JPH022054B2 - - Google Patents

Info

Publication number
JPH022054B2
JPH022054B2 JP406882A JP406882A JPH022054B2 JP H022054 B2 JPH022054 B2 JP H022054B2 JP 406882 A JP406882 A JP 406882A JP 406882 A JP406882 A JP 406882A JP H022054 B2 JPH022054 B2 JP H022054B2
Authority
JP
Japan
Prior art keywords
temperature
section
food
heating
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP406882A
Other languages
Japanese (ja)
Other versions
JPS58123026A (en
Inventor
Keiichi Mori
Shojiro Inoe
Manabu Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP406882A priority Critical patent/JPS58123026A/en
Priority to US06/411,954 priority patent/US4465228A/en
Priority to DE8282108205T priority patent/DE3263279D1/en
Priority to EP82108205A priority patent/EP0074108B1/en
Publication of JPS58123026A publication Critical patent/JPS58123026A/en
Publication of JPH022054B2 publication Critical patent/JPH022054B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C3/00Stoves or ranges for gaseous fuels
    • F24C3/12Arrangement or mounting of control or safety devices
    • F24C3/126Arrangement or mounting of control or safety devices on ranges

Description

【発明の詳細な説明】 本発明は、コンロ等の加熱調理器により他えば
煮込み調理や湯沸かし等の水分の多い調理を行な
う場合に、調理物の温度が沸騰点(100℃)にな
つたことを精度よく検出可能とした調理用温度制
御装置に関するものである。
[Detailed Description of the Invention] The present invention provides that when cooking with a high moisture content such as stewing or boiling water using a heating cooker such as a stove, the temperature of the food reaches the boiling point (100°C). This invention relates to a cooking temperature control device that can detect temperature accurately.

従来、シチユー等の煮込み料理は初期強火で内
容物を沸騰させ、その点で弱火にして長時間煮込
むという手順が必要である。この操作は今まで人
間が手で行なつていたために煮立つているのに火
力を絞り忘れて焦げつかしたりする失敗が多かつ
た。あるいは湯を沸かす場合でも沸騰を知らずに
加熱を続けて沸きこぼすこともよくある。これ等
は調理物が使いものにならなくなる上にエネルギ
ーの無駄の消費となる。さらに沸きこぼれた場合
は火傷等の危険性の上に、例えばガスコンロの場
合は失火によるガス漏れ事故の原因となり非常に
危険である。
Traditionally, stews and other stews require the initial step of bringing the contents to a boil over high heat, then reducing the heat to low and simmering for a long time. Until now, this operation had been done by hand, which resulted in many failures such as forgetting to turn off the heat while the food was boiling, resulting in burnt food. Or, even when boiling water, it often happens that the water continues to heat up without even realizing it has boiled, causing it to boil over. This makes the food useless and wastes energy. Furthermore, if the water boils over, there is a risk of burns and the like, and in the case of a gas stove, for example, it may cause a gas leakage accident due to a misfire, which is extremely dangerous.

そこで内容物の温度を検出して、内容物が沸騰
したときに報知や消火、あるいは自動的に火力を
絞る自動制御装置が考えられている。しかし内容
の温度を検出するために温度センサを調理鍋等の
中に投入するのは使い勝手が悪くまた不潔感があ
る。このため温度センサを調理鍋の底に接触させ
て鍋底温度を検出してこれにより内容物温度を類
推する方法が考案された。しかしこの方法では鍋
底温度と内容物の温度が一定でなく鍋の材質、形
状、厚みや内容物の容量により変化するため、内
容物の温度が100℃になつた点を検出することは
非常に困難であつた。
Therefore, automatic control devices are being considered that detect the temperature of the contents and notify you when the contents boil, extinguish the fire, or automatically reduce the firepower. However, inserting a temperature sensor into a cooking pot or the like to detect the temperature of the contents is not convenient and feels unclean. For this reason, a method has been devised in which a temperature sensor is brought into contact with the bottom of the cooking pot to detect the bottom temperature of the pot and from this the temperature of the contents can be estimated by analogy. However, with this method, the temperature at the bottom of the pot and the temperature of the contents are not constant and vary depending on the material, shape, thickness, and capacity of the pot, so it is extremely difficult to detect the point at which the temperature of the contents reaches 100℃. It was difficult.

本発明は、鍋底の温度を検出して調理温度制御
装置において、特に煮込みや湯沸し等の水分が多
く内部温度を100℃に制御する場合に鍋の材質や
内容物の量に無関係に確実に検出できる調理温度
制御装置を提供することを目的とする。
The present invention is a cooking temperature control device that detects the temperature at the bottom of a pot, and can reliably detect the temperature regardless of the material of the pot or the amount of contents, especially when controlling the internal temperature to 100 degrees Celsius when there is a lot of moisture, such as when boiling or boiling water. The purpose of this invention is to provide a cooking temperature control device that can control cooking temperatures.

上記目的の達成のために、本発明調理温度制御
装置は内容物が沸騰するまでの温度上昇の傾斜を
検知し、その値に応じて沸騰点を検知する構成と
したものである。
In order to achieve the above object, the cooking temperature control device of the present invention is configured to detect the slope of temperature rise until the contents boil, and detect the boiling point according to the slope.

以下図に従つて本発明について説明する。 The present invention will be explained below with reference to the drawings.

第1図は本発明を応用した制御システムの例を
示す図である。この例ではガステーブルコンロに
応用した例で示す。
FIG. 1 is a diagram showing an example of a control system to which the present invention is applied. This example shows an application to a gas table stove.

1はガス入口でガスは比例制御弁2を通つてバ
ーナ3で燃焼する。バーナ3は鍋4の底部を加熱
し内容調理物5に熱を加えている。6は鍋4の底
面温度を検出する温度センサであり、この信号は
温度制御部7に伝達される。温度制御部7は内部
に傾斜検知部8、屈曲点検知部9、比例制御部1
0により構成され比例制御弁2を駆動してバーナ
3の燃焼量を制御する。
1 is a gas inlet, and gas passes through a proportional control valve 2 and is burned in a burner 3. The burner 3 heats the bottom of the pot 4 and adds heat to the food 5 to be cooked. 6 is a temperature sensor that detects the bottom surface temperature of the pot 4, and this signal is transmitted to the temperature control section 7. The temperature control section 7 includes an inclination detection section 8, a bending point detection section 9, and a proportional control section 1.
0 and drives the proportional control valve 2 to control the combustion amount of the burner 3.

ここで従来の制御方法であれば第6図のように
センサ6の信号を直接比例制御部10に導入し、
これにより比例制御弁2の駆動信号を出力する。
つまりセンサ6の信号が比例制御部10の設定温
度より低い場合は比例弁2が全開となりバーナ3
が最大燃焼となる。センサ6の温度が上昇して設
定温度に近ずくにつれて比例弁2は除々に絞り始
られ燃焼量も絞られる。センサ6の温度が設定温
度になつたときは比例弁2は最少に絞られバーナ
3は安全燃焼可能な最少燃焼量となる。
If the conventional control method is used, the signal from the sensor 6 is directly introduced into the proportional control section 10 as shown in FIG.
As a result, a drive signal for the proportional control valve 2 is output.
In other words, when the signal from the sensor 6 is lower than the set temperature of the proportional control section 10, the proportional valve 2 is fully opened and the burner 3
is the maximum combustion. As the temperature of the sensor 6 rises and approaches the set temperature, the proportional valve 2 gradually begins to throttle down and the amount of combustion is also throttled down. When the temperature of the sensor 6 reaches the set temperature, the proportional valve 2 is throttled down to the minimum, and the burner 3 reaches the minimum combustion amount that allows safe combustion.

この場合、センサ6の温度と調理物5の温度の
相関が一定であれば問題ない。しかし調理物によ
つて鍋や調理量が種々変化するためセンサ6の温
度とと調理物5の温度の相間をとることは困難で
ある。
In this case, there is no problem as long as the correlation between the temperature of the sensor 6 and the temperature of the food 5 is constant. However, since the pot and the amount of cooking vary depending on the food to be cooked, it is difficult to determine the correlation between the temperature of the sensor 6 and the temperature of the food 5.

特に煮込み料理では煮立つて火を絞り込むタイ
ミングは内容物の温度が100℃になつたときであ
るため、内容物が100℃以上となるような設定温
度にしたとき、いつまでたつても内容物の温度は
設定温度になる事がなく(水は100℃以上になら
ないため)比例弁2は働かず火力が絞られること
はない。反対に低いと温度が100℃になる前に火
力を絞つてしまい以後は弱火で加熱することにな
るためなかなか煮たつてこないというように非常
に精度の高い設定温度が要求される。これに加え
て前述の鍋や調理物の量によるバラツキを考える
と温度制御は不可能となる。
Especially in stew dishes, the timing to boil and reduce the heat is when the temperature of the contents reaches 100℃, so if you set the temperature so that the contents reach 100℃ or higher, the temperature of the contents will change no matter how long it takes. does not reach the set temperature (because water does not rise above 100°C), proportional valve 2 does not work, and the firepower is not reduced. On the other hand, if the temperature is too low, the heat will be turned down before the temperature reaches 100°C, and from then on the food will have to be heated on low heat, so it won't come to a simmer, so a very precise temperature setting is required. In addition to this, temperature control becomes impossible when considering the above-mentioned variations depending on the pot and the amount of food to be cooked.

そこで本発明では水が100℃以上の温度になら
ないので内容物が100℃になり、それ以上上昇し
なくなれば鍋底の温度上昇も少なくなることに着
眼し、鍋底温度の傾斜を検知する構成とした。
Therefore, in the present invention, we focused on the fact that since the water does not reach a temperature higher than 100°C, the temperature of the contents reaches 100°C, and if the temperature does not rise any further, the temperature rise at the bottom of the pot will decrease, and we have created a configuration that detects the slope of the temperature at the bottom of the pot. .

そのために第1図に示すように、温度センサ6
の温度上昇の傾きを傾斜検知部8で検出し、この
傾斜値ΔTが定められた屈曲値Tu以下になる屈曲
点を屈曲点検知部9で検出し、この時に調理物が
沸騰したと判定して、以後比例制御部10により
比例制御弁2を駆動して温度制御を行う。
For this purpose, as shown in FIG.
The slope of the temperature rise is detected by the slope detection section 8, and the bending point where the slope value ΔT becomes equal to or less than the predetermined bending value Tu is detected by the bending point detecting section 9. At this point, it is determined that the food has boiled. Thereafter, the proportional control valve 2 is driven by the proportional control section 10 to perform temperature control.

第2図は温度上昇特性を示し横軸Xは時間、縦
軸、Tは温度を示す。図は湯を沸かした時の特性
例でAは内容物の温度つまり水温、Bは鍋底の温
度つまりセンサ6による検知温度を示す。温度
Taは室温で加熱によりカーブA,B共に上昇し
てゆき、温度Tbで上昇カーブが一度ゆるやかに
なり再度上昇を初める。これは温度Tbの点で容
器の周囲に露結した水分が蒸発するためであり、
この温度は容器(鍋)の材質や大きさにより異な
るが約40〜70℃である。
FIG. 2 shows temperature rise characteristics, where the horizontal axis X represents time, and the vertical axis T represents temperature. The figure shows an example of the characteristics when boiling water. A shows the temperature of the contents, that is, the water temperature, and B shows the temperature of the bottom of the pot, that is, the temperature detected by the sensor 6. temperature
Ta increases on both curves A and B due to heating at room temperature, and at temperature Tb, the increasing curve once becomes gentle and begins to rise again. This is because the moisture condensed around the container evaporates at temperature Tb.
This temperature varies depending on the material and size of the container (pot), but is approximately 40 to 70°C.

さらに温度上昇してゆき温度Tcが100℃であり
水温Aは沸騰して100℃以上は上昇しなくなる。
このときのセンサの温度BはTdであり、Tdも水
温Aが100℃になつた点から上昇特性が非常に少
なくなるか、あるいはなくなる。このTc(100℃)
とTdの温度差が鍋の材質や調理物の量、種類に
より大きくバラツく。しかし温度上昇の傾斜が変
化する屈曲点Cは常に水温Aが沸騰した点である
ことに変化はない。
As the temperature further increases, the temperature Tc reaches 100°C, and the water temperature A boils and does not rise above 100°C.
At this time, the temperature B of the sensor is Td, and since the water temperature A reaches 100° C., the rising characteristic of Td becomes very small or disappears. This Tc (100℃)
The temperature difference between and Td varies greatly depending on the material of the pot and the amount and type of food being cooked. However, the inflection point C where the slope of the temperature rise changes is always the point where the water temperature A boils.

第3図は傾斜検知あるいは屈曲点検知の一例を
示す図である。この方法はサンプリング時間ΔX
毎の温度変化ΔTを測定してゆき屈曲点検知部9
はΔTが一定値以下になつた点が屈曲点であると
判断してそのときの温度Tdが内容物温度が100℃
になる温度とする方法である。屈曲点検知部はこ
の他にも温度上昇の比が一定値以下になることを
検出する方法も考えられる。
FIG. 3 is a diagram showing an example of tilt detection or bending point detection. This method uses sampling time ΔX
The bending point detection unit 9 measures the temperature change ΔT at each
The point where ΔT becomes below a certain value is determined to be the inflection point, and the temperature Td at that time is the content temperature of 100℃.
This is a method to set the temperature to . In addition to this method, the bending point detection section may also detect when the ratio of temperature rise falls below a certain value.

ここで第4図に示すように調理物の量に応じて
沸騰時の屈曲特性が大きく異なる。例えば調理量
が少ないときはM特性のように温度上昇の傾斜が
急で沸騰点ではほとんど傾斜が零となる。しかし
調理量が多い場合はN特性のように傾斜が非常に
緩く沸騰点でも除々に傾斜が小さくなつてゆく。
以上から単に傾斜が一定値以下で判別するのは難
しい。そこで第2図のTb点を越えた点Tfで一定
時間間隔△XAの温度上昇TWを測定し、その値
に応じて屈曲点検知部で△Tと比較する一定値
Tuを修正する構成している。ここでは一定値は
Twを関数とする計算式で求めている。
Here, as shown in FIG. 4, the bending characteristics during boiling vary greatly depending on the amount of food to be cooked. For example, when the amount of cooking is small, the slope of temperature rise is steep as in the M characteristic, and the slope becomes almost zero at the boiling point. However, when the amount of cooking is large, the slope is very gentle as in the N characteristic, and the slope gradually becomes smaller even at the boiling point.
From the above, it is difficult to simply determine if the slope is below a certain value. Therefore, the temperature rise TW at a fixed time interval △XA is measured at a point Tf that exceeds the Tb point in Figure 2, and the bending point detection section compares the temperature rise TW with △T according to the measured value.
Tu has configuration fixes. Here the constant value is
It is calculated using a formula that uses Tw as a function.

Tu=k・Tw+L ところが第4図のように傾斜が大きく変化する
と第3図の△Tの変化幅は非常に大きく特に傾斜
が緩い場合は短時間のサンプリング時間△Xでの
傾斜△Tは非常に小さな値となり正確な傾斜検知
ができにくい。反対に傾斜が急な場合にサンプリ
ング時間△Xが長いと沸騰検知が遅れて吹き出す
危険性がある。そこで本発明では初期傾斜Twの
値に応じてサンプリング時間を切替ている。この
実施例ではTwの値が一定値Tvよりも大きい
Tw′の場合は調理量が少なく温度上昇が急である
ためサンプリング時間は短時間の△X′とし、屈
曲点検知は △T(サンプリング時間△X′の温度上昇) ≦K′・TW′+L′ 反対にTwがTvよりも小さいTw″の場合は調
理量が多く温度上昇が緩いためサンプリング時間
は長い時間の△X″として屈曲点検知は △T(サンプリング時間△X″の温度上昇) ≦K″・TW″+L″ としている。ここではTwがTvよりも大きいか
小さいかで2点に分岐しているがこれが3点ある
いはそれ以上でもよく、この分岐が多い程精度は
高くなる。
Tu=k・Tw+L However, when the slope changes greatly as shown in Figure 4, the range of change in △T in Figure 3 is very large. Especially when the slope is gentle, the slope △T at a short sampling time △X is very large. The value becomes small, making it difficult to accurately detect the inclination. On the other hand, if the sampling time ΔX is long when the slope is steep, there is a risk that boiling detection will be delayed and the water will blow out. Therefore, in the present invention, the sampling time is switched depending on the value of the initial slope Tw. In this example, the value of Tw is greater than the constant value Tv.
In the case of Tw′, the amount of cooking is small and the temperature rise is rapid, so the sampling time is short △X′, and the bending point detection is △T (temperature rise during sampling time △X′) ≦K′・TW′+L ′ On the other hand, when Tw is smaller than Tv, the amount of cooking is large and the temperature rise is slow, so the sampling time is a long time △X″, and the bending point detection is △T (temperature rise during sampling time △X″) ≦ K″・TW″+L″. Here, it branches into two points depending on whether Tw is larger or smaller than Tv, but it may be three or more points, and the more branches there are, the higher the accuracy will be.

そこで第1図に示すように、予め定められたセ
ンサ温度Tf以上になつたときの温度上昇の傾斜
を初期傾斜検知部で計測し、この初期傾斜が予
め記憶された傾斜値Tvと比較部Vにより比較し、
この結果に応じて演算部で屈曲点検知部9で屈
曲点を判定する屈曲値Tuを演算して求める構成
としている。ここで比較部で比較する値Tvは、
複数個あつてそれぞれの値と比較し、その結果で
演算方法を可変してもよい。
Therefore, as shown in FIG. 1, the slope of the temperature rise when the temperature rises above a predetermined sensor temperature Tf is measured by the initial slope detection section, and this initial slope is compared with the pre-stored slope value Tv and the comparison section V. Compare by
In accordance with this result, the calculation unit calculates and obtains the bending value Tu for determining the bending point by the bending point detection unit 9. Here, the value Tv compared in the comparison section is
It is also possible to have a plurality of values and compare the respective values, and vary the calculation method based on the results.

さらに第1図では、初期傾斜検知部の結果で
それ以後傾斜検知部8により温度上昇の傾斜を検
知するためのサンプリング時間ΔXをサンプリン
グ時間決定部により可変する構成としている。
Further, in FIG. 1, the sampling time ΔX for subsequently detecting the slope of temperature rise by the slope detection unit 8 based on the result of the initial slope detection unit is configured to be varied by the sampling time determination unit.

比例制御部10は屈曲点検知部9の信号によ
り、種々の制御へ移行が可能である。その一例と
して曲屈点検知部9の信号により比例弁2を閉じ
て燃焼を停止する方法が考えられる。これは湯を
沸かす場合に最適である。もう一つの例として屈
曲点検知部9の信号により燃焼量を絞り小カロリ
ーでさらに加熱する方法がある。一般に煮込み料
理は後者の方法で行なうものであり弱火で長時間
煮込む場合が多い。
The proportional control section 10 can shift to various types of control based on the signal from the bending point detection section 9. One possible method is to close the proportional valve 2 based on a signal from the bending point detection section 9 to stop combustion. This is ideal for boiling water. Another example is a method of reducing the amount of combustion based on the signal from the bending point detection unit 9 and further heating with a small amount of calories. Generally, stews are cooked using the latter method, and are often simmered over low heat for a long time.

第5図はこの制御特性を示し横軸Xは時間、特
性Vの縦軸Tは温度で破線Aは第2図と同様内容
物の温度、実線Bは鍋底のセンサの温度特性を示
す。特性Wの縦軸Iは比例弁の制御電流を示しこ
れはバーナ3の燃焼量に比例する。時間Xdまで
は第3図に示す屈曲点検知部9の信号が出力され
る前で比例弁電流Iは最大でありバーナ3の燃焼
量も最大燃焼となる。時間Xdで内部温度がTc
(100℃)となり沸騰を始めると屈曲点検知部9が
これを検出して比例弁電流Iを最小値にし、燃焼
量を最小燃焼量に絞り込む。このとき比例制御部
10は温度Tdが設定温度として設定され、この
設定温度とセンサの温度の差に応じて比例弁電流
つまり燃焼量を比例制御する。今、時間Xeで調
理物を追加した場合内部温度Aは低下する。これ
に伴ないセンサの温度Bも低下して内部温度Aの
低下を検出する。比例制御部10はこの温度Te
と設定温度Tdの差に応じて比例弁電流IをIeに
増加させる。これにより燃焼量も増加して温度A
は元の温度Tcに戻り、燃焼量も最少燃焼量に戻
る。上記Ieの大きさはTd−Teの大きさに応じて
変化しTd−Teが大きい場合はIeは大きくTd−te
が小さいとIeは小さくなる。
FIG. 5 shows this control characteristic, where the horizontal axis X is time, the vertical axis T of characteristic V is temperature, the broken line A is the temperature of the contents as in FIG. 2, and the solid line B is the temperature characteristic of the sensor at the bottom of the pot. The vertical axis I of the characteristic W indicates the control current of the proportional valve, which is proportional to the combustion amount of the burner 3. Until time Xd, before the signal from the bending point detection section 9 shown in FIG. 3 is output, the proportional valve current I is at its maximum, and the combustion amount of the burner 3 is also at its maximum combustion. At time Xd the internal temperature is Tc
(100°C) and starts boiling, the bending point detection unit 9 detects this and sets the proportional valve current I to the minimum value, narrowing down the combustion amount to the minimum combustion amount. At this time, the proportional control section 10 has the temperature Td set as the set temperature, and proportionally controls the proportional valve current, that is, the combustion amount, according to the difference between the set temperature and the sensor temperature. Now, if food is added at time Xe, the internal temperature A will decrease. Along with this, the temperature B of the sensor also decreases, and a decrease in the internal temperature A is detected. The proportional control section 10 controls this temperature Te.
The proportional valve current I is increased to Ie according to the difference between the temperature Td and the set temperature Td. As a result, the amount of combustion increases and the temperature A
returns to the original temperature Tc, and the amount of combustion also returns to the minimum amount of combustion. The size of Ie above changes depending on the size of Td-Te, and when Td-Te is large, Ie becomes large and Td-te
When is small, Ie becomes small.

また第2図で説明したように温度Tbによる屈
曲を屈曲点検知部9が検知しないように屈曲点検
知部9は測定開始温度Tf以上から動作する構成
とすることにより屈曲点検出ミスがなくなる。
Further, as explained in FIG. 2, the bending point detection section 9 is configured to operate from the measurement start temperature Tf or higher so that the bending point detection section 9 does not detect bending due to the temperature Tb, thereby eliminating errors in detecting the bending point.

以上の様な複雑な制御システムを作成する最近
マイクロコンピユータ(以後マイコンと呼ぶ)が
よく使用される。第7図〜第5図で説明した内容
の制御システムをマイコンを使用して作成した場
合の簡単なフロー図で示す。
Recently, microcomputers (hereinafter referred to as microcomputers) are often used to create complex control systems such as those described above. A simple flow diagram is shown in which the control system described in FIGS. 7 to 5 is created using a microcomputer.

図でIGは、バーナ3を着火するための着火シ
ーケンスのサブルーチン、S1はセンサ6の温度
S1を読み込むサブルーチン、S2は設定温度Tdと
センサ温度S1の温度差(Td−S1)の大きさに応
じて比例弁2の絞り量を決定し、制御電流Iを出
力するサブルーチンを示し、IMAXOUT部は点火
初期に最大燃焼させるために比例弁2を最大に駆
動する信号を出力し、またFは初期傾斜を検知し
たことを判定するための2進のフラグで、燃焼開
始初期にはF=0である。点火後、センサ温度
S1が第2図の傾斜検知を開始する温度Tfよりも
低い間は、図のIのループを繰り返し、S1>Tf
となるのを待つ。
In the figure, IG is the ignition sequence subroutine for igniting burner 3, and S1 is the temperature of sensor 6.
S1 is a subroutine that reads S1, and S2 is a subroutine that determines the throttle amount of the proportional valve 2 according to the size of the temperature difference (Td - S1) between the set temperature Td and the sensor temperature S1, and outputs the control current I. The OUT section outputs a signal that drives the proportional valve 2 to the maximum in order to achieve maximum combustion at the beginning of ignition, and F is a binary flag for determining that the initial slope has been detected. =0. After ignition, sensor temperature
As long as S1 is lower than the temperature Tf at which tilt detection starts in Figure 2, loop I in the figure is repeated, and S1>Tf
Wait for it to become.

S1>Tfとなつた場合、初期傾斜検知部のル
ーチンで第図で説明した初期傾斜Twを検出す
る。初期傾斜検知部でS1Aは、初期の傾斜を計
測するために開始温度Tfを越えてからサンプリ
ング時間ΔXAの間隔で温度センサの温度S1が2
回計測されたかどうか判定するためのメモリー
で、Tfを越えた直後はS1A=0であるので温度セ
ンサの値S1をS1Aに記憶する。次のΔXA経過後
は、S1A≠0であるために初期傾斜TwをS1Aと今
回計測したセンサ温度S1から演算する。
When S1>Tf, the initial inclination Tw explained in the figure is detected in the routine of the initial inclination detection section. In the initial slope detection section, S1A is a temperature sensor whose temperature S1 is set to 2 at intervals of sampling time ΔX A after exceeding the start temperature Tf in order to measure the initial slope.
This is a memory for determining whether the temperature sensor has been measured twice. Immediately after exceeding Tf, S 1A = 0, so the value S1 of the temperature sensor is stored in S 1A . After the next ΔX A has elapsed, since S 1A ≠0, the initial slope Tw is calculated from S 1A and the sensor temperature S1 measured this time.

この後判定部Vで、初期傾斜Twと予め記憶さ
れた判定値Tvを比較し、これにより屈曲点を判
定するための条件を変える。この条件は、初期傾
斜Twに応じて屈曲点を判定するための比較値を
演算するための演算定数K、Lおよび必要に応じ
てサンプリング時間決定部で傾斜検知するため
のサンプリング時間ΔXを選択する。ここでは判
定部Vで2つに分岐する構成であるがこれに限ら
ず、分岐の数を増加するほど高精度で屈曲点を検
出できる。ここで判定フラグF=1とする。
Thereafter, the determination unit V compares the initial slope Tw with a previously stored determination value Tv, thereby changing the conditions for determining the bending point. This condition is to select the calculation constants K and L for calculating the comparison value for determining the bending point according to the initial slope Tw and, if necessary, the sampling time ΔX for detecting the slope in the sampling time determination section. . Here, the configuration is such that the determination unit V branches into two, but the invention is not limited to this, and the bending point can be detected with higher accuracy as the number of branches increases. Here, the determination flag F=1.

次にこれらのルーチンで決定した定数により屈
曲点を判定するための屈曲値Tuを演算部で演
算して求める。
Next, a bending value Tu for determining the bending point is calculated by the calculation unit using the constants determined in these routines.

その後、サンプリング時間ΔX間の温度上昇
ΔTを演算するサブルーチンを通り、このΔTと
比較値Tuと比較する傾斜比較部に移行する。
ここでΔT<Tuが成立するまではサンプリング時
間ΔX毎に繰り返し比較する。このときにはフラ
グF=1になつているために初期傾斜検知部や屈
曲値演算部は再度通ることはない。
Thereafter, the process passes through a subroutine that calculates the temperature rise ΔT during the sampling time ΔX, and moves to a slope comparison section that compares this ΔT with the comparison value Tu.
Here, until ΔT<Tu holds true, the comparison is repeated at every sampling time ΔX. At this time, since the flag F=1, the initial inclination detection section and the bending value calculation section are not passed through again.

傾斜比較部でΔT<Tuが成立すればその点が
屈曲点と判定し、その時のセンサ温度S1を設定
温度Tdとして記憶し、比較制御ループに動作
が移る。
If ΔT<Tu holds true in the slope comparison section, that point is determined to be a bending point, the sensor temperature S1 at that time is stored as the set temperature Td, and the operation moves to a comparison control loop.

比例制御ループでは、設定温度Tdとこれ以
後計測したセンサ温度S1の値に応じてサブルー
チンS2で加熱量を制御し、センサ温度S1が設定
温度Tdを維持するように加熱量を制御する。こ
のため調理物が沸騰すればその沸騰を継続するよ
うに制御される。これ以外に沸騰すれば加熱を停
止したり、火力を強制的に絞るような構成も可能
で、調理の種類に応じて変えてもよい。
In the proportional control loop, the amount of heating is controlled in subroutine S2 according to the set temperature Td and the value of the sensor temperature S1 measured thereafter, and the amount of heating is controlled so that the sensor temperature S1 maintains the set temperature Td. For this reason, once the food boils, it is controlled to continue boiling. In addition to this, it is also possible to have a configuration that stops heating or forcibly reduces the heat when the boiling point occurs, and this can be changed depending on the type of cooking.

XENDは予め設定した調理時間Xが終了した場
合に加熱動作を停止するための判定部である。
X END is a determination unit for stopping the heating operation when the preset cooking time X ends.

以上説明してきたように本発明の調理用温度制
御装置は、煮込み調理等で調理物の温度上昇の傾
斜を測定し、その屈曲点を検出することにより調
理物の温度が沸騰点に達したことを検出する構成
であるため調理物の温度とセンサの温度の関係が
変化しても精度よく沸騰点の検出が可能となる。
As explained above, the cooking temperature control device of the present invention measures the slope of the temperature rise of the food during simmering, etc., and detects the bending point to determine whether the temperature of the food has reached the boiling point. Since the configuration detects the boiling point, it is possible to accurately detect the boiling point even if the relationship between the temperature of the food to be cooked and the temperature of the sensor changes.

また傾斜の検知方法を予め定められた時間毎に
サンプリングによるセンサ温度の差を求める構成
とすることにより、マイコン等による制御が容易
となりプログラムの処理のみで正確な沸騰点検知
が可能となり非常に簡単にシステムを構成でき
る。
In addition, by configuring the slope detection method to obtain the difference in sensor temperature through sampling at predetermined intervals, control using a microcomputer, etc. is easy, and accurate boiling point detection can be performed simply by processing a program, making it extremely simple. The system can be configured to

さらに初期傾斜Twの値に応じて屈曲点比較値
を演算する構成とし、演算定数を複数段に分岐す
ると共に屈曲点比較値のサンプリング時間も切替
ることにより高精度化・高範囲化をはかつている
ため少量(200c.c.程度)から多量(6程度)ま
での範囲を精度よく検出可能である。
Furthermore, the configuration is such that the bending point comparison value is calculated according to the value of the initial slope Tw, and by branching the calculation constant into multiple stages and switching the sampling time of the bending point comparison value, it is possible to achieve higher accuracy and a wider range. Therefore, it is possible to accurately detect a range from a small amount (about 200 c.c.) to a large amount (about 6 cc).

また初期傾斜Twはセンサの温度が予め定めら
れた値(約70〜80℃)以上になつた点で計測する
構成であるため加燃初期に鍋底が結露することに
よる温度フラツキ部を無視するので確実な沸騰の
検出ができる。
In addition, since the initial inclination Tw is configured to be measured at the point where the sensor temperature reaches a predetermined value (approximately 70 to 80 degrees Celsius) or higher, it ignores temperature fluctuations caused by condensation on the bottom of the pot in the early stages of combustion. Boiling can be detected reliably.

このように鍋の材質や形状、調理物の量に無関
係に沸騰点検知を可能とし、沸きこぼれによる失
火の危険性は全くなく安全で、また無駄な沸かし
過ぎによるエネルギーを節減する。
In this way, the boiling point can be detected regardless of the material and shape of the pot or the amount of food to be cooked, and there is no risk of misfire due to boiling over, making it safe and saving energy from wasted overboiling.

最後に実施例で説明しているように特に温度セ
ンサを、調理物を入れた鍋底の温度で検出する構
成の調理器に応用することにより大きな効果を有
し、鍋の材質や肉厚、調理物の量等による誤差が
なくなり最適の煮込み調理が可能となる。
Finally, as explained in the examples, it is particularly effective to apply a temperature sensor to a cooker configured to detect the temperature of the bottom of the pot containing food, and it is possible to Errors caused by the amount of food, etc. are eliminated, and optimal stewing cooking is possible.

以上のように数々の効果を有する工業価値大な
るものであると考える。
As mentioned above, we believe that it has great industrial value and has many effects.

尚本実施例ではガステープルコンロの比例制御
式を例にして説明したが、電気コンロ以外にオー
ブン等にも応用可能である。さらに比例制御でな
くハイ、ロー制御、オンオフ制御等であつてもよ
い。
In this embodiment, the proportional control type of a gas staple stove was explained as an example, but it can also be applied to an oven or the like in addition to an electric stove. Furthermore, instead of proportional control, high/low control, on/off control, etc. may be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の調理用温度制御装置の一実施
例を示す制御システム図、第2図は第1図のセン
サ部と内部温度の立上り状態を示す特性図、第3
図は傾斜検知並に屈曲点検知状態を説明する特性
図、第4図は調理物の量によるセンサ温度の立上
り状態の差を示す特性図、第5図は屈曲点検知後
の比例制御部の動作を説明する特性図、第6図は
従来例で鍋底温度検知による比例制御システムの
制御システム図、第7図は本発明の温度制御部
(第1図7部)をマイクロコンピユータで構成し
た場合の一例を示す概略のフロー図である。 2……比例制御弁(加熱制御手段)、3……バ
ーナ(加熱する手段)、5……調理物、6……温
度センサ、7……温度制御部、8……傾斜検知
部、……初期傾斜検知部、9,……屈曲点検
知部、……サンプリング時間決定部、V……比
較部、……演算部、……傾斜比較部、Tf…
…測定開始温度、Tu……屈曲値、Tw……初期
傾斜検知部の傾斜出力、ΔT……傾斜値、ΔX…
…サンプリング時間。
FIG. 1 is a control system diagram showing one embodiment of the cooking temperature control device of the present invention, FIG. 2 is a characteristic diagram showing the sensor section of FIG. 1 and the rising state of internal temperature, and FIG.
The figure is a characteristic diagram explaining the state of inclination detection and bending point detection, Figure 4 is a characteristic diagram showing the difference in the rising state of sensor temperature depending on the amount of food to be cooked, and Figure 5 is a characteristic diagram of the proportional control section after detecting the bending point. A characteristic diagram explaining the operation, Fig. 6 is a control system diagram of a proportional control system using pan bottom temperature detection in a conventional example, and Fig. 7 shows a case where the temperature control section of the present invention (section 7 in Fig. 1) is configured with a microcomputer. FIG. 2 is a schematic flow diagram showing an example. 2...Proportional control valve (heating control means), 3...Burner (heating means), 5...Cooked food, 6...Temperature sensor, 7...Temperature control section, 8...Inclination detection section,... Initial inclination detection section, 9, ...Bending point detection section, ...Sampling time determination section, V...Comparison section, ...Calculation section, ...Inclination comparison section, Tf...
...Measurement start temperature, Tu...Bending value, Tw...Tilting output of initial tilt detection section, ΔT...Tilting value, ΔX...
...sampling time.

Claims (1)

【特許請求の範囲】 1 調理物を加熱する手段と、調理物の温度を検
出する温度センサと、前記温度センサの信号に応
じて前記加熱手段の加熱量を制御する加熱制御手
段に制御信号を出力する温度制御部を有し、前記
温度制御部は、前記温度センサによる調理物の温
度上昇傾斜を検出する傾斜検知部と、前記傾斜検
知部により検出した温度上昇傾斜があらかじめ定
められた屈曲値以下になる屈曲点を検出する屈曲
点検知部を有すると共に、前記調理物を加熱する
手段が加熱開始後、前記温度センサがあらかじめ
定められた測定開始温度を検出直後に傾斜検知部
で温度傾斜を計測して記憶する初期傾斜検知部
と、前記初期傾斜検知部の傾斜出力と予め定めら
れた複数個の傾斜値を比較する比較部と、この比
較部の出力に応じて予め記憶された演算式により
前記初期傾斜検知部の出力を関数として前記屈曲
値を演算する演算部を有する構成とし、屈曲点検
知部の信号により前記加熱手段の加熱量を可変あ
るいは停止する信号を温度制御手段から加熱制御
手段に出力する構成の調理用温度制御装置。 2 温度制御部は、比較部の出力に応じて屈曲点
を判定するための傾斜検知部の傾斜を計測するサ
ンプリング時間を予め記憶された値の中から選択
するサンプリング時間決定部を有する構成とした
特許請求の範囲第1項記載の調理用温度制御装
置。
[Scope of Claims] 1. A means for heating a food to be cooked, a temperature sensor for detecting the temperature of the food to be cooked, and a control signal sent to a heating control means for controlling the heating amount of the heating means in accordance with a signal from the temperature sensor. The temperature control section includes a slope detection section that detects a temperature rise slope of the food to be cooked by the temperature sensor, and a bending value at which the temperature rise slope detected by the slope detection section is determined in advance. The means for heating the food has a bending point detecting section that detects a bending point at which the food is heated. an initial inclination detection section that measures and stores the inclination; a comparison section that compares the inclination output of the initial inclination detection section with a plurality of predetermined inclination values; and an arithmetic expression stored in advance according to the output of the comparison section. The configuration includes a calculation unit that calculates the bending value using the output of the initial inclination detection unit as a function, and a signal for varying or stopping the heating amount of the heating unit is sent from the temperature control unit to control the heating based on a signal from the bending point detection unit. A cooking temperature control device configured to output an output to a means. 2. The temperature control section has a sampling time determination section that selects a sampling time for measuring the inclination of the inclination detection section for determining the bending point according to the output of the comparison section from among pre-stored values. A cooking temperature control device according to claim 1.
JP406882A 1981-09-09 1982-01-14 Temperature controller for cooking purpose Granted JPS58123026A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP406882A JPS58123026A (en) 1982-01-14 1982-01-14 Temperature controller for cooking purpose
US06/411,954 US4465228A (en) 1981-09-09 1982-08-26 Cooker with heating control system
DE8282108205T DE3263279D1 (en) 1981-09-09 1982-09-06 Cooker with heating control system
EP82108205A EP0074108B1 (en) 1981-09-09 1982-09-06 Cooker with heating control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP406882A JPS58123026A (en) 1982-01-14 1982-01-14 Temperature controller for cooking purpose

Publications (2)

Publication Number Publication Date
JPS58123026A JPS58123026A (en) 1983-07-22
JPH022054B2 true JPH022054B2 (en) 1990-01-16

Family

ID=11574500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP406882A Granted JPS58123026A (en) 1981-09-09 1982-01-14 Temperature controller for cooking purpose

Country Status (1)

Country Link
JP (1) JPS58123026A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029522A (en) * 1983-07-28 1985-02-14 Sharp Corp Electronic range
JPS62202487A (en) * 1986-02-28 1987-09-07 シャープ株式会社 Electromagnetic cooker
JP2721742B2 (en) * 1990-08-21 1998-03-04 三菱重工業株式会社 Refrigeration equipment
WO2013136577A1 (en) * 2012-03-14 2013-09-19 三菱電機株式会社 Induction heat cooker

Also Published As

Publication number Publication date
JPS58123026A (en) 1983-07-22

Similar Documents

Publication Publication Date Title
EP0074108A2 (en) Cooker with heating control system
JPH022054B2 (en)
JPH0137923B2 (en)
JPH0225097B2 (en)
JPH0243092B2 (en)
JP2903681B2 (en) Temperature control device of cooking device
JPH0152004B2 (en)
JPH0444529B2 (en)
JPH0257412B2 (en)
JPH028217B2 (en)
JPH033854B2 (en)
JPH0258532B2 (en)
JPH037852B2 (en)
JPS58123027A (en) Cooking temperature controller
JPS6367104B2 (en)
JPS6367105B2 (en)
JPH02263016A (en) Heating cooking device
JPH0125967B2 (en)
JPH0228062B2 (en) KANETSUCHORIKI
JPS6116714A (en) Temperature control pressure kettle
JP2024000915A (en) Cooker
JP2000297932A (en) Cooker
JPH049519A (en) Heating cooker
CN113384158A (en) Control method, cooking utensil and storage medium
JPH0225098B2 (en)