JPH028217B2 - - Google Patents

Info

Publication number
JPH028217B2
JPH028217B2 JP56143684A JP14368481A JPH028217B2 JP H028217 B2 JPH028217 B2 JP H028217B2 JP 56143684 A JP56143684 A JP 56143684A JP 14368481 A JP14368481 A JP 14368481A JP H028217 B2 JPH028217 B2 JP H028217B2
Authority
JP
Japan
Prior art keywords
temperature
slope
food
heating
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56143684A
Other languages
Japanese (ja)
Other versions
JPS5845414A (en
Inventor
Keiichi Mori
Shojiro Inoe
Manabu Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14368481A priority Critical patent/JPS5845414A/en
Priority to US06/411,954 priority patent/US4465228A/en
Priority to EP82108205A priority patent/EP0074108B1/en
Priority to DE8282108205T priority patent/DE3263279D1/en
Publication of JPS5845414A publication Critical patent/JPS5845414A/en
Publication of JPH028217B2 publication Critical patent/JPH028217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C3/00Stoves or ranges for gaseous fuels
    • F24C3/12Arrangement or mounting of control or safety devices
    • F24C3/126Arrangement or mounting of control or safety devices on ranges

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Ovens (AREA)
  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、コンロ等の加熱調理器により例えば
煮込み調理等の水分の多い調理を行なう場合に、
調理物の温度を一定に精度よく制御することを可
能とした調理用温度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to cooking with a high moisture content, such as stewing, using a heating cooker such as a stove.
The present invention relates to a cooking temperature control device that can control the temperature of food to be cooked at a constant level with high precision.

従来の技術 従来、シチユー等の煮込み料理は初期強い火力
で加熱して内容物が煮立つたら弱火で長時間煮込
むという手段が必要である。これらの操作は今ま
で人間が手で行なつていたため、煮立つているの
に火力を絞り忘れて焦げつかしたりする失敗が多
かつた。またこの場合はエネルギーの無駄な消費
を行なつていることになる。
BACKGROUND TECHNOLOGY Traditionally, stews and other stews require heating with strong heat at the beginning, and then boiling the contents over low heat for a long time once the contents have boiled. Up until now, these operations had been done by hand, so there were many mistakes such as forgetting to turn down the heat even when the food was boiling, resulting in burnt food. Moreover, in this case, energy is wasted.

そこで内容物の温度を検出して、内容物が煮立
つた時に自動的に火力を絞る自動制御装置が考え
られている。しかし内容物の温度を検出するため
に温度センサを調理鍋の中に投入するのは使い勝
手が悪くまた不潔感がある。このため温度センサ
を調理鍋の底に接触させて、鍋底温度を検出して
内容物温度を類推する方法が開発された。
Therefore, an automatic control device that detects the temperature of the contents and automatically reduces the heat when the contents boil is being considered. However, inserting a temperature sensor into a cooking pot to detect the temperature of the contents is inconvenient and unsanitary. For this reason, a method has been developed in which a temperature sensor is brought into contact with the bottom of a cooking pot to detect the bottom temperature and to infer the temperature of the contents.

発明が解決しようとする問題点 しかしこの方法では鍋底温度と内容物の温度が
一定でなく鍋の材質形状、厚みや内容物の量等に
より変化するという欠点があつた。
Problems to be Solved by the Invention However, this method has a drawback in that the temperature at the bottom of the pot and the temperature of the contents are not constant and vary depending on the material shape, thickness, amount of contents, etc. of the pot.

例えば、従来の制御手段として第5図のように
センサ6の信号を直接比例制御部10に導入し、
これにより比例制御弁2の駆動信号を出力する構
成のものがあつた。尚第5図はガステーブルコン
ロの制御システム図で、1はガス入口でガスは比
例制御弁2を通つてバーナ3で燃焼する。バーナ
3は鍋4の底部を加熱し内容調理物5に熱を加え
ている。6は鍋4の底面温度を検出する温度セン
サであり、この信号は比例制御部10に入力され
比例制御弁2を駆動してバーナ3の燃焼量を制御
する。
For example, as a conventional control means, the signal of the sensor 6 is directly introduced into the proportional control section 10 as shown in FIG.
As a result, there was a structure in which a drive signal for the proportional control valve 2 was output. FIG. 5 is a control system diagram of a gas table stove, where 1 is a gas inlet, and gas passes through a proportional control valve 2 and is combusted in a burner 3. The burner 3 heats the bottom of the pot 4 and adds heat to the food 5 to be cooked. Reference numeral 6 denotes a temperature sensor that detects the bottom surface temperature of the pot 4, and this signal is input to the proportional control section 10 to drive the proportional control valve 2 and control the combustion amount of the burner 3.

以上の構成でセンサ6の信号が比例制御部10
の設定温度より低い場合は比例弁2が全開となり
バーナ3が最大燃焼となる。センサ6の温度が上
昇して設定温度に近ずくにつれて比例弁2は徐々
に絞り始められ燃焼量も絞られる。センサ6の温
度が設定温度になつたときは比例弁2は最少に絞
られバーナ3は安全燃焼可能な最少燃焼量とな
る。
With the above configuration, the signal from the sensor 6 is transmitted to the proportional control section 10.
When the temperature is lower than the set temperature, the proportional valve 2 is fully opened and the burner 3 is at maximum combustion. As the temperature of the sensor 6 rises and approaches the set temperature, the proportional valve 2 gradually begins to throttle and the amount of combustion is also throttled. When the temperature of the sensor 6 reaches the set temperature, the proportional valve 2 is throttled down to the minimum, and the burner 3 reaches the minimum combustion amount that allows safe combustion.

この場合、センサ6の温度と調理物5の温度の
相関が一定であれば問題ない。しかし調理物によ
つて鍋や調理量が種々変化するためセンサ6の温
度と調理物5の温度の相関をとることは困難であ
る。
In this case, there is no problem as long as the correlation between the temperature of the sensor 6 and the temperature of the food 5 is constant. However, it is difficult to correlate the temperature of the sensor 6 and the temperature of the food 5 because the pot and the amount of cooking vary depending on the food being cooked.

特に煮込み料理では内部が沸騰する温度、つま
り煮立つて火を絞り込むタイミングは内容物の温
度が気圧が1気圧であれば100℃になつたときで
あるため、内容物が100℃以上となるような設定
温度にしたとき、いつまでたつても内容物の温度
は設定温度になる事がなく(水は1気圧で100℃
以上にならないため)比例弁は働かず火力が絞ら
れることはない。反対に低いと温度が100℃にな
る前に火力を絞つてしまい以後は弱火で加熱する
ことになるためなかなか煮立つてこないというよ
うに非常に精度の高い設定温度が要求される。さ
らに前述の鍋や調理物の量によるばらつきを考え
ると温度制御は不可能となる。
Especially in stew dishes, the temperature at which the inside boils, that is, the timing to reduce the heat after boiling, is when the temperature of the contents reaches 100 degrees Celsius if the atmospheric pressure is 1 atm. When the set temperature is reached, the temperature of the contents will never reach the set temperature no matter how long it takes (water is 100°C at 1 atm).
The proportional valve does not work and the firepower is not reduced. On the other hand, if the temperature is too low, the heat will be turned down before the temperature reaches 100°C, and subsequent heating will be done over low heat, so the temperature will not come to a boil easily, so a very precise temperature setting is required. Furthermore, temperature control becomes impossible when considering the above-mentioned variations depending on the pot and the amount of food to be cooked.

これに加えて、水の沸点が変化する場合には従
来の制御方法では沸騰点を検出することが不可能
となる。例えば圧力鍋を使用した調理では内部の
圧力が上昇し沸騰温度は120〜130℃となり、100
℃では沸騰することはない。また気圧の低い高地
では100℃以下で沸騰してしまい、100℃まで温度
が上昇することがなくふきこぼれや焦げつきの原
因となる。これは調理物内に直接温度センサを挿
入する構成であつても同様の問題点を有する。
In addition to this, if the boiling point of water changes, it becomes impossible to detect the boiling point using conventional control methods. For example, when cooking using a pressure cooker, the internal pressure increases and the boiling temperature reaches 120-130℃,
It will not boil at ℃. In addition, at high altitudes with low atmospheric pressure, it boils at temperatures below 100°C, and the temperature does not rise to 100°C, causing boiling over and burning. Similar problems arise even in a configuration in which the temperature sensor is inserted directly into the food being cooked.

問題点を解決するための手段 上記問題点を解決するために本発明は、加熱手
段により加熱される調理物の温度を検出する手段
と、この信号に応じて加熱量を制御する加熱制御
手段に制御信号を出力する温度制御部を設け、温
度制御部には、調理物の温度上昇の傾斜を検出す
る傾斜検知部と、調理物が沸騰することにより温
度傾斜の変化度合を演算し、この値が予め定めら
れた値となる屈曲点を検出する屈曲点検知部を設
け、この屈曲点検知部からの沸騰検出信号により
加熱量を制御する構成とした。
Means for Solving the Problems In order to solve the above problems, the present invention provides a means for detecting the temperature of the food heated by the heating means, and a heating control means for controlling the amount of heating according to this signal. A temperature control unit that outputs a control signal is provided, and the temperature control unit includes a slope detection unit that detects the slope of temperature rise of the food to be cooked, and a slope detection unit that calculates the degree of change in temperature slope as the food boils, and calculates this value. A bending point detection section for detecting a bending point at which the curve becomes a predetermined value is provided, and the amount of heating is controlled by a boiling detection signal from the bending point detection section.

作 用 以上の構成により、煮込み調理や湯沸かしなど
の水分が多くて調理物を煮立たせて(沸騰させ
て)調理する場合に、気圧の変化や、センサのば
らつき、あるいは調理物の温度を直接検知しない
場合や、調理物の量が異なつても正確に調理物が
沸騰したことを検出できるという作用を有する。
Function The above configuration allows direct detection of changes in atmospheric pressure, sensor variations, or the temperature of the food when cooking food with a large amount of water, such as in simmering or boiling water. It has the effect of accurately detecting whether the food has boiled even if the amount of food is not boiling or the amount of food is different.

実施例 以下図面に従つて本発明について説明する。Example The present invention will be explained below with reference to the drawings.

第1図は本発明を応用した制御システムの例を
示す図である。この例ではガステーブルコンロに
応用した例で示す。
FIG. 1 is a diagram showing an example of a control system to which the present invention is applied. This example shows an application to a gas table stove.

1はガス入口でガスは比例制御弁2を通つてバ
ーナ3で燃焼する。バーナ3は鍋4の底部を加熱
し内容調理物5に熱を加えている。6は鍋4の底
面温度を検出する温度センサであり、この信号は
温度制御部7に伝達される。温度制御部7は内部
に傾斜検知部8、屈曲点検知部9、比例制御部1
0により構成され比例制御弁2を駆動してバーナ
3の燃焼量を制御する。
1 is a gas inlet, and gas passes through a proportional control valve 2 and is burned in a burner 3. The burner 3 heats the bottom of the pot 4 and adds heat to the food 5 to be cooked. 6 is a temperature sensor that detects the bottom surface temperature of the pot 4, and this signal is transmitted to the temperature control section 7. The temperature control section 7 includes an inclination detection section 8, a bending point detection section 9, and a proportional control section 1.
0 and drives the proportional control valve 2 to control the combustion amount of the burner 3.

本発明は1気圧で水が沸騰したときは100℃と
なり、それ以上温度が上昇しなくなることに着眼
し、温度上昇の傾斜を検出する構成としている。
The present invention focuses on the fact that when water boils at 1 atm, the temperature reaches 100°C and does not rise any further, and is configured to detect the slope of temperature rise.

第2図は温度上昇特性を示し横軸Xは時間、縦
軸Tは温度を示す。図は湯を沸かした時の特性例
でAは内容物の温度つまり水温、Bは鍋底の温度
つまりセンサ6による検知温度を示す。温度Ta
は室温で加熱によりカーブA,B共に上昇してゆ
き、温度Tbで上昇カーブが一度ゆるやかになり
再度上昇を始める。これは温度Tbの点で容器の
周囲に露結した水分が蒸発するためであり、この
温度は容器(鍋)の材質や大きさにより異なるが
約40〜70℃である。
FIG. 2 shows temperature rise characteristics, with the horizontal axis X representing time and the vertical axis T representing temperature. The figure shows an example of the characteristics when boiling water. A shows the temperature of the contents, that is, the water temperature, and B shows the temperature of the bottom of the pot, that is, the temperature detected by the sensor 6. Temperature Ta
At room temperature, both curves A and B rise due to heating, and at temperature Tb, the rising curve becomes gentler and begins to rise again. This is because the moisture condensed around the container evaporates at the temperature Tb, which varies depending on the material and size of the container (pot), but is approximately 40 to 70°C.

さらに温度上昇してゆき温度Tcが100℃であり
一気圧では水温Aは沸騰して100℃以上は上昇し
なくなる。このときのセンサの温度BはTdであ
り、Tdも水温Aが100℃になつた点から上昇特性
が非常に少なくなるか、あるいはなくなる。この
Tc(100℃)とTdの温度差が鍋の材質や調理物の
量、種類により大きくばらつく。また圧力鍋等を
使用して圧力が変化すると温度Tc自体が100℃で
なくなつてしまう。しかし温度上昇の傾斜が変化
する屈曲点Cは常に水が沸騰した点であることに
変化はない。
As the temperature further increases, the temperature Tc reaches 100°C, and at one atmospheric pressure, the water temperature A boils and does not rise above 100°C. At this time, the temperature B of the sensor is Td, and since the water temperature A reaches 100° C., the rising characteristic of Td becomes very small or disappears. this
The temperature difference between Tc (100℃) and Td varies greatly depending on the material of the pot and the amount and type of food being cooked. Also, if the pressure changes using a pressure cooker or the like, the temperature Tc itself will no longer be 100°C. However, the inflection point C where the slope of temperature rise changes is always the point where water boils.

第3図は傾斜検知あるいは屈曲点検知の一例を
示す図である。この方法はサンプリング時間△X
毎の温度変化△Tを測定してゆき屈曲点検知部9
は、傾斜の値△Tの変化度合が一定のレベル、つ
まり今回計測した傾斜値と前回計測した傾斜値の
割合がある値になつた点が屈曲点であると判断
し、そのときの温度Tdを内容物温度が100℃にな
つた時のセンサの温度であると判定する。ここで
は△Tの変化度合として、最新の傾斜値と△Tn
と1回前に計測した傾斜値△T(n−1)の比△
Tn/△T(n−1)を演算する構成とし、具体的
には次式の演算を行なう。
FIG. 3 is a diagram showing an example of tilt detection or bending point detection. This method uses sampling time △X
The bending point detection unit 9 measures the temperature change ΔT at each
determines that the point where the degree of change in the slope value △T reaches a certain level, that is, the ratio of the slope value measured this time to the slope value measured last time, is the inflection point, and then calculates the temperature Td at that point. is determined to be the sensor temperature when the content temperature reaches 100℃. Here, as the degree of change of △T, the latest slope value and △Tn
The ratio of the slope value △T(n-1) measured one time ago to △
The configuration is such that Tn/ΔT(n-1) is calculated, and specifically, the following equation is calculated.

{Tn−T(n−1)}/{T(n−1)−T(n−
2)} Tnは最新のセンサの計測温度、T(n−1)は
1回前のセンサの温度(時間△X前)、T(n−
2)は2回前のセンサ温度である。この式は、こ
の形に限定されるものではなく、3回、4回前の
値を使用してもよいし、傾斜値の比でなく差を演
算する形であつても傾斜値の変化度合が求められ
る演算式であればよい。
{Tn-T(n-1)}/{T(n-1)-T(n-
2)} Tn is the latest measured temperature of the sensor, T(n-1) is the previous sensor temperature (time △X ago), T(n-
2) is the sensor temperature two times before. This formula is not limited to this form; it may use values from three or four times before, or it may be a form that calculates the difference rather than the ratio of slope values to calculate the degree of change in slope values. Any arithmetic expression that can be used may be used.

この傾斜値△Tの変化度合を演算する目的は、
調理物の量による傾斜値△Tの違いにより、例え
ば調理物が少ないときには傾斜値△Tが大きく、
調理物が多いときには傾斜値△Tが小さくなるた
めに、傾斜値△T自体が一定の値以下になつた点
を屈曲点と判定する方式であれば調理量により屈
曲値を判定するレベルが異なり、調理物が少ない
と遅く、調理物が多いほど速く屈曲点と判定して
しまう事を防ぐためである。
The purpose of calculating the degree of change of this slope value △T is
Due to the difference in slope value △T depending on the amount of food to be cooked, for example, when there is less food to be cooked, the slope value △T is large;
Since the slope value △T becomes smaller when there is a large amount of food to be cooked, if the method determines the point at which the slope value △T itself falls below a certain value as the bending point, the level at which the bending value is determined will differ depending on the amount of food cooked. This is to prevent the determination that the inflection point is determined to be slow when there are few things to be cooked, and quickly when there are many things to be cooked.

また傾斜値△Tは、一定時間毎の温度上昇を計
測する方法以外に、一定温度上昇する時間長によ
り求める方法であつてもよい。
In addition to the method of measuring the temperature rise at regular intervals, the slope value ΔT may be determined by the length of time during which the temperature rises at a constant rate.

加熱制御部10(ここでは加熱量を連続的に可
変制御する比例制御部として説明する)は屈曲点
検知部9の信号により種々の制御へ移行が可能で
ある。その一例として屈曲点検知部9の信号によ
り比例弁2を閉じて燃焼を停止する方法が考えら
れる。これは湯を沸かす場合に最適である。もう
一つの例として屈曲点検知部9の信号により燃焼
量を絞り小カロリーでさらに加熱する方法があ
る。一般に煮込み料理は後者の方法で行なうもの
であり弱火で長時間煮込む場合が多い。
The heating control unit 10 (described here as a proportional control unit that continuously variably controls the amount of heating) can shift to various types of control based on the signal from the bending point detection unit 9. One possible method is to close the proportional valve 2 based on the signal from the bending point detector 9 to stop combustion. This is ideal for boiling water. Another example is a method of reducing the amount of combustion based on the signal from the bending point detection unit 9 and further heating with a small amount of calories. Generally, stews are cooked using the latter method, and are often simmered over low heat for a long time.

第4図はこの制御特性を示し横軸Xは時間、特
性Vの縦軸Tは温度で破線Aは第2図と同様内容
物の温度、実線Bは鍋底のセンサの温度特性を示
す。特性Wの縦軸Iは比例弁の制御電流を示しこ
れはバーナ3の燃焼量に比例する。時間Xdまで
は第3図に示す屈曲点検知部9の信号が出力され
る前で比例弁電流Iは最大でありバーナ3の燃焼
量も最大燃焼とする。時間Xdで内部温度がTc
(100℃)となり沸騰を始めると屈曲点検知部9が
これを検出して比例弁電流Iを最小値にし、燃焼
量を最少燃焼量に絞り込む。このとき比例制御部
10は温度Tdが設定温度として設定され、この
設定温度とセンサの温度の差に応じて比例弁電流
つまり燃焼量を比例制御する。今、時間Xeで調
理物を追加した場合内部温度Aは低下する。これ
に伴ないセンサの温度Bも低下して内部温度Aの
低下を検出する。比例制御部10はこの温度Te
と設定温度Tdの差に応じて比例弁電流IをIeに
増加させる。これにより燃焼量も増加して温度A
は元の温度Tcの戻り、燃焼量も最少燃焼量に戻
る。上記Ieの大きさはTd−Teの大きさに応じて
変化しTd−Teが大きい場合はIeは大きくTd−
Teが小さいとIeは小さくなる。比例制御弁2は
オンオフ弁あるいは多段弁であつても良い。この
とき比例制御部10はオンオフ制御、あるいは多
段制御動作を行なう構成にする。
FIG. 4 shows this control characteristic, where the horizontal axis X is time, the vertical axis T of characteristic V is temperature, the broken line A is the temperature of the contents as in FIG. 2, and the solid line B is the temperature characteristic of the sensor at the bottom of the pot. The vertical axis I of the characteristic W indicates the control current of the proportional valve, which is proportional to the combustion amount of the burner 3. Until time Xd, before the signal from the bending point detection section 9 shown in FIG. 3 is output, the proportional valve current I is at its maximum, and the combustion amount of the burner 3 is also at its maximum combustion. At time Xd the internal temperature is Tc
(100°C) and starts boiling, the bending point detection unit 9 detects this and sets the proportional valve current I to the minimum value, narrowing down the combustion amount to the minimum combustion amount. At this time, the proportional control section 10 has the temperature Td set as the set temperature, and proportionally controls the proportional valve current, that is, the combustion amount, according to the difference between the set temperature and the sensor temperature. Now, if food is added at time Xe, the internal temperature A will decrease. Along with this, the temperature B of the sensor also decreases, and a decrease in the internal temperature A is detected. The proportional control section 10 controls this temperature Te.
The proportional valve current I is increased to Ie according to the difference between the temperature Td and the set temperature Td. As a result, the amount of combustion increases and the temperature A
The temperature returns to the original temperature Tc, and the combustion amount returns to the minimum combustion amount. The size of Ie above changes depending on the size of Td−Te, and when Td−Te is large, Ie increases and Td−
If Te is small, Ie will be small. The proportional control valve 2 may be an on-off valve or a multistage valve. At this time, the proportional control section 10 is configured to perform on-off control or multi-stage control operation.

また第2図で説明したように温度Tbによる屈
曲を屈曲点検知部9が検知しないように屈曲点検
知部9は測定開始温度Tf以上から動作する構成
とすることにより屈曲点検出ミスがなくなる。
Further, as explained in FIG. 2, the bending point detection section 9 is configured to operate from the measurement start temperature Tf or higher so that the bending point detection section 9 does not detect bending due to the temperature Tb, thereby eliminating errors in detecting the bending point.

以上の様な複雑な制御システムを作成する場合
最近マイクロコンピユータ(以後マイコンと呼
ぶ)がよく使用される。第6図は第1図〜第4図
で説明した内容の制御システムをマイコンを使用
して作成した場合の簡単なフロー図で示す。
Recently, microcomputers (hereinafter referred to as microcomputers) are often used to create complex control systems such as those described above. FIG. 6 shows a simple flowchart when the control system described in FIGS. 1 to 4 is created using a microcomputer.

第6図でステツプ101のIGはバーナ3の着火シ
ーケンスのサブルーチン、ステツプ103,117のS1
はセンサ6の温度S1を読み込むサブルーチン、ス
テツプ109の△Xはサンプリング時間を設定する
サブルーチン、ステツプ119のS2は温度差Td−S1
の大きさに応じて比例弁2の絞り量を決定し電流
Iを出力するサブルーチンを示す。
In FIG. 6, IG at step 101 is a subroutine for the ignition sequence of burner 3, and S1 at steps 103 and 117.
is a subroutine to read the temperature S1 of the sensor 6, △X in step 109 is a subroutine to set the sampling time, and S2 in step 119 is the temperature difference Td- S1
A subroutine for determining the throttle amount of the proportional valve 2 according to the magnitude of the current I and outputting the current I is shown.

ステツプ101で点火後ステツプ102で最大燃焼出
力としてステツプ103で読み込んだセンサの温度
S1が第2図で説明した温度の不安定なTb部より
も高い温度に設定した温度Tfになるまでは、ス
テツプ104の判断により図ののループを通りS1
>Tfとなるのを待つ。
After ignition in step 101, the temperature of the sensor read in step 103 is determined as the maximum combustion output in step 102.
Until S 1 reaches the temperature Tf, which is set higher than the unstable temperature Tb section explained in FIG .
>Wait for Tf.

ステツプ104でS1>Tfと判断した場合、の部
分傾斜検知を開始する。ここでは、第3図で説明
した様に測定したセンサ6の温度S1をステツプ
109で設定したサンプリング時間△X毎に記憶す
る。つまりステツプ103でセンサ6の温度S1を計
測すると、ステツプ105でいままで記憶していた
2回前のサンプリング温度の記憶を消して1回前
のサンプリング時の温度を2回前の温度として記
憶し直し(To-2←To-1)、ステツプ106で前回の
サンプリング時に測定した値を1回前の温度とし
て記憶し直す(To-1←To)。さらにステツプ107
で今回計測した温度S1を今回の値Toに記憶する
(To←S1)。このようにして、サンプリング時間
毎に各記憶の値が入れ替わる構成にしている。
If it is determined in step 104 that S 1 >Tf, partial inclination detection is started. Here, the temperature S1 of the sensor 6 measured as explained in Fig. 3 is taken step by step.
It is stored every sampling time △X set in step 109. In other words, when the temperature S1 of the sensor 6 is measured in step 103, in step 105 the memory of the sampling temperature two times before is erased and the temperature at the time of the first sampling is stored as the temperature two times before. (T o-2 ← T o-1 ), and in step 106, the value measured during the previous sampling is re-stored as the previous temperature (T o-1 ← T o ). Further step 107
The temperature S 1 measured this time is stored as the current value T o (T o ←S 1 ). In this way, the configuration is such that the values in each memory are replaced at every sampling time.

は屈曲点検知部の演算部で、図のTpは次式
で求まる値である。
is the calculation section of the bending point detection section, and Tp in the figure is a value determined by the following equation.

Tp=(To−To-1)/(To-1−To-2) つまりTpは、今回の計測値と1回前の計測値
の差と、1回前の計測値と2回前の計測値の差と
の比を求めていることになる。屈曲点の検出は、
このTpの値が予め定められた値Pよりも小さく
なつたとき、つまり各サンプリング温度の上昇が
少なくなつた点で屈曲点と判定する。
Tp=(T o −T o-1 )/(T o-1 −T o-2 ) In other words, Tp is the difference between the current measurement value and the previous measurement value, and the difference between the previous measurement value and 2 This means finding the ratio to the difference between the previous measurement values. Detection of bending points is
When the value of Tp becomes smaller than a predetermined value P, that is, the point at which the increase in each sampling temperature becomes smaller is determined to be the inflection point.

ステツプ108でTp<Pの条件が満たされなけれ
ば次のサンプリング時間△Xを計測してのルー
プで記憶し直す。
If the condition Tp<P is not satisfied in step 108, the next sampling time ΔX is measured and stored again in a loop.

ステツプ108でTp<Pと判断され屈曲点を検出
した後は、図ののループに移行し、比例制御に
なる。ここでは、ステツプ110で屈曲点を検出す
る前の温度差、つまり1回前の温度と2回前の温
度の差(To-1−To-2)に応じて比例制御弁の最
小絞り量Idをステツプ111〜113に示すように3段
階に切り替えステツプ114で決定した比例弁電流
に従い燃焼を行う構成としている(第4図W参
照)。これは、傾斜が大きければ、調理量が少な
いために最小燃焼量も少なくして(Id″)、調理物
の焦げ付きを少なくし、傾斜が小さければ調理量
が多いと判断して、最小燃焼量を多くし(Id′)、
さめるのを防ぐ目的のためである。さらに比例制
御部では、ステツプ115で第4図で説明したよ
うに屈曲点検知を行う直前のセンサの温度To-1
を設定温度Tdとして記憶し、以後このTdとステ
ツプ117で読込んだセンサの検出温度S1の差Td−
S1をステツプ118で検出し、その差Td−S1が零に
なるようにステツプ119のサブルーチンS2により
比例弁2の絞り量を決定し、比例制御弁を駆動す
る。つまり温度差Td−S1が大きければ、調理物
がさめてきているためにバーナの燃焼量を増加さ
せ、Td−S1が零あるいは負の値となつたときに
は、調理物が充分沸騰しているとして、最少絞り
量Idとするように動作する。
After it is determined in step 108 that Tp<P and the bending point is detected, the process shifts to the loop shown in the figure and becomes proportional control. Here, the minimum throttle of the proportional control valve is determined according to the temperature difference before detecting the inflection point in step 110, that is, the difference between the first temperature and the second temperature (T o-1T o-2 ). The combustion is performed in accordance with the proportional valve current determined in step 114 by changing the quantity Id into three stages as shown in steps 111 to 113 (see FIG. 4W). This is because if the slope is large, the amount of cooking is small, so the minimum amount of combustion is also reduced (Id'') to reduce the chance of burning the food, and if the slope is small, the amount of cooking is determined to be large, so the minimum amount of combustion is Increase (Id′),
The purpose is to prevent it from getting too hot. Furthermore, in step 115, the proportional control section determines the sensor temperature T o-1 immediately before detecting the bending point as explained in FIG.
is stored as the set temperature Td, and from now on, the difference between this Td and the sensor detection temperature S1 read in step 117, Td-
S1 is detected in step 118, and the throttle amount of the proportional valve 2 is determined in subroutine S2 of step 119 so that the difference Td- S1 becomes zero, and the proportional control valve is driven. In other words, if the temperature difference Td-S 1 is large, the burner will increase the combustion amount because the food is getting cold, and if Td-S 1 is zero or a negative value, the food has not boiled sufficiently. Assuming that there is a minimum aperture amount Id.

なおステツプ116のXENDは予め設定した調理時
間Xが終了した場合にバーナの燃焼を停止するプ
ログラムを示す。
Note that X END in step 116 indicates a program for stopping combustion of the burner when a preset cooking time X ends.

以上のような実施例の効果としては、傾斜の検
知方法を一定の定められた時間毎のサンプリング
によるセンサ温度の差を求める構成とすることに
より、マイコン等による制御が容易となりプログ
ラムの処理のみで正確な傾斜検知が可能となり非
常に簡単にシステムを構成できる。また屈曲点の
センサの温度を設定温度として比例弁を比例制御
する比例制御部を構成することにより、一度沸騰
したらその温度を保ちながら自動的に弱火に切替
わり煮込みを行なうことができ、さらに材料等を
追加して温度低下があつた場合は自動的に燃焼量
を増加し短時間に元の温度に回復する。このため
焦げつきや吹きこぼれ等の失敗がなく安心して煮
込み調理が行なえる上に無駄な加熱を防ぎ省エネ
ルギとなる。
The effects of the above-mentioned embodiments are that by using a method for detecting inclination that determines the difference in sensor temperature by sampling at fixed time intervals, control using a microcomputer, etc. becomes easier, and the process can be performed simply by processing a program. Accurate inclination detection is possible and the system can be configured very easily. In addition, by configuring a proportional control section that proportionally controls the proportional valve using the temperature of the sensor at the bending point as the set temperature, once it has boiled, it can automatically switch to low heat and simmer while maintaining that temperature. If the temperature drops due to the addition of heat, etc., the combustion amount will be automatically increased and the original temperature will be restored in a short time. Therefore, you can safely simmer and cook without any failures such as burning or boiling over, and you can save energy by preventing unnecessary heating.

本発明の実施例はガスコンロにより説明したが
電気コンロ等他の加熱器においても同様の効果が
得られる。さらに湯沸しポツトや炊飯器等の調理
器にも幅広く応用可能である。
Although the embodiment of the present invention has been described using a gas stove, similar effects can be obtained with other heaters such as an electric stove. Furthermore, it can be widely applied to cooking appliances such as kettles and rice cookers.

発明の効果 以上説明してきたように本発明の調理用温度制
御装置は次のような効果を有する。
Effects of the Invention As explained above, the cooking temperature control device of the present invention has the following effects.

(1) 煮込み調理で調理物の温度上昇の傾斜を測定
し、その屈曲点を検出することにより調理物の
温度が沸騰点に達したことを検出する構成であ
るため調理物の温度とセンサの温度の関係が一
定でない時、つまりセンサのばらつきや実施例
のように鍋底の温度を検出して鍋の厚みや材質
が変わつた時でも正確に沸騰点の検出が可能と
なり、設定温度が低くて沸騰前に検知したり、
設定温度が高くて沸騰していてもいつまでも検
知できず吹きこぼしたり焦げ付かす心配はな
く、使い勝手が非常に良く調理失敗がない。
(1) The structure measures the slope of the temperature rise of the food during simmering and detects the bending point to detect when the temperature of the food has reached the boiling point. Even when the temperature relationship is not constant, that is, due to variations in the sensor or when the temperature at the bottom of the pot is detected as in the example, the boiling point can be accurately detected even when the thickness or material of the pot changes, and the set temperature is low. Detection before boiling,
Even if the set temperature is high and it's boiling, it won't be detected forever, so you don't have to worry about it boiling over or burning, and it's very easy to use and won't cause cooking failures.

(2) 同様に、圧力鍋等を使用して調理物の圧力が
変化し、沸騰温度が100℃以外になつても正確
に沸騰点を検出可能となり、幅広い調理に応用
できる。
(2) Similarly, even if the pressure of the food being cooked changes using a pressure cooker or the like, and the boiling temperature becomes other than 100°C, the boiling point can be detected accurately, making it applicable to a wide range of cooking applications.

(3) また、屈曲点検知は傾斜値の比あるいは差な
どの傾斜度合の変化を演算し、この値が定めら
れた値以下になつた点を屈曲点であると判定す
る構成であるために、調理量が少なくて傾斜値
が大きい場合と、調理量が多くて傾斜が小さい
場合等のように傾斜値自体に差があつても屈曲
点を判定するレベルは変更することなく正確な
屈曲点の判定が可能となる。
(3) In addition, since the bending point detection is configured to calculate the change in slope degree such as the ratio or difference of slope values, and determine the point where this value becomes less than a predetermined value as a bending point. , even if there is a difference in the slope value itself, such as when the amount of cooking is small and the slope value is large, and when the amount of cooking is large and the slope is small, the level at which the inflection point is determined does not change and the inflection point is accurate. It becomes possible to judge.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の調理用温度制御装置の一実施
例を示す制御システム図、第2図は第1図のセン
サ部と内部温度の立上り状態を示す特性図、第3
図は傾斜検知並に屈曲点検知状態を説明する特性
図、第4図は屈曲点検知後の比例制御部の動作を
説明する特性図、第5図は従来例で鍋底温度検知
による比例制御システムの制御システム図、第6
図は本発明の温度制御部(第1図7部)をマイク
ロコンピユータで構成した場合の一例を示す概略
のフロー図である。 2……比例制御弁(加熱制御手段)、3……バ
ーナ(加熱手段)、4……鍋(容器)、5……調理
物、6……センサ(温度検出手段)、7……温度
制御部、8……傾斜検知部、9……屈曲点検知
部、10……比例制御部(加熱制御部)、Td……
設定温度、Tf……測定開始温度、P……予め定
められた値、△T……傾斜値、△X……サンプリ
ング時間、……傾斜変化演算部。
FIG. 1 is a control system diagram showing one embodiment of the cooking temperature control device of the present invention, FIG. 2 is a characteristic diagram showing the sensor section of FIG. 1 and the rising state of internal temperature, and FIG.
The figure is a characteristic diagram explaining the state of inclination detection and bending point detection, Figure 4 is a characteristic diagram explaining the operation of the proportional control section after detecting the bending point, and Figure 5 is a conventional proportional control system using pot bottom temperature detection. Control system diagram, No. 6
The figure is a schematic flowchart showing an example in which the temperature control section (section 7 in FIG. 1) of the present invention is configured with a microcomputer. 2... Proportional control valve (heating control means), 3... Burner (heating means), 4... Pot (container), 5... Food to be cooked, 6... Sensor (temperature detection means), 7... Temperature control Part, 8...Inclination detection part, 9...Bending point detection part, 10...Proportional control part (heating control part), Td...
Set temperature, Tf...measurement start temperature, P...predetermined value, △T...slope value, △X...sampling time,...slope change calculation section.

Claims (1)

【特許請求の範囲】[Claims] 1 水分を含む調理物を加熱する手段と、前記調
理物の温度を検出する温度検出手段と、前記温度
検出手段の信号に応じて前記加熱手段の加熱量を
制御する加熱制御手段に制御信号を出力する温度
制御部を有し、前記温度制御部は、前記温度検出
手段による調理物の温度上昇の時間に対する傾斜
を検出する傾斜検知部と、前記温度検出手段で検
出した調理物の温度の上昇が緩やかになり前記傾
斜検知部で検出した温度の時間傾斜の変化度合を
演算する傾斜変化演算部の値が予め定められた値
になる屈曲点を検出する屈曲点検知部を有し、前
記屈曲点検知部の信号出力により前記加熱手段の
加熱量を可変あるいは停止する加熱制御部を設け
た構成とした調理用温度制御装置。
1 A control signal is sent to a means for heating a food containing moisture, a temperature detection means for detecting the temperature of the food, and a heating control means for controlling the heating amount of the heating means in accordance with a signal from the temperature detection means. The temperature control section includes a slope detection section that detects the slope of the temperature rise of the food to be cooked by the temperature detection means with respect to time, and a slope detection portion for detecting the slope of the temperature rise of the food to be cooked detected by the temperature detection means. a bending point detection section for detecting a bending point at which the temperature becomes gentle and a value of a slope change calculation section that calculates the degree of change in the time slope of the temperature detected by the slope detection section becomes a predetermined value; A cooking temperature control device comprising a heating control section that varies or stops the heating amount of the heating means based on a signal output from a point detection section.
JP14368481A 1981-09-09 1981-09-10 Temperature control device for cooker Granted JPS5845414A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14368481A JPS5845414A (en) 1981-09-10 1981-09-10 Temperature control device for cooker
US06/411,954 US4465228A (en) 1981-09-09 1982-08-26 Cooker with heating control system
EP82108205A EP0074108B1 (en) 1981-09-09 1982-09-06 Cooker with heating control system
DE8282108205T DE3263279D1 (en) 1981-09-09 1982-09-06 Cooker with heating control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14368481A JPS5845414A (en) 1981-09-10 1981-09-10 Temperature control device for cooker

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP8325087A Division JPS62258933A (en) 1987-04-03 1987-04-03 Cooking temperature control device
JP8325187A Division JPS62248926A (en) 1987-04-03 1987-04-03 Temperature controller for cooking
JP28123487A Division JPS63176930A (en) 1987-11-06 1987-11-06 Temperature controller for cooking

Publications (2)

Publication Number Publication Date
JPS5845414A JPS5845414A (en) 1983-03-16
JPH028217B2 true JPH028217B2 (en) 1990-02-22

Family

ID=15344537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14368481A Granted JPS5845414A (en) 1981-09-09 1981-09-10 Temperature control device for cooker

Country Status (1)

Country Link
JP (1) JPS5845414A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186871A (en) * 2019-05-16 2020-11-19 株式会社ハーマン Gas stove
JP7300308B2 (en) * 2019-05-16 2023-06-29 株式会社ハーマン Gas stove

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117189A (en) * 1977-03-23 1978-10-13 Sony Corp Load controller
JPS5621206A (en) * 1979-07-30 1981-02-27 Ricoh Co Ltd Control unit for voltage applied to heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117189A (en) * 1977-03-23 1978-10-13 Sony Corp Load controller
JPS5621206A (en) * 1979-07-30 1981-02-27 Ricoh Co Ltd Control unit for voltage applied to heater

Also Published As

Publication number Publication date
JPS5845414A (en) 1983-03-16

Similar Documents

Publication Publication Date Title
US4492336A (en) Cooker with heating control system
EP0074108A2 (en) Cooker with heating control system
JPH0755192B2 (en) How to detect the amount of cooked food
JPH0137923B2 (en)
JPH028217B2 (en)
JPH04109914A (en) Rice boiler
JPH0444529B2 (en)
JPH022054B2 (en)
JPH0243092B2 (en)
CN113384161A (en) Cooking control method and device, storage medium and cooking appliance
JPH033854B2 (en)
JPH0257412B2 (en)
JPH0258532B2 (en)
JPH0125967B2 (en)
JPS58123027A (en) Cooking temperature controller
JPH0152004B2 (en)
JPS6367104B2 (en)
JPH0228062B2 (en) KANETSUCHORIKI
JPS6367105B2 (en)
JPS6348791A (en) Radio frequency electromagnetic induction heating cooker
KR102431458B1 (en) An alarm cook gas-range
JPH0544937A (en) Controller for kitchen range
JPS6041915A (en) Heating machinery
JPS6116714A (en) Temperature control pressure kettle
JPH0615210Y2 (en) Cooking device