコンデンサである。また、増
幅回路12の入力段のトランジスタTr2のベースには
、入力端子P2からの基準入力と後述するトランス2次
側の分圧電圧の検出値に基づいて動作するトランジスタ
Tr1のコレクタが接続されている。
D6 is a diode, and C3 is a capacitor. Further, the base of the transistor Tr2 in the input stage of the amplifier circuit 12 is connected to the collector of a transistor Tr1 that operates based on a reference input from the input terminal P2 and a detected value of a divided voltage on the secondary side of the transformer, which will be described later. There is.

ここでR7,R8,R,は抵抗、D、、D4はダイオー
ドである。14は前述した増幅回路12の出力段のトラ
ンジスタTr3のエミッタに接続されたタンク回路で、
抵抗R1(1+コンデンサC4から構成されている。ま
た、T1はコンバータトランスで、このトランスT、と
、タンク回路14にダイオードD、を介して接続された
トランジスタTr4により自励式スイッチングコンバー
タ16が構成されている。ここで、RI2は抵抗、C6
はコンデンサである。18は整流ダイオードD8、出力
抵抗R13から構成された整流回路で、この整流回路1
8の出力として得られる+7〜+10にVの高圧直流が
出力端子P3を介して図示されない帯電器に給電される
。また、20は減衰回路でトランスT、の出力を分圧抵
抗R,4,R,5により所定の分割比に減衰させる。こ
こでC0はコンデンサであり、R16は負荷電流のサン
プリング抵抗で、この抵抗R16で検出された電圧と、
入力端子P1に加えられた基準電圧と前述した演算増幅
器OA1で差動増幅される。22は演算増幅器からなる
比較器OA2から構成される比較回路で、この比較器O
A2でトランスT、の2次側出力電圧を抵抗R141R
15による所定の分圧比で分圧した値と定電圧ダイオー
ドZD、でつくられた基準電圧とが比較される。なお、
この比較器OA2には振動を無くするために抵抗R1?
で正帰還をかけて比較レベルにわずかなヒステリシスを
もたせている。
Here, R7, R8, and R are resistors, and D, , and D4 are diodes. 14 is a tank circuit connected to the emitter of the transistor Tr3 in the output stage of the aforementioned amplifier circuit 12;
It is composed of a resistor R1 (1+capacitor C4). Also, T1 is a converter transformer, and a self-excited switching converter 16 is constructed by this transformer T and a transistor Tr4 connected to the tank circuit 14 via a diode D. Here, RI2 is a resistor, C6
is a capacitor. 18 is a rectifier circuit composed of a rectifier diode D8 and an output resistor R13;
A high-voltage direct current of +7 to +10V obtained as the output of the output terminal P3 is supplied to a charger (not shown) through the output terminal P3. Further, 20 is an attenuation circuit that attenuates the output of the transformer T to a predetermined division ratio using voltage dividing resistors R, 4, R, and 5. Here, C0 is a capacitor, R16 is a sampling resistor for the load current, and the voltage detected by this resistor R16 and
Differential amplification is performed between the reference voltage applied to the input terminal P1 and the aforementioned operational amplifier OA1. 22 is a comparison circuit composed of a comparator OA2 consisting of an operational amplifier;
A2 connects the secondary output voltage of the transformer T to the resistor R141R.
15 at a predetermined voltage division ratio and a reference voltage created by a constant voltage diode ZD. In addition,
This comparator OA2 has a resistor R1 to eliminate vibration.
Positive feedback is applied to give a slight hysteresis to the comparison level.

ここでり、、 D、。は保護用ダイオード*  RIO
及びR1g〜R20は抵抗、C7〜C0はコンデンサで
ある。ましその電源電位が供給されると共に、このフロ
ーティング電源VCのマイナス側は負荷電流の検出点即
ちトランスT1の出力巻線の基準側と抵抗R16の交点
に接続されている。これによって、抵抗R14゜RI5
の分割点に加算された抵抗RI6による負荷電流の電圧
変換分は完全に除去できる。
Here, D. is a protection diode* RIO
and R1g to R20 are resistors, and C7 to C0 are capacitors. In addition to being supplied with the power supply potential, the negative side of the floating power supply VC is connected to the load current detection point, that is, the intersection of the reference side of the output winding of the transformer T1 and the resistor R16. As a result, the resistance R14°RI5
The voltage conversion portion of the load current due to the resistor RI6 added to the dividing point can be completely eliminated.

本発明の一実施例は上記のように構成されておリ、次に
その動作について説明する。
One embodiment of the present invention is constructed as described above, and its operation will now be described.

入力端子P、、 P2には所定の基準入力が印加されて
いると共に、出力端子P3には帯電器等の負荷が接続さ
れているものとする。この時の負荷電流はサンプリング
抵抗RI6で検出され、この検出電圧と入力端子P、か
らの基準入力が差動増幅回路10で差動増幅され、この
差動増幅出力は増幅回路12で更に増幅されてタンク回
路14を介してスイッチングコンバータ16に印加され
る。このスイッチングコンバータ16により負荷電流が
常に一定になるようにトランスT、の1次側印加電圧が
制御され、それに応じたトランスT、の出力電圧を整流
回路18で整流した高圧直流が帯電器に印加される。こ
のように負荷電流は席に所定の値になるように制御され
ているが゛、出力端子P3とグランド間に接続される帯
電器の負荷インピーダンスが定格値より大きくなった場
合、出力電圧が負荷インピーダンスの大きさに追従して
い□つまでも大きくなると帯電器を絶縁破壊したり、感
光ドラムにピンホールをあけたりするので出力電圧に高
精度なリミットをかけるために出力電圧制御が必要とな
る。
It is assumed that a predetermined reference input is applied to the input terminals P, P2, and a load such as a charger is connected to the output terminal P3. The load current at this time is detected by the sampling resistor RI6, this detected voltage and the reference input from the input terminal P are differentially amplified by the differential amplifier circuit 10, and this differential amplified output is further amplified by the amplifier circuit 12. is applied to the switching converter 16 via the tank circuit 14. The switching converter 16 controls the voltage applied to the primary side of the transformer T so that the load current is always constant, and a high-voltage direct current obtained by rectifying the output voltage of the transformer T according to the voltage in the rectifier circuit 18 is applied to the charger. be done. In this way, the load current is controlled to a predetermined value, but if the load impedance of the charger connected between the output terminal P3 and the ground becomes larger than the rated value, the output voltage will be lower than the load current. If the impedance increases to □, it will cause dielectric breakdown of the charger or create pinholes in the photosensitive drum, so output voltage control is required to place a high-precision limit on the output voltage.

このために、前述した減衰回路20で所定の分割比で分
割された電圧と定電圧ダイオードZD、の基準電圧が比
較器OA2で比較される。この減衰回路20の出力電圧
が所定の値を越えると、比較器oA2の出力が反転して
トランジスタTr、をオンさせ差動増幅器OA、の出力
からトランスT1の1次側給電回路への入力を遮断する
。この入力遮断によって、それまで増幅回路12のコン
デンサC8に充電されていた電荷は放電され、トランス
1次側の印加電圧が低下してトランス2次側の減衰回路
2oの出力電圧が下がると比較器OA2の出力は再びも
との状態に反転してトランジスタTr、をオフする。こ
れによって差動増幅器OA、の出力が再びトランスT1
の1次側給電回路に入力される。このようにして、負荷
インピーダンスが大きくなってトランスT1の出力が定
電圧ダイオー:11ドZD1のツェナー電圧で決まるリ
ミッタ値を超えようとすると、比較器OA。
For this purpose, the voltage divided by the aforementioned attenuation circuit 20 at a predetermined division ratio and the reference voltage of the constant voltage diode ZD are compared by the comparator OA2. When the output voltage of this attenuation circuit 20 exceeds a predetermined value, the output of the comparator oA2 is inverted, turning on the transistor Tr, and inputting the input from the output of the differential amplifier OA to the primary side power supply circuit of the transformer T1. Cut off. By this input cutoff, the electric charge that had been charged in the capacitor C8 of the amplifier circuit 12 is discharged, and when the applied voltage on the primary side of the transformer decreases and the output voltage of the attenuation circuit 2o on the secondary side of the transformer decreases, the comparator The output of OA2 is again inverted to its original state, turning off the transistor Tr. As a result, the output of the differential amplifier OA is again changed to the transformer T1.
is input to the primary side power supply circuit. In this way, when the load impedance increases and the output of the transformer T1 attempts to exceed the limiter value determined by the Zener voltage of the constant voltage diode ZD1, the comparator OA.

の出力レベルが反転し、トランジスタTr、はオン・オ
フを繰返しながら若干のリップルを含みながらトランス
T2の出力はリミッタ値を保持する。負荷インピーダン
スが所定の許容範囲内(二あるときは、比較器o4の出
力レベルは“H′とならなt7XのでトランジスタTr
lはオフでトランスT、の1次電圧は差動増幅器OA、
の出力で制御される。
The output level of the transformer T2 is inverted, and the output of the transformer T2 maintains the limiter value while the transistor Tr repeats on and off and contains some ripple. When the load impedance is within a predetermined tolerance range (2), the output level of the comparator o4 becomes "H", and the transistor Tr
l is off and the primary voltage of the transformer T is the differential amplifier OA,
controlled by the output of

本発明の一実施例は上述したようであり、負荷電流を常
に一定にする制御ル−プに負荷インビーダンヌ上昇時の
出力電圧に一定のリミッタな力ICする出力電圧制御ル
ープを関連づけて構成してbするので、非常に高精度な
リミッタ機能を実現できる。
One embodiment of the present invention is as described above, and is constructed by associating an output voltage control loop that applies a constant limiter force IC to the output voltage when the load increases with a control loop that keeps the load current constant. b, it is possible to realize a very highly accurate limiter function.

これによって、帯電器の負荷インピーダンスの許容範囲
が広がり負荷電流の設定範囲も広くとることが可能とな
る。また、前述した従来例のよう(ニドランスT1に出
力電圧検出用の巻線を設ける必要もなく、出力電圧を分
割する分圧抵抗からなる減衰回路を設けるだけの簡単な
回路構成で実施できる。更に、従来例の如く無負荷時の
出力電圧を抑制するために、負荷の広い範囲で定電圧特
性を維持してトランスの効率を下げたりする必要力;な
くなる。
As a result, the allowable range of the load impedance of the charger is widened, and the setting range of the load current can also be widened. In addition, unlike the conventional example described above (there is no need to provide a winding for detecting the output voltage in the Nidorance T1), it can be implemented with a simple circuit configuration that only requires an attenuation circuit consisting of a voltage dividing resistor that divides the output voltage. This eliminates the need to reduce the efficiency of the transformer by maintaining constant voltage characteristics over a wide load range in order to suppress the output voltage during no-load conditions, as in the conventional example.

なお上記実施例では、トランス1次側と2次側との電位
差が非常に大きいので負荷電流検出信号及びトランスT
、の出力電圧検出信号をアイソレーションして制御信号
として使用することが望ましい。また、フローティング
電源Vcを外部より供給しているが、負荷電流検出用の
抵抗の電圧変換分を保償するようにトランスT、に別巻
線を追加構成してもよい。また差動増幅器OA、、比較
器〇八を演へ増幅器で構成しているが、トランジスタ或
はFET等で構成してもよい。更に、スイッチングコン
バータ16は自励式でなく他励式でもよい。
In the above embodiment, since the potential difference between the primary side and the secondary side of the transformer is very large, the load current detection signal and the transformer T
It is desirable to isolate the output voltage detection signal of , and use it as a control signal. Further, although the floating power supply Vc is supplied from the outside, a separate winding may be added to the transformer T so as to guarantee the voltage conversion of the resistor for detecting the load current. Further, although the differential amplifier OA and the comparator 08 are constructed from an active amplifier, they may be constructed from a transistor, an FET, or the like. Furthermore, the switching converter 16 may be a separately excited type instead of a self-excited type.

第2図は本発明に係る高圧電源装置の他の実施例を示す
回路図である。この実施例では、減衰回路20による出
力電圧の分割分を負荷電流検出抵抗RI6の電圧検出分
より十分大きくとることにより、第1図に示される実施
例のフローティング電源■cを除去したことを特徴とし
ており、第1図と同一符号は同一物を示しその説明を省
略する。上述した特徴を実現するために実施例では比較
回路20を比較器OA2を入力インピーダンスの非常に
大きいFETTr、及びトランジスタTr6で構成して
いる。ここでR21〜R3は所要の抵抗値を有する抵抗
である。この場合の動作は第1図実施例と同様でトラン
スT1の出力電圧即ち減衰回路20の出力電圧が所定の
範囲内にある時は、FETTr、はオフ、従ってトラン
ジスタTraもOFFで比較器OA2の出力レベルは°
L′である。これに対して前記出力電圧が所定値を越え
るとTr5. Tr6がオンとなり比較器OA2の出力
レベルは′H″となりトランジスタTr。
FIG. 2 is a circuit diagram showing another embodiment of the high voltage power supply device according to the present invention. This embodiment is characterized by eliminating the floating power supply ■c of the embodiment shown in FIG. 1 by making the division of the output voltage by the attenuation circuit 20 sufficiently larger than the voltage detected by the load current detection resistor RI6. The same reference numerals as in FIG. 1 indicate the same parts, and the explanation thereof will be omitted. In order to realize the above-mentioned characteristics, in the embodiment, the comparator OA2 of the comparator circuit 20 is composed of a FETTr having a very large input impedance and a transistor Tr6. Here, R21 to R3 are resistors having required resistance values. The operation in this case is similar to that of the embodiment shown in FIG. 1, and when the output voltage of the transformer T1, that is, the output voltage of the attenuation circuit 20 is within a predetermined range, the FETTr is OFF, so the transistor Tra is also OFF, and the comparator OA2 is turned off. The output level is °
It is L'. On the other hand, when the output voltage exceeds a predetermined value, Tr5. Tr6 is turned on, and the output level of comparator OA2 becomes 'H', and transistor Tr6 is turned on.

をオンにして差動増幅器10からトランスT1の1次側
給電回路への出力を遮断し、出力電圧が所定範囲内にあ
るように比較器OA2の出力によりトランジスタTr、
をオン・オフ制調する。
is turned on to cut off the output from the differential amplifier 10 to the primary side power supply circuit of the transformer T1, and the output of the comparator OA2 is used to switch the transistor Tr,
on/off control.

従って、この実施例では、減衰回路20の分圧抵抗R1
41RI51 負荷電流検出用抵抗R16,及び抵抗R
21〜R26の値を第2図に示されるように設定してお
けは、負荷電流は負荷インピ・−ダンスからみて最大1
mAなので抵抗RI6の端子電圧は1v以下であるのに
対して、出力電圧を例えば10にマとすると、抵抗R,
4,R,、の分割点の電圧は100vと非常に大きいの
で無視できる。また負荷を通らない電流も100V/1
00MΩ=1μAと小さいので、これも十分無視できる
Therefore, in this embodiment, the voltage dividing resistor R1 of the attenuation circuit 20
41RI51 Load current detection resistor R16 and resistor R
If the values of 21 to R26 are set as shown in Figure 2, the load current will be at a maximum of 1 in terms of load impedance.
mA, the terminal voltage of the resistor RI6 is 1 V or less, whereas if the output voltage is set to 10, for example, the resistor R,
The voltage at the dividing point of 4,R, , is very large at 100V, so it can be ignored. Also, the current that does not pass through the load is 100V/1
Since it is as small as 00MΩ=1μA, this can also be ignored.

このように他の実施例によれば、前述した実施例のよう
にフローティング電源VCを別に設ける必要はないため
、前述した効果に加えて更に回路構成の簡単化を計れる
In this way, according to the other embodiment, there is no need to separately provide a floating power supply VC as in the above-mentioned embodiment, so that in addition to the above-mentioned effects, the circuit configuration can be further simplified.

本発明は上述したようであるため、電力効率の低下を招
くことなく、トランスのバラツキで変動しない高精度の
電圧リミッタ機能を有する定電流出力の高圧電源装置を
得ることができ、複写機の帯電器等に適用して極めてそ
の効果は大である。
Since the present invention is as described above, it is possible to obtain a high-voltage power supply device with a constant current output that has a highly accurate voltage limiter function that does not fluctuate due to variations in transformers without causing a decrease in power efficiency. It is extremely effective when applied to vessels, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る高圧電源装置の一実施例の回路図
、第2図は第1図に示されるフローティング電源を使用
しない場合の他の実施例の回路図である。      
 :1 10・・・差動増幅回路   16・・・自励式スイッ
チングコンバータ     2o・・・減衰回路22・
・・比較回路     T、・・・コンバータトランス
vc・・・フローティング電源
FIG. 1 is a circuit diagram of one embodiment of the high voltage power supply device according to the present invention, and FIG. 2 is a circuit diagram of another embodiment in which the floating power supply shown in FIG. 1 is not used.
:1 10... Differential amplifier circuit 16... Self-excited switching converter 2o... Attenuation circuit 22.
... Comparison circuit T, ... Converter transformer vc ... Floating power supply

Claims (3)

【特許請求の範囲】[Claims] (1)トランスを介して高圧出力を負荷;二印カロする
高圧電源装置において、前記トランス2次(Il+で分
圧された電圧と負荷電流:二対する電圧とを検出する手
段を設け、負荷電流の検出電圧(二基づし)て負荷電流
が一定になるように、また検出された分圧電圧に基づい
て出力が所定範囲(二なるよう:二前記トランス1次側
を夫々制御すること(二よ【〕負荷電流制御と出力電圧
制御を行うことを特徴とする高圧電源装置。
(1) Load high voltage output via a transformer; In a high voltage power supply device that outputs two voltages, a means is provided to detect the voltage divided by the transformer secondary (Il+ and the load current: two paired voltages, and the load current The primary side of the transformer is controlled so that the load current is constant based on the detected voltage (based on two), and the output is within a predetermined range (based on two) based on the detected divided voltage. 2. [] A high-voltage power supply device characterized by performing load current control and output voltage control.
(2)前記負荷電流制御は、前記トランスの1次側の印
加電圧を連続的に制御すること(二より行し)、前記出
力電圧制御は、前記トランスの1次fA11への通電時
間を制御すること(二より行われることを特徴とする特
許請求の範囲第1項記載の高圧電源装置。
(2) The load current control is to continuously control the voltage applied to the primary side of the transformer (double twist), and the output voltage control is to control the energization time to the primary fA11 of the transformer. 2. The high-voltage power supply device according to claim 1, wherein:
(3)前記出力電圧制御手段として、前言己分圧された
電圧と基準電圧とを比較する比較手段と、前記比較手段
に所定のバイアスを与えるフローティング電源とを備え
ると共に、このフローティング電源により前記トランス
2次側の基準側と前記基準電圧との差電圧を常に一定と
したことを特徴とする特許請求の範囲第1項又は第2項
に記載の高圧電源装置。
(3) The output voltage control means includes a comparison means for comparing the divided voltage with a reference voltage, and a floating power supply that applies a predetermined bias to the comparison means, and the floating power supply is used to control the transformer. 3. The high-voltage power supply device according to claim 1, wherein the voltage difference between the reference side of the secondary side and the reference voltage is always constant.
JP346282A 1982-01-14 1982-01-14 High voltage power source Granted JPS58123367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP346282A JPS58123367A (en) 1982-01-14 1982-01-14 High voltage power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP346282A JPS58123367A (en) 1982-01-14 1982-01-14 High voltage power source

Publications (2)

Publication Number Publication Date
JPS58123367A true JPS58123367A (en) 1983-07-22
JPH0527341B2 JPH0527341B2 (en) 1993-04-20

Family

ID=11557987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP346282A Granted JPS58123367A (en) 1982-01-14 1982-01-14 High voltage power source

Country Status (1)

Country Link
JP (1) JPS58123367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159184A (en) * 1983-03-02 1984-09-08 Ricoh Co Ltd High voltage power supply for electrophotography
KR20020096831A (en) * 2001-12-08 2002-12-31 정우일렉콤(주) High voltage board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223618A (en) * 1975-08-15 1977-02-22 Hitachi Ltd Dc high voltage generator
JPS54122820A (en) * 1978-03-17 1979-09-22 Shindengen Electric Mfg Power unit
JPS5731015A (en) * 1980-07-31 1982-02-19 Toshiba Electric Equip Corp Electric power supply device
JPS6430387A (en) * 1987-07-27 1989-02-01 Matsushita Electric Ind Co Ltd Y/c separator circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223618A (en) * 1975-08-15 1977-02-22 Hitachi Ltd Dc high voltage generator
JPS54122820A (en) * 1978-03-17 1979-09-22 Shindengen Electric Mfg Power unit
JPS5731015A (en) * 1980-07-31 1982-02-19 Toshiba Electric Equip Corp Electric power supply device
JPS6430387A (en) * 1987-07-27 1989-02-01 Matsushita Electric Ind Co Ltd Y/c separator circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159184A (en) * 1983-03-02 1984-09-08 Ricoh Co Ltd High voltage power supply for electrophotography
JPH0576266B2 (en) * 1983-03-02 1993-10-22 Ricoh Kk
KR20020096831A (en) * 2001-12-08 2002-12-31 정우일렉콤(주) High voltage board

Also Published As

Publication number Publication date
JPH0527341B2 (en) 1993-04-20

Similar Documents

Publication Publication Date Title
US4827150A (en) Uninterruptible power supply inverter circuit
US5118993A (en) Variable voltage regulator
US4510562A (en) Stabilizing power-supply circuit
US5168436A (en) Uninterruptible power supply
US4999566A (en) Current converter comprising current responsive, self oscillating, switching regulator
JP2612831B2 (en) Blocking oscillation type switching regulator
JPS58123367A (en) High voltage power source
US5416692A (en) AC power supplying unit with self monitoring of AC out and detection of leakage
JPS58123365A (en) High voltage power source
US4755923A (en) Regulated high-voltage power supply
JPH039707B2 (en)
JPS644307Y2 (en)
JPH0446060B2 (en)
JPH06338397A (en) Discharge lamp lighting device and lighting system
SU1056172A1 (en) Stabilized power source
JPS5717037A (en) Switching regulator
JP3570246B2 (en) High voltage power supply
SU532149A1 (en) Device for relay protection adjustment transformer
JPH06105545A (en) Switching power source apparatus
JPS59119423A (en) Gate controlling system of thyristor switch for opening and closing capacitor
JPS63265524A (en) Power supply circuit
JPH076711Y2 (en) Overcurrent protection circuit for magnetically controlled switching regulator
SU1406579A2 (en) D.c. voltage stabilizer
JP2563363B2 (en) Flyback transformer equipment
JPH0434106B2 (en)