JPS58123365A - High voltage power source - Google Patents

High voltage power source

Info

Publication number
JPS58123365A
JPS58123365A JP346082A JP346082A JPS58123365A JP S58123365 A JPS58123365 A JP S58123365A JP 346082 A JP346082 A JP 346082A JP 346082 A JP346082 A JP 346082A JP S58123365 A JPS58123365 A JP S58123365A
Authority
JP
Japan
Prior art keywords
voltage
output
load current
transformer
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP346082A
Other languages
Japanese (ja)
Other versions
JPH0527340B2 (en
Inventor
Koji Suzuki
鈴木 孝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP346082A priority Critical patent/JPS58123365A/en
Publication of JPS58123365A publication Critical patent/JPS58123365A/en
Publication of JPH0527340B2 publication Critical patent/JPH0527340B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement

Abstract

PURPOSE:To obtain accurate limiting function in a high voltage power source by allowing a load current control loop which limits a load current at the prescribed level at the time of raising a load impedance to relate to a control loop which maintains the output voltage constant. CONSTITUTION:A load current detected by a resistor R16 is compared by an operational amplifier OA3 with a reference voltage. When the load current exceeds the prescribed value, a transistor Tr2 is turned ON, thereby interrupting the input of the primary side power feeding circuit of a converter transformer T1 by the output of an operational amplifier OA1. When the transistor Tr1 is turned ON, charge stored in a condenser C3 is discharged, thereby again inverting the output of the comparator OA3, and turning the transistor Tr1 OFF. When the load current tends to exceeds the limit value in this manner, the output level of the comparator OA3 is inverted, the transistor Tr1 is, in turn, repeated to conduct ON and interrupt OFF, thereby maintaining the limit value.

Description

【発明の詳細な説明】 本発明は高圧、電源装置に関し、特に複写機用定電圧出
力高圧電源装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high voltage power supply device, and more particularly to a constant voltage output high voltage power supply device for a copying machine.

この種の高圧電源装置は、昇圧トランスを介して高圧出
力を負荷に印加するように構成されており、例えば複写
機の高圧帯電等に適用されている。
This type of high-voltage power supply device is configured to apply high-voltage output to a load via a step-up transformer, and is applied, for example, to high-voltage charging of copying machines.

この場合、感光ドラムや帯電器の絶縁強度一杯まで使用
されることが多く、特に定電圧制御方式の場合には、出
力電圧を一定に制御するため、放電その他で過負荷状態
となって、素子破壊を引き起したり、種々の安全規格を
満足させることができなかった。従って、従来この種の
定電圧出力高圧電源装置に於ては、負荷短絡時の保護及
び電流リミッタ機能として従来次のような方法がとられ
ていた。例えば、高圧出力を負荷(二印加するトランス
の入力電圧に一定のリミッタを設け、トランス自身の負
荷特性を利用して過負荷時に出力電圧な鵡− 低下させると共に出力高抵抗を挿入して電流制限を行っ
たり、出力電流を変流トランスで検出して入力電圧を制
限していた。しかしながら、この方法の場合は、トラン
スのバラツキでリミッタ値にバラツキを生じたり電流制
限用の電力損失が大きい等の欠点がある。また他の従来
の方法としてトランスの1次側に電流リミッタを入れる
ことが提案されているが、この方法でも出力電流が比較
的小さい為検出精度そのものに難があった。
In this case, the insulation strength of the photosensitive drum or charger is often used to its fullest. Especially in the case of a constant voltage control method, the output voltage is controlled at a constant level, so the device may become overloaded due to discharge or other causes. This caused destruction and failed to meet various safety standards. Therefore, conventionally, in this type of constant voltage output high voltage power supply device, the following method has been conventionally adopted as a protection against a load short circuit and a current limiter function. For example, a certain limiter is installed on the input voltage of the transformer that applies the high voltage output to the load (2), and the load characteristics of the transformer itself are used to lower the output voltage during overload, and a high output resistor is inserted to limit the current. The input voltage was limited by detecting the output current with a current transformer.However, with this method, variations in the limiter value occur due to variations in the transformer, and the power loss for current limiting is large. As another conventional method, it has been proposed to insert a current limiter on the primary side of the transformer, but even with this method, the detection accuracy itself is difficult because the output current is relatively small.

本発明は上記の点に鑑みてなされたもので、電力損失の
少い、且つ高精度な電流リミッタ機能を有する高圧電源
装置を提供することを目的とし、本発明ではこの目的を
達成するために、検出された分圧電圧に基づいて出力が
一定になるように、また負荷電流の検出値に基づいて負
荷電流が所定の範囲になるようにトランス1次側を夫々
制御子:′ ることを特徴としている。
The present invention has been made in view of the above points, and an object of the present invention is to provide a high voltage power supply device with low power loss and a highly accurate current limiter function. , the primary side of the transformer is controlled so that the output is constant based on the detected divided voltage, and the load current is within a predetermined range based on the detected value of the load current. It is a feature.

以下、本発明の実施例を添付された図面と共に説明する
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は、本発明に係る高圧電源装置の一実施例の回路
図である。OA、は差動増幅回路10を構成する演算増
幅器で、後述する入力端子P、からの基準入力と負荷電
流に基づく検出電圧との加算値と、後述するトランス2
次側の分圧電圧に応じた検出電圧の差動増幅を行う。こ
こで、D、、 D2は保護用ダイオード、R,、R2,
R3は抵抗、C1はコンデンサである。】2は差動増幅
回路1oの出力を増幅するダーリントン接続されたトラ
ンジスタTr2゜Tr、からなる増幅回路である。なお
R4は演算増幅器OA、の出力抵抗であり、増幅回路1
2において、R6は抵抗、D3.D6はダイオード、C
3はコンデン □すである。また、増幅回路12の入方
段のトランジスタTr2のベースには、入力端子P2が
らの基準入力と後述する負荷電流の検出値に基づいて動
作するトランジスタTr、のコレクタが接続されている
。ここで、R7,R,、R,は抵抗、D3.D4はダイ
オードである。14は前述した増幅回路12の出力段の
トランジスタTr3のエミッタに接続されたタンク回路
で、抵抗RIOy  コンデンサc4がら構成されてい
る。また、T、はコンバータトランスで、このトランス
T1と、タンク回路14にダイオードD7を介して接続
されたトランジスタTr4により自励式スイッチングコ
ンバータ16が構成されている。ここで、R12は抵抗
、C5はコンデンサである。
FIG. 1 is a circuit diagram of an embodiment of a high voltage power supply device according to the present invention. OA is an operational amplifier constituting the differential amplifier circuit 10, which outputs the sum of a reference input from an input terminal P, which will be described later, and a detected voltage based on the load current, and a transformer 2, which will be described later.
Performs differential amplification of the detected voltage according to the next-side divided voltage. Here, D,, D2 are protection diodes, R,, R2,
R3 is a resistor, and C1 is a capacitor. 2 is an amplifier circuit consisting of a Darlington-connected transistor Tr2°Tr for amplifying the output of the differential amplifier circuit 1o. Note that R4 is the output resistance of the operational amplifier OA, and the amplifier circuit 1
2, R6 is a resistor, D3. D6 is a diode, C
3 is condensate □su. Further, the base of the transistor Tr2 in the input stage of the amplifier circuit 12 is connected to the collector of a transistor Tr that operates based on a reference input from the input terminal P2 and a detected value of a load current, which will be described later. Here, R7, R,, R, are resistances, D3. D4 is a diode. Reference numeral 14 denotes a tank circuit connected to the emitter of the transistor Tr3 in the output stage of the amplifying circuit 12 described above, and is composed of a resistor RIOy and a capacitor c4. Further, T is a converter transformer, and a self-excited switching converter 16 is constituted by this transformer T1 and a transistor Tr4 connected to the tank circuit 14 via a diode D7. Here, R12 is a resistor and C5 is a capacitor.

18は整流ダイオードD8.出力抵抗R111から構成
された整流回路で、この整流回路18の出力として得ら
れる+7〜+10にNの直圧直流が出力端子P3を介し
て図示されない帯電器に給電される。また、20は減衰
回路でトランスT、の出力を分圧抵抗R141RI5に
より所定の分割比に減衰させる。ここで06はコンデン
サであり、R16は負荷電流に応じた電圧検知用の抵抗
であり、C2は分圧抵抗R14゜RI5の分圧点とグラ
ンド間に接続されたコンデンサである。
18 is a rectifier diode D8. A rectifier circuit constituted by an output resistor R111, and a DC voltage of +7 to +10 N obtained as an output of the rectifier circuit 18 is supplied to a charger (not shown) via an output terminal P3. Further, 20 is an attenuation circuit that attenuates the output of the transformer T to a predetermined division ratio using a voltage dividing resistor R141RI5. Here, 06 is a capacitor, R16 is a resistor for voltage detection according to the load current, and C2 is a capacitor connected between the voltage dividing point of the voltage dividing resistor R14°RI5 and the ground.

今、出力電圧を−VOy 分圧抵抗R14+ RI5の
分圧比をm、抵抗R16の端子電圧なりRとすると、I
VOI〉■□なので、抵抗R14r R+5の分圧点の
電圧は−vo/m +v、  ・・・・・・・・・・・
・・・・・・・(1)となり、この(1)式で示される
検出電圧が前述した演算増幅器OA、の非反転入力端に
供給される。
Now, if the output voltage is -VOy, the voltage division ratio of voltage dividing resistor R14 + RI5 is m, and the terminal voltage of resistor R16 is R, then I
Since VOI〉■□, the voltage at the voltage dividing point of resistor R14r R+5 is -vo/m +v, ......
. . . (1), and the detection voltage represented by this equation (1) is supplied to the non-inverting input terminal of the operational amplifier OA mentioned above.

また、22は演算増幅器OA2からなる増幅回路で、こ
の演算増幅器OA2の反転入力端には抵抗RI6による
検出電圧が供給される。ここで、R1?S R181R
19は抵抗、Do、D、oは保護用ダイオードである。
Further, 22 is an amplifier circuit consisting of an operational amplifier OA2, and a detection voltage from a resistor RI6 is supplied to an inverting input terminal of the operational amplifier OA2. Here, R1? S R181R
19 is a resistor, and Do, D, and o are protection diodes.

また24はこの増幅回路22の出力段に接続された演算
増幅器OA3で構成されるコンパレータである。ここで
、R201C8は演算増幅器弘、に並列に接続された抵
抗及びコンデンサ、R4P+ R22は演算増幅器OA
3への基準電圧を与える分圧抵抗、R23は入力抵抗で
ある。この演算増幅器OA、の出力端はコンデンサC7
,抵抗RIO及び抵抗R0,ダイオードD、を介して前
述したトランジスタTr、のベースに接続されている。
Further, 24 is a comparator constituted by an operational amplifier OA3 connected to the output stage of this amplifier circuit 22. Here, R201C8 is the resistor and capacitor connected in parallel to the operational amplifier OA, R4P+ R22 is the operational amplifier OA
A voltage dividing resistor R23 that provides a reference voltage to 3 is an input resistor. The output terminal of this operational amplifier OA is a capacitor C7.
, resistor RIO, resistor R0, and diode D to the base of the transistor Tr described above.

また、26は演算増幅器OA4から構成された増幅回路
で、この演算増幅器OA4の反転入力端には入力端子P
1から所定の基準電圧V8が抵抗R2□を介して供給さ
れている。ここでR24゜R25rR26は抵抗である
Further, 26 is an amplification circuit composed of an operational amplifier OA4, and an input terminal P is connected to the inverting input terminal of the operational amplifier OA4.
1 to a predetermined reference voltage V8 is supplied via a resistor R2□. Here, R24°R25rR26 is a resistance.

本発明の一実施例は上記のように構成されており、次に
その動作について説明する。
One embodiment of the present invention is configured as described above, and its operation will be described next.

入力端子P1.P2には所定の基準入力が印加されてい
ると共に、出力端子P3には帯電器等の負荷が接続され
ているものとする。抵抗R16による負荷電流に応じた
検出電圧VRは演算増幅器OA2で−VRに極性反転さ
れた後、演算増幅器OA4で入力端子P1に加えられた
基準電圧と加算される。
Input terminal P1. It is assumed that a predetermined reference input is applied to P2, and a load such as a charger is connected to output terminal P3. The polarity of the detected voltage VR corresponding to the load current by the resistor R16 is inverted to -VR by the operational amplifier OA2, and then added to the reference voltage applied to the input terminal P1 by the operational amplifier OA4.

今、各抵抗値をR24””R25−R27とすると、演
算増幅器OA4の出力電圧は −Vs十VR・・・・・・・・・・・・・・・ (2)
となって、演算増幅器OA、の反転入力端に供給される
。この時、演算増幅器OA、の非反転入力端には、前述
した(1)式で示される出力電圧に応じた検出電圧−V
Jm +VRが供給されている。
Now, if each resistance value is R24""R25-R27, the output voltage of operational amplifier OA4 is -Vs + VR... (2)
and is supplied to the inverting input terminal of the operational amplifier OA. At this time, at the non-inverting input terminal of the operational amplifier OA, a detection voltage -V corresponding to the output voltage expressed by the above-mentioned equation (1) is applied.
Jm +VR is supplied.

従って、演算増幅器OA、は、前述した(1)式と(2
)式の差電圧、即ち Vs  Vo/m     ・・・・・・・・・・・・
・・ (3)を増幅して、この差電圧が零になるように
増幅回路12.タンク回路14を介して自励式スイッチ
ングコンバータ16を制御することにより、コンバータ
トランスT、の1次側電圧を制御する。これによって、
出力電圧■。は常に一定に保たれることになる。
Therefore, the operational amplifier OA is calculated by the above-mentioned equation (1) and (2).
) formula, i.e. Vs Vo/m ・・・・・・・・・・・・
... (3), and the amplifier circuit 12. By controlling the self-excited switching converter 16 via the tank circuit 14, the primary voltage of the converter transformer T is controlled. by this,
Output voltage■. will always remain constant.

この時、出力端子P、に接続された負荷インピーダンス
が、許容範囲を越えて小さくなると、出力電流は負荷イ
ンピーダンスに逆比例して大きくなっていく。このこと
は、種々の安全規格を満足できないばかりでなく、コン
バータトランスT、自身の素子破壊を招く。従って、こ
の場合出方の動作電流の上限値は、安全規格で規定され
た値や、素子の熱強度の許容値に近く設定されることが
多いので、負荷電流の高精度のシミツタが必要となる。
At this time, if the load impedance connected to the output terminal P becomes smaller than the allowable range, the output current increases in inverse proportion to the load impedance. This not only fails to satisfy various safety standards, but also causes damage to the converter transformer T and its own elements. Therefore, in this case, the upper limit of the operating current is often set close to the value specified by safety standards or the allowable value of the thermal strength of the element, so a highly accurate limiter for the load current is required. Become.

コノヨうに、負荷電流にリミッタをがけるために、抵抗
R16で検出された負荷電流は、演算増幅器OA2で逆
転された後、演算増幅器oA3で電源電圧−V8を抵抗
R211R2□で分圧して得られた基準電圧と比較され
る。比較器として機能する演算増幅器OA3に供給され
る負荷−流が所定の値を越えると出力レベルがc L 
JがらゞH″に反転しトランジスタTrlをオンさせ、
演算増幅器OA、の出力がらコンバータトランスT1の
1次側給電回路の入力を遮断する。このトランジスタT
r、のオンによりコンデンサC3に充電されていた電荷
は、D6−D。
In order to apply a limiter to the load current, the load current detected by resistor R16 is reversed by operational amplifier OA2, and then obtained by dividing the power supply voltage -V8 by resistor R211R2□ by operational amplifier oA3. is compared with the reference voltage. When the load current supplied to the operational amplifier OA3, which functions as a comparator, exceeds a predetermined value, the output level becomes cL.
J is reversed to H'', transistor Trl is turned on,
The input of the primary side power supply circuit of the converter transformer T1 is cut off from the output of the operational amplifier OA. This transistor T
The electric charge charged in the capacitor C3 due to turning on of r is D6-D.

−R5−Tr、の経路で放電されて、コンバータトラン
スT、の印加電圧が低下して出力電圧が下がると、比較
器OA3の出力は再び反転してトランジスタTr。
-R5-Tr, when the voltage applied to the converter transformer T decreases and the output voltage decreases, the output of the comparator OA3 is inverted again and the output voltage of the converter transformer T is inverted again.

をオフする。このようにして、負荷インピーダンスが小
さくなって、負荷電流が−■かR21+ R22* R
16の値で決まるリミッタ値を越えようとすると、比較
器OA、の出力レベルの反転に伴いトランジスタTr、
がオン・オフを繰返しながら、出力には若干のリップル
を含みながらリミッタ値を保持する。
Turn off. In this way, the load impedance becomes small and the load current becomes -■ or R21+R22*R
When trying to exceed the limiter value determined by the value of 16, the output level of the comparator OA is inverted and the transistor Tr,
While repeating on and off, the limiter value is maintained with some ripple in the output.

負荷インピーダンスが所定の許容範囲内にあるときは、
比較器OA3の出力レベルl H)とならないので、ト
ランジスタTr、はオフでトランスT1の1次側電圧は
、演算増幅器OA、の出力で制御される。
When the load impedance is within the specified tolerance range,
Since the output level of the comparator OA3 does not reach lH), the transistor Tr is turned off and the primary voltage of the transformer T1 is controlled by the output of the operational amplifier OA.

本発明の一実施例は上述したようであり、出力電圧を常
に一定にする制御ループに、負荷インピーダンス上昇時
の負荷電流に一定のリミッタなかける負荷電流制御ルー
プを関連づけて構成しているので、非常に高精度なリミ
ッタ機能を実現できる。これによって帯電器の負荷イン
ピーダンスの許容範囲が広がり出力電圧の設定範囲も広
くとることが可能となった。また、前述した従来例のよ
うに負荷に直列に高抵抗を接続する必要がないので、電
力損失を少くすることができる。
One embodiment of the present invention is as described above, and is constructed by associating the control loop that keeps the output voltage constant with the load current control loop that applies a constant limiter to the load current when the load impedance increases. A highly accurate limiter function can be realized. As a result, the allowable range of the load impedance of the charger has been widened, and it has become possible to set the output voltage in a wide range. Further, unlike the conventional example described above, there is no need to connect a high resistance in series with the load, so power loss can be reduced.

なお上記実施例では、トランス1次個と2次側との電位
差が非常に大きいので、出力電圧検出信号及び負荷電流
検出信号をアイソレーションして制御信号として使用す
ることが望ましい。また、スイッチングコンバータ16
は自励式でなく、他励式でもよい。
In the above embodiment, since the potential difference between the primary and secondary sides of the transformer is very large, it is desirable to isolate the output voltage detection signal and the load current detection signal and use them as control signals. In addition, the switching converter 16
may be separately excited instead of self-excited.

第2図は本発明に係る高圧電源装置の他の実施例の回路
図であり、第1図に示される実施例の演算増幅器OA、
にFET入力の高入力インピーダンス増幅器を用いて回
路を簡素化した例であり、第1図と同一符号は同一物を
示し、その説明を省略する。この実施例によれば演算増
幅器OA2とOA3を演算増幅器OA、からなる増幅回
路28で置き換えこの演算増幅器OA、に第1図の実施
例と同じ値の回路常数値を有する抵抗、コンデンサを接
続すると共に、分圧抵抗RI4# R15の分圧値を更
に高抵抗R’2+ e R’2□で分圧し、また入力端
子P1への基準電圧と負荷電流に基づく検出電圧加算用
の演算増幅器OA4を省略して構成している。
FIG. 2 is a circuit diagram of another embodiment of the high voltage power supply device according to the present invention, in which the operational amplifier OA of the embodiment shown in FIG.
This is an example in which the circuit is simplified by using a high input impedance amplifier with an FET input, and the same reference numerals as in FIG. 1 indicate the same components, and the explanation thereof will be omitted. According to this embodiment, operational amplifiers OA2 and OA3 are replaced with an amplifier circuit 28 consisting of an operational amplifier OA, and resistors and capacitors having the same circuit constant values as in the embodiment of FIG. 1 are connected to the operational amplifier OA. At the same time, the voltage division value of the voltage dividing resistor RI4# R15 is further divided by a high resistance R'2+ e R'2□, and an operational amplifier OA4 for adding the detected voltage based on the reference voltage and load current to the input terminal P1 is connected. It is configured by omitting it.

回路動作は第1図実施例と同様であるため省略するが、
この実施例では減衰回路20の分圧抵抗RI41 RI
5負荷電流検出用抵抗R86,及び抵抗R′2.。
Since the circuit operation is the same as that of the embodiment shown in FIG. 1, it will be omitted.
In this embodiment, the voltage dividing resistor RI41 RI of the attenuation circuit 20
5 load current detection resistor R86, and resistor R'2. .

y22の値を第2図に示されるように設定しておけば、
負荷電流は負荷インピーダンスからみて最大1 mAな
ので、抵抗R16の端子電圧はIV以下であるのに対し
て、出力電圧を例えば10 KVとすると、抵抗R14
1R15の分割点の電圧は100■と十分大きいので抵
抗R111の端子電圧を無視することができる。また、
負荷を通らない電流、即ち抵抗R16で検出できない電
流も100V/100MΩ=1μAと小さいので、これ
も十分無視できる。このため、この実施例によれば上述
したように第1図に示される実施例に比べて回路構成を
極めて簡単化できる。
If the value of y22 is set as shown in Figure 2,
Since the load current is at most 1 mA considering the load impedance, the terminal voltage of resistor R16 is below IV. However, if the output voltage is, for example, 10 KV, the terminal voltage of resistor R14 is
Since the voltage at the dividing point of 1R15 is 100 cm, which is sufficiently large, the terminal voltage of resistor R111 can be ignored. Also,
The current that does not pass through the load, that is, the current that cannot be detected by the resistor R16, is also as small as 100V/100MΩ=1 μA, so it can also be ignored. Therefore, according to this embodiment, the circuit configuration can be extremely simplified compared to the embodiment shown in FIG. 1, as described above.

本発明は上述したようであるため、電力損失が少なく、
高精度の電流リミッタ機能を有する定電圧出力の高圧電
源装置を得ることができ、複写機の帯電器等に適用して
極めてその効果は大である。
Since the present invention is as described above, power loss is small and
A high-voltage power supply device with a constant voltage output having a highly accurate current limiter function can be obtained, and the effect is extremely large when applied to a charger of a copying machine, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明に係る高圧電源装置の一実
施例及び他の実施例を示す回路図である。
1 and 2 are circuit diagrams showing one embodiment and other embodiments of the high voltage power supply device according to the present invention.

Claims (1)

【特許請求の範囲】 (I)トランスを介して高圧出力を負荷に印加する高圧
電源装置において、前記トランス2次側で分圧された電
圧と負荷電流に対する電圧とを検出する手段を設け、検
出された分圧電圧に基づいて出力が一定になるように、
また負荷電流の検出値に基づいて負荷電流が所定の範囲
になるように前記トランスの1次側を夫々制御すること
により出力電圧制御と負荷電流制御を行うことを特徴と
する高圧電源装置。 (2)前記出力電圧制御は、前記トランスの1次側の印
加電圧を連続的に制御することにより行い、前記負荷電
流制御は、前記トランスの1次側への通電時間を制御す
ることにより行、われることを特徴とする特許請求の範
囲第1項記載の高圧電源装置。 (3)前記検出された分圧電圧と比較される基準電圧は
、前記トランス2次側の基準側との差電圧が常に一定で
あるように構成されていることを特徴とする特許請求の
範囲第1項記載の高圧電源装置。
[Scope of Claims] (I) A high-voltage power supply device that applies high-voltage output to a load via a transformer, comprising means for detecting a voltage divided on the secondary side of the transformer and a voltage with respect to the load current; so that the output is constant based on the divided voltage
The high-voltage power supply apparatus is characterized in that output voltage control and load current control are performed by respectively controlling the primary sides of the transformers so that the load current falls within a predetermined range based on the detected value of the load current. (2) The output voltage control is performed by continuously controlling the voltage applied to the primary side of the transformer, and the load current control is performed by controlling the energization time to the primary side of the transformer. 2. A high-voltage power supply device according to claim 1, characterized in that: . (3) The reference voltage with which the detected divided voltage is compared is configured such that the voltage difference between the secondary side of the transformer and the reference side is always constant. The high voltage power supply device according to item 1.
JP346082A 1982-01-14 1982-01-14 High voltage power source Granted JPS58123365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP346082A JPS58123365A (en) 1982-01-14 1982-01-14 High voltage power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP346082A JPS58123365A (en) 1982-01-14 1982-01-14 High voltage power source

Publications (2)

Publication Number Publication Date
JPS58123365A true JPS58123365A (en) 1983-07-22
JPH0527340B2 JPH0527340B2 (en) 1993-04-20

Family

ID=11557932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP346082A Granted JPS58123365A (en) 1982-01-14 1982-01-14 High voltage power source

Country Status (1)

Country Link
JP (1) JPS58123365A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104215U (en) * 1982-12-28 1984-07-13 株式会社村田製作所 constant current power supply
JPS59159184A (en) * 1983-03-02 1984-09-08 Ricoh Co Ltd High voltage power supply for electrophotography
JPS62125397U (en) * 1986-01-29 1987-08-08
KR20020096831A (en) * 2001-12-08 2002-12-31 정우일렉콤(주) High voltage board
WO2005062454A1 (en) * 2003-12-22 2005-07-07 The Kansai Electric Power Co., Inc. High-voltage power supply

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2888201C (en) 2012-10-31 2020-06-09 Kitz Corporation Brass alloy and processed part and wetted part

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136619A (en) * 1978-04-17 1979-10-23 Toshiba Corp Dc voltage stabilized power unit
JPS55120372A (en) * 1979-03-09 1980-09-16 Matsushita Electric Ind Co Ltd Power unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136619A (en) * 1978-04-17 1979-10-23 Toshiba Corp Dc voltage stabilized power unit
JPS55120372A (en) * 1979-03-09 1980-09-16 Matsushita Electric Ind Co Ltd Power unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104215U (en) * 1982-12-28 1984-07-13 株式会社村田製作所 constant current power supply
JPS59159184A (en) * 1983-03-02 1984-09-08 Ricoh Co Ltd High voltage power supply for electrophotography
JPH0576266B2 (en) * 1983-03-02 1993-10-22 Ricoh Kk
JPS62125397U (en) * 1986-01-29 1987-08-08
KR20020096831A (en) * 2001-12-08 2002-12-31 정우일렉콤(주) High voltage board
WO2005062454A1 (en) * 2003-12-22 2005-07-07 The Kansai Electric Power Co., Inc. High-voltage power supply

Also Published As

Publication number Publication date
JPH0527340B2 (en) 1993-04-20

Similar Documents

Publication Publication Date Title
JPH03256532A (en) Power converter
US7580271B2 (en) Apparatus and method for suppressing the input current inrush for a voltage converter in a pre-charge stage
JPH0870575A (en) Circuit and method for stabilizing ac line for high-power-factor load
US4290007A (en) High power and high voltage transistor control circuit
JPS58123365A (en) High voltage power source
JPS6024664B2 (en) Switching type power supply circuit
JP3493285B2 (en) Power factor improvement circuit
JP3035922B2 (en) Power circuit protection device
US5598123A (en) Filter arrangement for suppressing an AC voltage superposed on a DC voltage present across poles of a DC voltage source
JPS6349107Y2 (en)
JPH0527341B2 (en)
JP2815356B2 (en) Power protection device
JP2797210B2 (en) Overcurrent protection circuit
SU726516A1 (en) Overvoltage and short-circuit current protected dc voltage stabilizer
JPS5914822Y2 (en) switching circuit
SU1361526A1 (en) D.c.voltage pulse stabilizer protected against current overload
JPH11266580A (en) Power source
JPH0534235Y2 (en)
SU1174912A1 (en) Two-stage d.c.voltage stabilizer
JPS5914818Y2 (en) DC voltage stabilization circuit
JPS5915264Y2 (en) Inverter protection device
JPS5926185B2 (en) Voltage droop control circuit
JPS591418Y2 (en) Switching type power supply circuit
KR890009007Y1 (en) A fixed voltage device
JPH019270Y2 (en)