JPS58123026A - Temperature controller for cooking purpose - Google Patents
Temperature controller for cooking purposeInfo
- Publication number
- JPS58123026A JPS58123026A JP406882A JP406882A JPS58123026A JP S58123026 A JPS58123026 A JP S58123026A JP 406882 A JP406882 A JP 406882A JP 406882 A JP406882 A JP 406882A JP S58123026 A JPS58123026 A JP S58123026A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- slope
- section
- cooking
- bending point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24C—DOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
- F24C3/00—Stoves or ranges for gaseous fuels
- F24C3/12—Arrangement or mounting of control or safety devices
- F24C3/126—Arrangement or mounting of control or safety devices on ranges
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electric Ovens (AREA)
- Cookers (AREA)
- Control Of Temperature (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、コンロ等の加熱調理器により他えば煮込み調
理や湯沸かし等の水分の多い調理を行なう場合に、調理
物の温度が沸騰点(100℃)になったことを精度よく
検出可能とした調理用温度制御装置に関するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for preventing the temperature of the food from reaching the boiling point (100°C) when cooking with a high amount of water such as stewing or boiling water using a heating cooker such as a stove. This invention relates to a cooking temperature control device that can detect temperature accurately.
従来、クチュー等の煮込み料理は初期強火で内容物を沸
騰させ、その点で弱火にして長時間煮込むという手順が
必要である0この操作は今まで人間が手で行なっていた
W煮立っているのに火力を絞り忘れて焦げつかしたりす
る失敗が多かった。Traditionally, stewed dishes such as couchu require the initial step of bringing the contents to a boil over high heat, then lowering the heat to low and simmering for a long time. There were many mistakes where people forgot to turn down the heat and the food got burnt.
あるいは湯を沸かす場合でも沸騰を知らずに加熱を続け
て沸きこぼすこともよくある。これ等は調理物が使いも
のにならなくなる上にエネルギーの無駄の消費となる。Or, even when boiling water, it often happens that the water continues to heat up without even realizing it has boiled, causing it to boil over. This makes the food useless and wastes energy.
さらに沸きこぼれた場合は火傷等の危険性の上に、他え
ばガスコンロの場合は失火によるガス漏れ事故の原因と
なシ非常に危険である。Furthermore, if it boils over, there is a risk of burns, and in the case of a gas stove, it is extremely dangerous as it may cause a gas leak accident due to a misfire.
そこで内容物の温度を検出して、内容物が沸騰したとき
に報知や消火、あるいは自動的に火力を絞る自動制御装
置が考えられている。しかし内容物の温度を検出するた
めに温度センサを調理鍋等の中に投入するのは使い勝手
が悪くまた不潔感がある。このため温度センサを調理鍋
の底に接触させて鍋底温度を検出してこれにより内容物
温度全類推する方法が考案された。しかしこの方法では
鍋底温度と内容物の温度が一定でなく鍋の材質、形状、
厚みや内容物の容量により変化するため、内容物の温度
が100℃になった点を検出するととは非常に困難であ
った。Therefore, automatic control devices are being considered that detect the temperature of the contents and notify you when the contents boil, extinguish the fire, or automatically reduce the firepower. However, inserting a temperature sensor into a cooking pot or the like to detect the temperature of the contents is not convenient and feels unclean. For this reason, a method has been devised in which a temperature sensor is brought into contact with the bottom of the cooking pot to detect the bottom temperature of the pot, and from this the overall temperature of the contents can be estimated. However, with this method, the temperature at the bottom of the pot and the temperature of the contents are not constant;
It was extremely difficult to detect the point at which the temperature of the contents reached 100°C because it varied depending on the thickness and capacity of the contents.
本発明は、鍋底の温度を検出して調理温度制御装置にお
いて、特に煮込みや湯沸し等の水分が多く内部温度’i
100℃に制御する場合に鍋の材質や内容物の1に無関
係に確実に検出できる調理温度制御装置を提供すること
を目的とする。The present invention is a cooking temperature control device that detects the temperature of the bottom of a pot, especially when boiling or boiling water, the internal temperature is 'i'.
To provide a cooking temperature control device that can reliably detect cooking temperature control at 100° C. regardless of the material of the pot or the contents.
上記目的の達成のだめに、本発明調理温度制御装置は内
容物が沸騰するまでの温度上昇の傾斜を検知し、その値
に応じて沸騰点を検知する構成としたものである。In order to achieve the above object, the cooking temperature control device of the present invention is configured to detect the slope of temperature rise until the contents boil, and detect the boiling point according to the slope.
以下図に従って本発明について説明する。The present invention will be explained below according to the drawings.
第1図は本発明を応用した制御システムの例を示す図で
ある。この例ではガステープルコンロに応用した例で示
す。FIG. 1 is a diagram showing an example of a control system to which the present invention is applied. This example shows an application to a gas staple stove.
1はガス入口でガスは比例制御弁2を通ってバーナ3で
燃焼する。バーナ3は鍋4の底部を加熱し内容調理物6
に熱を加えている。6は鍋4の底面温度を検出する温度
センサであり、この信号は温度制御部7vC伝達される
。温度制御部7は内部に傾斜検知部8、屈曲点検知部9
、比例制御部1゜により構成され比例制御弁2を駆動し
てバーナ3の燃焼量を制御する。1 is a gas inlet, and the gas passes through a proportional control valve 2 and is burned in a burner 3. The burner 3 heats the bottom of the pot 4 and cooks the contents 6.
adding heat to. 6 is a temperature sensor that detects the bottom surface temperature of the pot 4, and this signal is transmitted to the temperature control section 7vC. The temperature control section 7 has an inclination detection section 8 and a bending point detection section 9 inside.
, a proportional control section 1°, which drives a proportional control valve 2 to control the combustion amount of the burner 3.
ここで従来の制御方法であれば第6図のようにセンサ6
の信号を直接比例制御部10に導入し、これにより比例
制御弁2の駆動信号を出力する。Here, if the conventional control method is used, the sensor 6
is directly introduced into the proportional control section 10, thereby outputting a drive signal for the proportional control valve 2.
つまりセンサ6の信号が比例制御部1oの設定温度より
低い場合は比例弁2が全開となりバーナ3が最大燃焼と
なる。センサ6の温度が上昇して設定温度に近ずくにつ
れて比例弁2は除々に絞り始められ燃焼量も絞られる。In other words, when the signal from the sensor 6 is lower than the set temperature of the proportional control section 1o, the proportional valve 2 is fully opened and the burner 3 is at maximum combustion. As the temperature of the sensor 6 rises and approaches the set temperature, the proportional valve 2 gradually begins to throttle down and the amount of combustion is also throttled down.
センサ6の温度が設定温度になったときは比例弁2は最
少に絞られバーナ3は安全燃焼可能な最少燃焼量となる
。When the temperature of the sensor 6 reaches the set temperature, the proportional valve 2 is throttled down to the minimum, and the burner 3 becomes the minimum combustion amount that allows safe combustion.
この場合、センサ6の温度と調理物6の温度の相関が一
定であれば問題ない。しかし調理物によって鍋や調理量
が種々変化するためセ/す6の温度と調理物5の温度の
相関をとることは困難である0
特に煮込み料理では煮立って火を絞り込むタイミングは
内容物の温度が100℃になったときであるため、内容
物が100’C以上となるような設定温度にしたとき、
いつまでたっても内容物の温度は設定温度になる事がな
く(水は100℃以上にならないため)比例弁2は働か
ず火力が絞られることはない。反対に低いと温度が10
0℃になる前に火力を絞ってしまい以後は弱火で加熱す
ることになるためなかなか煮たってこないというように
非常に精度の高い設定温度が要求される。これに加えて
前述の鍋や調理物の量によるバラツキを考えると温度制
御は不可能となる0
そこで本発明では水が100℃以上の温度にならないの
で内容物が100℃になシ、それ以上上昇しなくなれば
鍋底の温度上昇も少なくなることに着眼し、鍋底温度の
傾斜を検知する構成とした。In this case, there is no problem as long as the correlation between the temperature of the sensor 6 and the temperature of the food 6 is constant. However, since the pot and the amount of cooking vary depending on the food being cooked, it is difficult to establish a correlation between the temperature of the cooker 6 and the temperature of the food 5. Especially when cooking stews, the timing of boiling and reducing the heat is determined by the temperature of the contents. This is when the temperature reaches 100°C, so when the set temperature is set so that the contents are over 100'C,
No matter how much time passes, the temperature of the contents never reaches the set temperature (because water does not rise above 100°C), the proportional valve 2 does not work, and the firepower is never reduced. On the other hand, if it is low, the temperature is 10
Very precise temperature settings are required, as the heat is turned down before the temperature reaches 0°C and the food is then heated over low heat, so it does not come to a boil. In addition to this, considering the above-mentioned variations depending on the pot and the amount of food to be cooked, temperature control becomes impossible. Therefore, in the present invention, since the water does not reach a temperature of 100°C or higher, the contents should not exceed 100°C. We focused on the fact that if the temperature at the bottom of the pot stopped rising, the temperature at the bottom of the pot would rise less, so we designed the system to detect the slope of the temperature at the bottom of the pot.
第2図は温度上昇特性を示し横軸Xは時間、縦軸、Tは
温度を示す。図は湯を沸かした時の特性例でムは内容物
の温度つまシ水温、Bは鍋底の温度つまシセンサ6によ
る検知温度を示す。温度Taは室温で加熱によシカープ
ム、B共に上昇してゆき、温度Tbで上昇カーブが線質
ゆるやかになり再度上昇を始める。これは温度Tbの点
で容器の周囲に露結した水分が蒸発するためであり、こ
の温度は容器(鍋)の材質や大きさにより異なるが約4
0〜70℃である。FIG. 2 shows temperature rise characteristics, where the horizontal axis X represents time, and the vertical axis T represents temperature. The figure shows an example of the characteristics when boiling water, where M indicates the temperature of the contents and the water temperature, and B indicates the temperature detected by the temperature sensor 6 at the bottom of the pot. Temperature Ta increases both cycarpum and B by heating at room temperature, and at temperature Tb, the increasing curve becomes gentler and starts to increase again. This is because the moisture condensed around the container evaporates at temperature Tb, and this temperature varies depending on the material and size of the container (pan), but is approximately 4.
The temperature is 0 to 70°C.
さらに温度上昇してゆき温度Tcが100℃であり水温
ムは沸騰して1oo’c以上は上昇しなくなる。このと
きのセンサの温度BはTdであり、Tdも水温ムが10
0’Cになった点から上昇特性が非常に少なくなるか、
あるいはなくなる。このTc (100℃)とTdの温
度差が鍋の材質や調理物の量9種類により大きくパラツ
く。しかし温度上昇の傾斜が変化する屈曲点Cは常に水
温ムが沸騰した点′であることに変化はない。As the temperature further increases, the temperature Tc reaches 100°C, and the water temperature boils and does not rise above 100°C. The temperature B of the sensor at this time is Td, and Td also has a water temperature of 10
From the point where it reaches 0'C, the rising characteristic becomes very small, or
Or it will disappear. The temperature difference between Tc (100°C) and Td varies greatly depending on the material of the pot and the amount of food to be cooked. However, the inflection point C where the slope of temperature rise changes is always the point where the water temperature boils.
第3図は傾斜検知あるいは屈曲点検知の一例を示す図で
ある。この方法はサンブリング時間ΔX毎の温度変化4
丁を測定してゆき屈曲点検知部9はΔTが一定値以下に
なった点が屈曲点であると判断してそのときの温度Td
が内容物温度が100℃に々る温度とする方法である。FIG. 3 is a diagram showing an example of tilt detection or bending point detection. This method is based on the temperature change 4 for each sampling time ΔX.
The bending point detection unit 9 determines that the point where ΔT becomes less than a certain value is the bending point, and detects the temperature Td at that time.
This is a method in which the content temperature approaches 100°C.
屈曲点検知部はこの他にも温度上昇の比が一定値以下に
なることを検出する方法も考えられる。In addition to this method, the bending point detection section may also detect when the ratio of temperature rise falls below a certain value.
ここで第4図に示すように調理物の歌に応じて沸騰時の
屈曲特性が大きく異なる。例えば調理量が少ないときは
V特性のように温度上昇の傾斜が急で沸騰点ではほとん
ど傾斜が零となる。しかし調理量が多い場合はN特性の
ように傾斜が非常に緩く沸騰点でも除々に傾斜が小さく
なってゆく。Here, as shown in FIG. 4, the bending characteristics during boiling vary greatly depending on the texture of the food. For example, when the amount of cooking is small, the slope of temperature rise is steep as in the V characteristic, and the slope becomes almost zero at the boiling point. However, when the amount of cooking is large, the slope is very gentle as in the N characteristic, and the slope gradually becomes smaller even at the boiling point.
以上から単に傾斜が一定値以下で判別するのは難しい。From the above, it is difficult to simply determine if the slope is below a certain value.
そこで第2図のTb点を越えた点Tfで一定時間間隔△
Xムの温度上昇TVを測定し、その値に応じて屈曲点検
知部で△Tと比較する一定値Tuを修正する構成してい
る。ここでは一定値はTwを関数とする計算式で求めて
いる。Therefore, at a point Tf that exceeds point Tb in Fig. 2, a certain time interval △
The temperature rise TV of Xmu is measured, and the fixed value Tu to be compared with ΔT is corrected in the bending point detection section according to the measured value. Here, the constant value is determined by a calculation formula using Tw as a function.
Tu=に−Tw+L
ところが第4図のように傾斜が大きく変化すると第3図
のへTの変化幅は非常に大きく特に傾斜が緩い場合は短
時間のサンプリング時間△Xでの傾斜△Tは非常に小さ
な値となり正確な傾斜検知ができにくい。反対に傾斜が
急な場合にサンプリング時間△Xが長いと沸騰検知が遅
れて吹き出す危険性がある。そこで本発明では初期傾斜
TwO値に応じてサンプリング時間を切替ている。この
実施例ではTwの値が一定値Tマよりも大きい7 w/
の場合は調理量が少なく温度上昇が急であるためサンプ
リング時間は短時間の△X′とし、屈曲点検知は
△T(サンプリング時間△X′の温度上昇)≦に′・T
W+L’反対にTwがTyよシも小さいTy //の場
合は調理量が多く温度上昇が緩いためサンプリング時間
は長い時間の△X //とじて屈曲点検知は△T(サン
プリング時間△X”の温度上昇)≦K //・Tw”+
L“としている。ここではTwがTyよりも大きいか小
さいかで2点に分岐しているがこれが3点あるいはそれ
以上でもよく、この分岐が多い程精度は高くなる。Tu= -Tw+L However, when the slope changes greatly as shown in Figure 4, the range of change in T in Figure 3 is very large.Especially when the slope is gentle, the slope △T at a short sampling time △X becomes very large. The value becomes small, making it difficult to accurately detect the inclination. On the other hand, if the sampling time ΔX is long when the slope is steep, there is a risk that boiling detection will be delayed and the water will blow out. Therefore, in the present invention, the sampling time is switched according to the initial slope TwO value. In this example, the value of Tw is larger than the constant value Tma7w/
In the case of , the amount of cooking is small and the temperature rise is rapid, so the sampling time is set to △X' for a short time, and the bending point detection is set to △T (temperature rise during sampling time △X') ≦'・T
W + L' On the other hand, when Tw is smaller than Ty //, the amount of cooking is large and the temperature rise is slow, so the sampling time is long △X //, and the bending point detection is △T (sampling time △X" temperature rise)≦K //・Tw”+
Here, it branches to two points depending on whether Tw is larger or smaller than Ty, but it may be three or more points, and the more branches there are, the higher the accuracy becomes.
比例制御部1oは屈曲点検知部9の信号により、種々の
制御へ移行が可能である。その−例として曲屈点検細部
9の信号により比例弁2を閉じて燃焼を停止する方法が
考えられる。これは湯を沸かす場合に最適である0もう
一つの例として屈曲点検知部9の信号により燃焼量を絞
り小カロリーでさらに加熱する方法がある〇一般に煮込
み料理は後者の方法で行なうものであり弱火で長時間煮
込む場合が多い。The proportional control section 1o can shift to various types of control based on the signal from the bending point detection section 9. An example of this is a method in which the proportional valve 2 is closed using a signal from the bending inspection detail 9 to stop combustion. This is ideal for boiling water.Another example is a method of reducing the amount of combustion based on the signal from the bending point detector 9 and further heating with a small amount of calories.Generally, the latter method is used for simmering dishes. It is often simmered over low heat for a long time.
第4図はこの制御特性を示し横軸Xは時間、特性Vの縦
軸Tは温度で破線ムは第2図と同様内容物の温度、実線
Bは鍋底のセンサの温度特性を示す。特性Wの縦軸Iは
比例弁の制御電流を示しこれはバーナ3の燃焼量に比例
する。時間Xdまでは第3図に示す屈曲点検知部9の信
号が出力される前で比例弁電流Iは最大でありバーナ3
の燃焼量も最大燃焼となる。時間X(lで内部温度がT
c(100℃)となシ沸騰を始めると屈曲点検知部9が
これを検出して比例弁電流Iを最小値にし、燃焼量を最
少燃焼量に絞り込TJoこのとき比例制御部10は温度
T(1が設定温度として設定され、この設定温度とセン
サの温度の差に応じて比例弁電流つまり燃焼量を比例制
御する。今、時間Xsで調理物を追加した場合内部温度
ムは低下する。FIG. 4 shows this control characteristic, where the horizontal axis X is time, the vertical axis T of characteristic V is temperature, the broken line M is the temperature of the contents as in FIG. 2, and the solid line B is the temperature characteristic of the sensor at the bottom of the pot. The vertical axis I of the characteristic W indicates the control current of the proportional valve, which is proportional to the combustion amount of the burner 3. Until time Xd, the proportional valve current I is at its maximum before the signal from the bending point detection unit 9 shown in FIG.
The amount of combustion is also the maximum combustion. At time X (l, the internal temperature is T
c (100°C) and starts boiling, the bending point detection unit 9 detects this and sets the proportional valve current I to the minimum value, narrowing down the combustion amount to the minimum combustion amount.At this time, the proportional control unit 10 controls the temperature. T (1 is set as the set temperature, and the proportional valve current, that is, the combustion amount, is proportionally controlled according to the difference between the set temperature and the sensor temperature. Now, if food is added at time Xs, the internal temperature M will decrease. .
これに伴ないセンサの温度Bも低下して内部温度ムの低
下を検出する。比例制御部1oはこの温度Teと設定温
度TdO差に応じて比例弁電流IをIsに増加させる。Along with this, the temperature B of the sensor also decreases, and a decrease in the internal temperature M is detected. The proportional control unit 1o increases the proportional valve current I to Is according to the difference between this temperature Te and the set temperature TdO.
これにより燃焼量も増加して温度ムは尤の温度Tcに戻
り、燃焼量も最も最少燃焼量に戻る。上記Isの大きさ
はT(!−Teの大きさに応じて変化しT(1−Teが
大きい場合はIeは太き(Td−Teが小さいとIeは
小さくなる。As a result, the amount of combustion increases, the temperature returns to the expected temperature Tc, and the amount of combustion returns to the minimum amount of combustion. The magnitude of Is changes according to the magnitude of T(!-Te; if T(1-Te is large, Ie is thick; if Td-Te is small, Ie is small.
また第2図で説明したように温度Tbによる屈曲を屈曲
点検知部9が検知しないように屈曲点検知部9は測定開
始温度Tf以上から動作する構成とすることにより屈曲
点検出ミスがなくなる。Further, as explained in FIG. 2, the bending point detection section 9 is configured to operate from the measurement start temperature Tf or above so that the bending point detection section 9 does not detect bending due to the temperature Tb, thereby eliminating errors in detecting the bending point.
以上の様な複雑な制御システムを作成する最近マイクロ
コンピュータ(以後マイコンと呼ぶ)がよく使用される
。第7図〜第6図で説明した内容の制御システムをマイ
コンを使用して作成した場合の簡単なフロー図で示す。Recently, microcomputers (hereinafter referred to as microcomputers) are often used to create complex control systems such as those described above. A simple flow diagram is shown in which the control system described in FIGS. 7 to 6 is created using a microcomputer.
図でIGはバーナ3の着火シーケンスのサラ1ルーチン
、Slはセンサ6の温度S1を読込むサブルーチン、S
lは温度差Td−81の大きさに応じて比例弁2の絞り
量を決定し電流工を出力するサブルーチンを示す。In the figure, IG is the Sara 1 routine of the ignition sequence of burner 3, Sl is the subroutine for reading the temperature S1 of sensor 6, and S
1 indicates a subroutine that determines the throttle amount of the proportional valve 2 according to the magnitude of the temperature difference Td-81 and outputs the current flow.
点火後センサの温度S1が第2図のTfよりも低い場合
は図のIのループを通りS、)Tfとなるのを待つ。If the temperature S1 of the sensor after ignition is lower than Tf in FIG. 2, it passes through the loop I in the figure and waits until it reaches S, )Tf.
S、)Tfとなった場合■の部分で第2図で説明した初
期傾斜Twを検出する。S, )Tf, the initial slope Tw explained in FIG. 2 is detected in the part (■).
■は屈曲点検知部で、初期傾斜Tw[応じて演算定数K
v IL Pよび時間間隔修正部■を含む分岐部Vと
、比較値Tuを演算する演算部■、またTuと時間間隔
△X間の温度上昇△Tと比較する傾斜比較部■を含んで
いる。■は比例制御ループで、屈曲点検出時のセンサ温
度S1を設定温度T(1と置いて、以後T(iとセンサ
温度S1の温度差に応じた出力を82により比例弁に出
力する。XICNDは予め設定した調理時間Xが終了し
た場合に動作を停するプログラムを示す。尚ここでは■
は傾斜値を比較する傾斜比較部で記入しているが、これ
が傾斜値の比、つまり傾斜比較部としてもよい0またF
は初期傾斜Twの検知フラグを示し初期傾斜検知後はF
=1となりそれ以後はV・■のループはバイパスされる
よう構成している。■ is the bending point detection part, and the initial slope Tw [according to the calculation constant K
It includes a branching section V including v IL P and a time interval correction section ■, a calculation section ■ that calculates a comparison value Tu, and a slope comparison section ■ that compares Tu with the temperature rise ΔT between the time interval ΔX. . (3) is a proportional control loop, where the sensor temperature S1 at the time of detection of the bending point is set as the set temperature T(1), and from then on, an output corresponding to the temperature difference between T(i and the sensor temperature S1) is output to the proportional valve by 82.XICND indicates a program that stops operating when the preset cooking time X ends.
is written in the slope comparison part that compares the slope values, but this is the ratio of the slope values, that is, the slope comparison part may also be 0 or F.
indicates the detection flag of the initial inclination Tw, and after the initial inclination is detected, F
= 1, and thereafter the V·■ loop is bypassed.
以上説明してきたように本発明の調理用温度制御装置は
、煮込み調理等で調理物の温度上昇の傾斜を測定し、そ
の屈曲点を検出することにより調理物の温度が沸騰点に
達したことを検出する構成であるため調理物の温度とセ
ンサの温度の関係が変化しても精度よく沸騰点の検出が
可能となる。As explained above, the cooking temperature control device of the present invention measures the slope of the temperature rise of the food during simmering, etc., and detects the bending point to determine whether the temperature of the food has reached the boiling point. Since the configuration detects the boiling point, it is possible to accurately detect the boiling point even if the relationship between the temperature of the food to be cooked and the temperature of the sensor changes.
また傾斜の検知方法を予め定められた時間毎にサンプリ
ングによるセンサ温度の差を求める構成トスルコトによ
り、マイコン等による制御が容易となりプログラムの処
理のみで正確な沸騰点検知が可能となり非常に簡単にシ
ステムを構成できる。In addition, the method of detecting inclination is configured to calculate the difference in sensor temperature by sampling at predetermined time intervals, making it easy to control with a microcomputer, etc., and it is possible to accurately detect boiling points just by processing a program, making the system very simple. can be configured.
さらに初期傾斜TwO値に応じて屈曲点比較値を演算す
る構成とし、演算定数を複数段に分岐すると共に屈曲点
比較値のサンプリング時間も切替ることにより高精度化
・高範囲化をはかつているため少量(2ooCC程度)
から多量(6ff程度)までの範囲を精度よく検出可能
である。Furthermore, the structure is such that the bending point comparison value is calculated according to the initial slope TwO value, and by branching the calculation constant into multiple stages and switching the sampling time of the bending point comparison value, high accuracy and wide range are achieved. Small amount (about 2ooCC)
It is possible to accurately detect a range from a large amount (approximately 6ff) to a large amount (approximately 6ff).
また初期傾斜Twはセンサの温度が予め定められた値(
約70〜so’c)以上になった点で計測する構成であ
るため加燃初期に鍋底が結露することによる温度フラッ
キ部を無視するので確実な沸騰の検出ができる。In addition, the initial slope Tw is determined by the temperature of the sensor being a predetermined value (
Since the configuration is such that measurement is performed at the point where the temperature reaches approximately 70-so'c) or higher, boiling can be detected reliably because the temperature flaking caused by condensation on the bottom of the pot in the early stages of combustion is ignored.
このように鍋の材質や形状、調理物の量に無関係に沸騰
点検知を可能とし、沸きこぼれによる失火の危険性は全
くなく安全で、また無駄な沸かし過ぎによるエネルギー
を節減する。In this way, the boiling point can be detected regardless of the material and shape of the pot or the amount of food to be cooked, and there is no risk of misfire due to boiling over, making it safe and saving energy from wasted overboiling.
最後に実施例で説明しているように特に温度センサを、
調理物を入れた鍋底の温度で検出する構成の調理器に応
用することにより大きな効果を有し、鍋の材質や肉厚、
調理物の量等による誤差がなくなり最適の煮込み調理が
可能となる。Finally, as explained in the examples, especially the temperature sensor,
It has a great effect when applied to a cooker that detects the temperature of the bottom of the pot containing food, and it can be used to detect the temperature of the pot's material, wall thickness, etc.
Errors caused by the amount of food to be cooked are eliminated, allowing optimal stewing cooking.
以上のように数々の効果を有する工業価値大なるもので
あると考える。As mentioned above, we believe that it has great industrial value and has many effects.
尚本実施例ではガステープルコンロの比例制m式を例に
して説明したが、電気コンロ以外にオーデン等にも応用
可能である。さらに比例制御でなくハイ、ロー制御、オ
ンオフ制御等であってもよい0Although the present embodiment has been explained using the proportional system m type gas staple stove as an example, it can also be applied to an electric stove or the like. Furthermore, instead of proportional control, high/low control, on/off control, etc. may be used.
第1図は本発明の調理用温度制御装置の一実施例を示す
制御システム図、第2図は第1図のセンサ部と内部温度
の立上シ状態を示す特性図、第3図は傾斜検知部に屈曲
点検知状態を説明する特性図、第4図は調理物の量によ
るセンサ温度の立上り状態の差を示す特性図、第6図は
屈曲点検知後の比例制御部の動作を説明する特性図、第
6図は従来例で鍋底温度検知による比例制御システムの
制御システム図、第7図は本発明の温度制御部(第1図
7部)をマイクロコンピュータで構成した場合の一例を
示す概略のフロー図である。
2・・・・・・比例制御弁(加熱制御手段)、3・・・
・・・バーナ(加熱する手段)、6・・・・・・調理物
、6・・・・・・温度センサ、7・・・・・・温度制御
部、8.■・・・・・・傾斜検知部、9.■・・・・・
・屈曲点検知部、■・川・・時間間隔修正部、■・・・
・・・分岐部、V(・・・・・・演算部、■・・・・・
・傾斜比較部、Tf−・・・測定開始温度、Tu・・・
・・・屈曲点比較値(予め定められた値)、Tw・・・
・・・初期の傾斜、△T・・・・・・温度傾斜、△X・
・・・・・温度傾斜の時間間隔。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
第 3 図
Xd X
第4図
一一一ヤ ×
第5図
X
第6図Fig. 1 is a control system diagram showing one embodiment of the cooking temperature control device of the present invention, Fig. 2 is a characteristic diagram showing the rising state of the sensor section and internal temperature of Fig. 1, and Fig. 3 is an inclination A characteristic diagram explaining the detection state of the bending point in the detection unit, Fig. 4 is a characteristic diagram showing the difference in the rising state of the sensor temperature depending on the amount of food to be cooked, and Fig. 6 explains the operation of the proportional control unit after the bending point is detected. FIG. 6 is a conventional control system diagram of a proportional control system using pan bottom temperature detection, and FIG. 7 is an example of the temperature control section of the present invention (section 7 in FIG. 1) configured with a microcomputer. 1 is a schematic flow diagram illustrating. 2... Proportional control valve (heating control means), 3...
... Burner (heating means), 6 ... Food to be cooked, 6 ... Temperature sensor, 7 ... Temperature control section, 8. ■...Inclination detection section, 9. ■・・・・・・
・Bending point detection section, ■・River... Time interval correction section, ■...
...branch section, V (...calculation section, ■...
・Inclination comparison section, Tf-...Measurement start temperature, Tu...
...Bending point comparison value (predetermined value), Tw...
...Initial slope, △T...Temperature slope, △X・
...Temperature ramp time interval. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure Xd X Figure 4 111 × Figure 5 X Figure 6
Claims (4)
出する温度センナと、前記温度センサの信号に6じて前
記加熱手段の加熱量を制御する加熱制御手段に制御信号
を出力する温度制御部を有し、前記温度制御部は前記温
度センサによる調理物の温度上昇傾斜を検出する傾斜検
知部と、前記傾斜検知部によシ検出した温度傾斜が予め
定められた値以下になる屈曲点を検出する屈曲点検知部
を有すると共に、前記傾斜検知部により検出した初期の
傾斜に応じて複数個に分岐する分岐部と、前記分岐部で
分岐された条件に応じて前記初期の温度傾斜の値を間歇
として前記予め定められた値を演算する演算部を有する
構成とし、前記屈曲点検知部の信号により前記加熱手段
の加熱量を可変あるいは停止する構成とした調理用温度
制御装置。(1) Outputting a control signal to a means for heating a food to be cooked, a temperature sensor for detecting the temperature of the food to be cooked, and a heating control means for controlling the heating amount of the heating means in accordance with a signal from the temperature sensor. The temperature control unit includes a slope detection unit that detects a temperature rise slope of the food to be cooked by the temperature sensor, and a temperature slope detected by the slope detection unit such that the temperature slope becomes equal to or less than a predetermined value. It has a bending point detection section that detects a bending point, and a branching section that branches into a plurality of parts according to the initial inclination detected by the inclination detecting section; A cooking temperature control device comprising a calculation section that calculates the predetermined value intermittently based on the value of the slope, and configured to vary or stop the heating amount of the heating means based on a signal from the bending point detection section.
定められた値を比較する傾斜比較部を有する特許請求の
範囲第1項記載の調理用温度制御装置。(2) The cooking temperature control device according to claim 1, further comprising a bending point detection section and a slope comparison section that compares a temperature gradient at constant time intervals with a predetermined value.
予め定められた値と比較する傾斜比較部を有する特許請
求の範囲第1項記載の調理用温度制御装置。(3) The cooking temperature control device according to claim 1, wherein the bending point detection unit includes a slope comparison unit that compares a ratio of temperature slopes at fixed time intervals with a predetermined value.
分岐部で分岐された条件に応じて修正する時間間隔修正
部を有する特許請求の範囲第1項または第3項に記載の
調理用温度制御装置。 (@ 初期の温度傾斜は、調理物を加熱する手段が加熱
開始後、温度センサが測定開始温度を検出後に計測する
構成とした特許請求の範囲第1項記載の調理用温度制御
装置。(4) The time interval of the temperature gradient compared at the bending point detection section is
The cooking temperature control device according to claim 1 or 3, further comprising a time interval correction section that corrects the time interval according to the branched conditions at the branching section. (@ The cooking temperature control device according to claim 1, wherein the initial temperature gradient is measured after the means for heating the food starts heating and after the temperature sensor detects the measurement start temperature.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP406882A JPS58123026A (en) | 1982-01-14 | 1982-01-14 | Temperature controller for cooking purpose |
US06/411,954 US4465228A (en) | 1981-09-09 | 1982-08-26 | Cooker with heating control system |
EP82108205A EP0074108B1 (en) | 1981-09-09 | 1982-09-06 | Cooker with heating control system |
DE8282108205T DE3263279D1 (en) | 1981-09-09 | 1982-09-06 | Cooker with heating control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP406882A JPS58123026A (en) | 1982-01-14 | 1982-01-14 | Temperature controller for cooking purpose |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58123026A true JPS58123026A (en) | 1983-07-22 |
JPH022054B2 JPH022054B2 (en) | 1990-01-16 |
Family
ID=11574500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP406882A Granted JPS58123026A (en) | 1981-09-09 | 1982-01-14 | Temperature controller for cooking purpose |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58123026A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6029522A (en) * | 1983-07-28 | 1985-02-14 | Sharp Corp | Electronic range |
JPS62202487A (en) * | 1986-02-28 | 1987-09-07 | シャープ株式会社 | Electromagnetic cooker |
JPH04103969A (en) * | 1990-08-21 | 1992-04-06 | Mitsubishi Heavy Ind Ltd | Freezer |
JP2016181518A (en) * | 2012-03-14 | 2016-10-13 | 三菱電機株式会社 | Induction heating cooker |
-
1982
- 1982-01-14 JP JP406882A patent/JPS58123026A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6029522A (en) * | 1983-07-28 | 1985-02-14 | Sharp Corp | Electronic range |
JPS62202487A (en) * | 1986-02-28 | 1987-09-07 | シャープ株式会社 | Electromagnetic cooker |
JPH0570914B2 (en) * | 1986-02-28 | 1993-10-06 | Sharp Kk | |
JPH04103969A (en) * | 1990-08-21 | 1992-04-06 | Mitsubishi Heavy Ind Ltd | Freezer |
JP2016181518A (en) * | 2012-03-14 | 2016-10-13 | 三菱電機株式会社 | Induction heating cooker |
Also Published As
Publication number | Publication date |
---|---|
JPH022054B2 (en) | 1990-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105091043A (en) | Kitchen range and soup cooking control device and method thereof | |
JPS58123026A (en) | Temperature controller for cooking purpose | |
JP2005207694A (en) | Heating cooker | |
JPH0225097B2 (en) | ||
JPH0137923B2 (en) | ||
JPH0243092B2 (en) | ||
JP2903681B2 (en) | Temperature control device of cooking device | |
JPS5845414A (en) | Temperature control device for cooker | |
KR960000242B1 (en) | Cooker | |
JPS62248926A (en) | Temperature controller for cooking | |
JPH0257412B2 (en) | ||
JPH077873Y2 (en) | Fried cooker | |
JPS58123027A (en) | Cooking temperature controller | |
JPH0258532B2 (en) | ||
JPS59131829A (en) | Cooking unit | |
JPS6116714A (en) | Temperature control pressure kettle | |
JPH0125967B2 (en) | ||
JPS5862432A (en) | Controller for temperature for cooking | |
JPH0228062B2 (en) | KANETSUCHORIKI | |
JPS6367105B2 (en) | ||
JPH049519A (en) | Heating cooker | |
JP2024000915A (en) | Cooker | |
JPH0247362Y2 (en) | ||
JP6114907B2 (en) | High frequency heating device | |
JPH03272717A (en) | Automatic cooker |