JPH033854B2 - - Google Patents

Info

Publication number
JPH033854B2
JPH033854B2 JP62083251A JP8325187A JPH033854B2 JP H033854 B2 JPH033854 B2 JP H033854B2 JP 62083251 A JP62083251 A JP 62083251A JP 8325187 A JP8325187 A JP 8325187A JP H033854 B2 JPH033854 B2 JP H033854B2
Authority
JP
Japan
Prior art keywords
temperature
heating
food
detection
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62083251A
Other languages
Japanese (ja)
Other versions
JPS62248926A (en
Inventor
Keiichi Mori
Manabu Takada
Shojiro Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8325187A priority Critical patent/JPS62248926A/en
Publication of JPS62248926A publication Critical patent/JPS62248926A/en
Publication of JPH033854B2 publication Critical patent/JPH033854B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electric Ovens (AREA)
  • Cookers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、コンロ等の加熱調理器により例えば
煮込み調理等の水分の多い調理を行なう場合に、
調理物の温度を一定に精度よく制御することを可
能とした調理用温度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to cooking with a high moisture content, such as stewing, using a heating cooker such as a stove.
The present invention relates to a cooking temperature control device that can control the temperature of food to be cooked at a constant level with high precision.

従来の技術 従来、シチユー等の煮込み料理は初期強い火力
で加熱して内容物が煮立つたら弱火で長時間煮込
むという手順が必要である。これらの操作は今ま
で人間が手で行なつていたため、煮立つているの
に火力を絞り忘れて焦げつかしたりする失敗が多
かつた。またこの場合はエネルギーの無駄な消費
を行なつていることになる。
BACKGROUND TECHNOLOGY Traditionally, stews and other stews require a procedure of heating with strong heat at the beginning, and then boiling the contents over low heat for a long time once the contents have boiled. Up until now, these operations had been done by hand, so there were many mistakes such as forgetting to turn down the heat even when the food was boiling, resulting in burnt food. Moreover, in this case, energy is wasted.

そこで内容物の温度を検出して、内容物が煮立
つた時に自動的に火力を絞る自動制御装置が考え
られている。しかし内容物の温度を検出するため
に温度センサを調理鍋の中に投入するのは使い勝
手が悪くまた不潔感がある。このため温度センサ
を調理鍋の底に接触させて、鍋底温度を検出して
内容物温度を類推する方法が開発された。
Therefore, an automatic control device that detects the temperature of the contents and automatically reduces the heat when the contents boil is being considered. However, inserting a temperature sensor into a cooking pot to detect the temperature of the contents is inconvenient and unsanitary. For this reason, a method has been developed in which a temperature sensor is brought into contact with the bottom of a cooking pot to detect the bottom temperature and to infer the temperature of the contents.

発明が解決しようとする問題点 しかしこの方法では鍋底温度と内容物の温度が
一定でなく鍋の材質形状、厚みや内容物の量等に
より変化するという欠点があつた。
Problems to be Solved by the Invention However, this method has a drawback in that the temperature at the bottom of the pot and the temperature of the contents are not constant and vary depending on the material shape, thickness, amount of contents, etc. of the pot.

例えば、従来の制御手段として第5図のように
センサ6の信号を直接比例制御部10に導入し、
これにより比例制御部2の駆動信号を出力する構
成のものがあつた。
For example, as a conventional control means, the signal of the sensor 6 is directly introduced into the proportional control section 10 as shown in FIG.
As a result, there was a structure in which a drive signal for the proportional control section 2 was output.

尚第5図はガステーブルコンロの制御システム
図で1はガス入口でガスは比例制御弁2を通つて
バーナ3で燃焼する。バーナ3は鍋4の底部を加
熱し内容調理物5に熱を加えている。6は鍋4の
底面温度を検出する温度センサであり、この信号
は比例制御部10に入力され比例制御弁2を駆動
してバーナ3の燃焼量を制御する。
FIG. 5 is a diagram of a control system for a gas table stove. Reference numeral 1 indicates a gas inlet, and gas passes through a proportional control valve 2 and is combusted in a burner 3. The burner 3 heats the bottom of the pot 4 and adds heat to the food 5 to be cooked. Reference numeral 6 denotes a temperature sensor that detects the bottom surface temperature of the pot 4, and this signal is input to the proportional control section 10 to drive the proportional control valve 2 and control the combustion amount of the burner 3.

以上の構成でセンサ6の信号が比例制御部10
の設定温度より低い場合は比例弁2が全開となり
バーナ3が最大燃焼となる。センサ6の温度が上
昇して設定温度に近ずくにつれて比例弁2は徐々
に絞り始められ燃焼量も絞られる。センサ6の温
度が設定温度になつたときは比例弁2は最少に絞
られバーナ3は安全燃焼可能な最少燃焼量とな
る。
With the above configuration, the signal from the sensor 6 is transmitted to the proportional control section 10.
When the temperature is lower than the set temperature, the proportional valve 2 is fully opened and the burner 3 is at maximum combustion. As the temperature of the sensor 6 rises and approaches the set temperature, the proportional valve 2 gradually begins to throttle and the amount of combustion is also throttled. When the temperature of the sensor 6 reaches the set temperature, the proportional valve 2 is throttled down to the minimum, and the burner 3 reaches the minimum combustion amount that allows safe combustion.

この場合、センサ6の温度と調理物5の温度の
相関が一定であれば問題ない。しかし調理物によ
つて鍋や調理量が種々変化するためセンサ6の温
度と調理物5の温度の相関をとることは困難であ
る。
In this case, there is no problem as long as the correlation between the temperature of the sensor 6 and the temperature of the food 5 is constant. However, it is difficult to correlate the temperature of the sensor 6 and the temperature of the food 5 because the pot and the amount of cooking vary depending on the food being cooked.

特に煮込み料理では内部が沸騰する温度、つま
り煮立つて火を絞り込むタイミングは内容物の温
度が気圧が1気圧であれば100℃になつたときで
あるため、内容物が100℃以上となるような設定
温度にしたとき、いつまでたつても内容物の温度
は設定温度になる事がなく(水は1気圧で100℃
以上にならないため)比例弁2は働かず火力が絞
られることはない。反対に低いと温度が100℃に
なる前に火力を絞つてしまい以後は弱火で加熱す
ることになるためなかなか煮立つてこないという
ように非常に精度の高い設定温度が要求される。
さらに前述の鍋や調理物の量によるばらつきを考
えると温度制御は不可能となる。
Especially in stew dishes, the temperature at which the inside boils, that is, the timing to reduce the heat after boiling, is when the temperature of the contents reaches 100 degrees Celsius if the atmospheric pressure is 1 atm. When the set temperature is reached, the temperature of the contents will never reach the set temperature no matter how long it takes (water is 100°C at 1 atm).
2) Proportional valve 2 does not work and the firepower is not reduced. On the other hand, if the temperature is too low, the heat will be turned down before the temperature reaches 100°C, and subsequent heating will be done over low heat, so the temperature will not come to a boil easily, so a very precise temperature setting is required.
Furthermore, temperature control becomes impossible when considering the above-mentioned variations depending on the pot and the amount of food to be cooked.

これに加えて、水の沸点が変化する場合には従
来の制御方法では沸騰点を検出することが不可能
となる。
In addition to this, if the boiling point of water changes, it becomes impossible to detect the boiling point using conventional control methods.

例えば圧力鍋を使用した調理では内部の圧力が
上昇し沸騰温度120〜130℃となり、100℃では沸
騰することはない。また気圧の低い高地では100
℃以下で沸騰してしまい、100℃まで温度が上昇
することがなくふきこぼれや焦げつきの原因とな
る。これは調理物内に直接温度センサを挿入する
構成であつても同様の問題点を有する。
For example, when cooking with a pressure cooker, the internal pressure increases and the boiling temperature reaches 120-130°C, but it does not boil at 100°C. 100 at high altitudes with low atmospheric pressure.
It boils at temperatures below ℃, and the temperature does not rise to 100℃, causing boiling and burning. Similar problems arise even in a configuration in which the temperature sensor is inserted directly into the food being cooked.

問題点を解決するための手段 上記問題点を解決するために本発明の調理用温
度制御装置は、鍋などの容器に入つた水分を含む
調理物を加熱する加熱手段と、容器の外底部に接
して容器の温度を検出する温度検出手段と、この
温度検出手段の信号に応じて加熱手段の加熱量を
制御する加熱制御手段に制御信号を出力する温度
制御部を設け、温度制御部には、温度検出手段に
よる容器の温度上昇傾斜を検出する傾斜検知部
と、温度検出手段で検出した調理物の温度の上昇
が緩やかになり傾斜検知部で検出した温度の時間
傾斜が予め定められた値以下になる屈曲点を検出
する屈曲点検知部を有し、この屈曲点検知部の沸
騰検出信号により加熱手段の加熱量を可変あるい
は停止する構成とし、傾斜検知部には、温度検出
手段の検出信号が予め定められた測定開始温度以
上になつたことを検出する傾斜検知開始部の信号
により動作する構成とした。
Means for Solving the Problems In order to solve the above problems, the cooking temperature control device of the present invention includes a heating means for heating a food containing moisture contained in a container such as a pot, and a heating means for heating a food containing moisture contained in a container such as a pot. A temperature detection means for detecting the temperature of the container in contact with the container, and a temperature control section for outputting a control signal to the heating control means for controlling the heating amount of the heating means according to the signal of the temperature detection means, and the temperature control section has a temperature detection means for detecting the temperature of the container. , an inclination detection section that detects a temperature increase inclination of the container by the temperature detection means, and a time gradient of the temperature detected by the inclination detection section such that the increase in temperature of the food detected by the temperature detection means becomes gradual and is set to a predetermined value. It has a bending point detection section that detects the bending point below, and is configured to vary or stop the heating amount of the heating means based on the boiling detection signal of this bending point detection section. The device is configured to operate based on a signal from a tilt detection start section that detects when the signal reaches a predetermined measurement start temperature or higher.

作 用 以上の構成により、煮込み調理や湯沸かしなど
の水分が多くて調理物を煮立たせて(沸騰させ
て)調理する場合に、気圧の変化や、センサのば
らつき、あるいは調理物の温度を直接検知しない
場合においても、正確に調理物が沸騰したことを
検出できるという作用を有すると同時に傾斜検知
開始部により加熱初期の不安定な温度傾斜を検出
して誤動作することを防ぐという作用を有する。
Function The above configuration allows direct detection of changes in atmospheric pressure, sensor variations, or the temperature of the food when cooking food with a large amount of water, such as in simmering or boiling water. Even in the case where the food is not boiled, it has the effect of accurately detecting that the food has boiled, and at the same time has the effect of preventing malfunctions caused by detecting an unstable temperature slope at the initial stage of heating by the slope detection starting section.

実施例 以下図に従つて本発明について説明する。Example The present invention will be explained below with reference to the drawings.

第1図は本発明を応用した制御システムの列を
示す図である。この例ではガステーブルコンロに
応用した例で示す。
FIG. 1 is a diagram showing a sequence of control systems to which the present invention is applied. This example shows an application to a gas table stove.

1はガス入口でガスは比例制御弁2を通つてバ
ーナ3で燃焼する。バーナ3は鍋4の底部を加熱
し内容調理物5に熱を加えている。6は鍋4の底
面温度を検出する温度センサであり、この信号は
温度制御部7に伝達される。温度制御部7は内部
に傾斜検知部8、屈曲点検知部9、比例制御部1
0により構成され比例制御弁2を駆動してバーナ
3の燃焼量を制御する。
1 is a gas inlet, and gas passes through a proportional control valve 2 and is burned in a burner 3. The burner 3 heats the bottom of the pot 4 and adds heat to the food 5 to be cooked. 6 is a temperature sensor that detects the bottom surface temperature of the pot 4, and this signal is transmitted to the temperature control section 7. The temperature control section 7 includes an inclination detection section 8, a bending point detection section 9, and a proportional control section 1.
0 and drives the proportional control valve 2 to control the combustion amount of the burner 3.

本発明は1気圧で水が沸騰したときは100℃と
なり、それ以上温度が上昇しなくなることに着眼
し、温度上昇の傾斜を検出する構成としている。
The present invention focuses on the fact that when water boils at 1 atm, the temperature reaches 100°C and does not rise any further, and is configured to detect the slope of temperature rise.

第2図はアルミ製の肉圧の薄い鍋を使用したと
きの温度上昇特性を示し横軸Xは時間、縦軸Tは
温度を示す。図は湯を沸かした時の特性例でAは
内容物の温度つまり水温、Bは鍋底の温度つまり
センサ6による検知温度を示す。温度Taは室温
で加熱によりカーブA,B共に上昇してゆき、温
度Tbで上昇カーブが一度ゆるやかになり再度上
昇を始める。これは温度Tbの点で容器の周囲に
露結した水分が蒸発するためであり、この温度は
容器(鍋)の材質や大きさにより異なるが約40〜
70℃である。
Fig. 2 shows the temperature rise characteristics when using an aluminum pot with a thin wall pressure, where the horizontal axis X shows time and the vertical axis T shows temperature. The figure shows an example of the characteristics when boiling water. A shows the temperature of the contents, that is, the water temperature, and B shows the temperature of the bottom of the pot, that is, the temperature detected by the sensor 6. Temperature Ta increases in both curves A and B due to heating at room temperature, and at temperature Tb, the increasing curve once becomes gentle and starts to rise again. This is because the moisture condensed around the container evaporates at temperature Tb, and this temperature varies depending on the material and size of the container (pot), but is approximately 40 to
The temperature is 70℃.

さらに温度上昇してゆき温度Tcが100℃であり
一気圧では水温Aは沸騰して100℃以上は上昇し
なくなる。このときのセンサの温度BはTdであ
り、Tdも水温Aが100℃になつた点から上昇特性
が少なくなるか、あるいはなくなる。このTc
(100℃)とTdの温度差や内部が沸騰後の温度傾
斜は、鍋の材質や調理物の量、種類により大きく
ばらつく。例えば肉厚が厚くまた熱伝導の悪い材
質の鍋ほど、内とセンサの温度差が大きくなり、
沸騰後にも徐々に鍋底の温度は上昇していく傾向
が大きくなる。
As the temperature further increases, the temperature Tc reaches 100°C, and at one atmospheric pressure, the water temperature A boils and does not rise above 100°C. At this time, the temperature B of the sensor is Td, and since the water temperature A reaches 100° C., the rising characteristic of Td decreases or disappears. This Tc
The temperature difference between (100℃) and Td and the temperature gradient after the interior boils vary greatly depending on the material of the pot and the amount and type of food to be cooked. For example, the thicker the wall and the less heat conductive the pot, the greater the temperature difference between the inside and the sensor.
Even after boiling, the temperature at the bottom of the pot tends to gradually rise.

また圧力鍋等を使用して圧力が変化すると温度
Tc自体が100℃でなくなつてしまう。しかし温度
上昇の傾斜が変化する屈曲点Cは常に水が沸騰し
た点であることに変化はない。
Also, if the pressure changes using a pressure cooker etc., the temperature will change.
Tc itself disappears at 100℃. However, the inflection point C where the slope of temperature rise changes is always the point where water boils.

第3図は傾斜検知あるいは屈曲点検知の一例を
示す図である。この方法はサンプリング時間ΔX
毎の温度変化ΔTを測定してゆき屈曲点検知部9
はΔTが一定値以下になつた点が屈曲点であると
判断してそのときの温度Tdが内容物温度が100℃
になる温度とする方法がある。このとき屈曲点を
判定するための一定値とは、鍋の材質や形状、肉
厚、調理物の量や調理の種類など各種の条件を考
慮した上で定められた値としている。この値は上
記のような条件に応じて変化させる構成にしても
よいが、変化させない手段として実施例では、屈
曲点検知部で温度上昇の比が一定以下になること
を検出する手段を用いている。つまり(Tn−Tn
1)/(Tn−1−Tn−2)が一定値以下となつた
点をTdとする。(この式は傾斜比を求めるもので
あればどのような形でもよい) 比例制御部10は屈曲点検知部9の信号により
種々の制御へ移行が可能である。その一例として
屈曲点検知部9の信号により比例弁2を閉じて燃
焼を停止する方法が考えられる。これは湯を沸か
す場合に最適である。もう一つの例として屈曲点
検知部9の信号により燃焼量を絞り小カロリーで
さらに加熱する方法がある。一般に煮込み料理は
後者の方法で行なうものであり弱火で長時間煮込
む場合が多い。
FIG. 3 is a diagram showing an example of tilt detection or bending point detection. This method uses sampling time ΔX
The bending point detection unit 9 measures the temperature change ΔT at each
The point where ΔT becomes below a certain value is determined to be the inflection point, and the temperature Td at that time is the content temperature of 100℃.
There is a way to set the temperature to . At this time, the constant value for determining the bending point is a value determined after considering various conditions such as the material and shape of the pot, the thickness of the pot, the amount of food to be cooked, and the type of cooking. This value may be configured to be changed according to the above conditions, but as a means for not changing it, in the embodiment, a means for detecting that the ratio of temperature rise becomes below a certain level in the bending point detection section is used. There is. In other words, (Tn−Tn
1 )/(Tn− 1 −Tn− 2 ) is below a certain value as Td. (This equation may be in any form as long as it determines the slope ratio.) The proportional control section 10 can shift to various types of control based on the signal from the bending point detection section 9. One possible method is to close the proportional valve 2 based on the signal from the bending point detector 9 to stop combustion. This is ideal for boiling water. Another example is a method of reducing the amount of combustion based on the signal from the bending point detection unit 9 and further heating with a small amount of calories. Generally, stews are cooked using the latter method, and are often simmered over low heat for a long time.

第4図はこの制御特性を示し横軸Xは時間、特
性Vの縦軸Tは温度で破線Aは第2図と同様内容
物の温度、実線Bは鍋底のセンサの温度特性を示
す。特性Wの縦軸Iは比例弁の制御電流を示しこ
れはバーナ3の燃焼量に比例する。時間Xdまで
は第3図に示す屈曲点検知部9の信号が出力され
る前で比例弁電流Iは最大でありバーナ3の燃焼
量も最大燃焼となる。時間Xdで内部温度がTc
(100℃)となり沸騰を始めると屈曲点検知部9が
これを検出して比例弁電流Iを最小値にし、燃焼
量を最少燃焼量に絞り込む。このとき比例制御部
10は温度Tdが設定温度として設定され、この
設定温度とセンサの温度の差に応じて比例弁電流
つまり燃焼量を比例制御する。今、時間Xeで調
理物を追加した場合内部温度Aは低下する。これ
に伴ないセンサの温度Bも低下して内部温度Aの
低下を検出する。比例制御部10はこの温度Te
と設定温度Tdの差に応じて比例弁電流IをIeに
増加させる。これにより燃焼量も増加して温度A
は元の温度Tcに戻り、燃焼量も最少燃焼量に戻
る。上記Ieの大きさはTd−Teの大きさに応じて
変化しTd−Teが大きい場合はIeは大きくTd−
Teが小さいとIeは小さくなる。
FIG. 4 shows this control characteristic, where the horizontal axis X is time, the vertical axis T of characteristic V is temperature, the broken line A is the temperature of the contents as in FIG. 2, and the solid line B is the temperature characteristic of the sensor at the bottom of the pot. The vertical axis I of the characteristic W indicates the control current of the proportional valve, which is proportional to the combustion amount of the burner 3. Until time Xd, before the signal from the bending point detection section 9 shown in FIG. 3 is output, the proportional valve current I is at its maximum, and the combustion amount of the burner 3 is also at its maximum combustion. At time Xd the internal temperature is Tc
(100°C) and starts boiling, the bending point detection unit 9 detects this and sets the proportional valve current I to the minimum value, narrowing down the combustion amount to the minimum combustion amount. At this time, the proportional control section 10 has the temperature Td set as the set temperature, and proportionally controls the proportional valve current, that is, the combustion amount, according to the difference between the set temperature and the sensor temperature. Now, if food is added at time Xe, the internal temperature A will decrease. Along with this, the temperature B of the sensor also decreases, and a decrease in the internal temperature A is detected. The proportional control section 10 controls this temperature Te.
The proportional valve current I is increased to Ie according to the difference between the temperature Td and the set temperature Td. As a result, the amount of combustion increases and the temperature A
returns to the original temperature Tc, and the amount of combustion also returns to the minimum amount of combustion. The size of Ie above changes depending on the size of Td−Te, and when Td−Te is large, Ie increases and Td−
If Te is small, Ie will be small.

比例制御弁2はオンオフ弁あるいは多段弁であ
つても良い。このとき比例制御部10はオンオフ
制御、や多段制御動作を行なう構成にする。
The proportional control valve 2 may be an on-off valve or a multistage valve. At this time, the proportional control section 10 is configured to perform on/off control or multi-stage control operation.

また第2図で説明したように温度Tbによる屈
曲を屈曲点検知部9が検知しないように屈曲点検
知部9は傾斜検知開始部Iにより測定開始温度
Tf以上から動作する構成であり不安定な傾斜検
知による屈曲点検出ミスがなくなる。
In addition, as explained in FIG. 2, in order to prevent the bending point detecting part 9 from detecting the bending caused by the temperature Tb, the bending point detecting part 9 is set at the measurement starting temperature by the inclination detection starting part I.
The configuration operates from Tf or above, eliminating errors in detecting bending points due to unstable inclination detection.

以上の様な複雑な制御システムを作成する場合
最近マイクロコンピユータ(以後マイコンと呼
ぶ)がよく使用される。第6図に第1図〜第4図
で説明した内容の制御システムをマイコンを使用
して作成した場合の簡単なフロー図で示す。
Recently, microcomputers (hereinafter referred to as microcomputers) are often used to create complex control systems such as those described above. FIG. 6 shows a simple flow diagram when the control system described in FIGS. 1 to 4 is created using a microcomputer.

第6図でIGはバーナ3の着火シーケンスのサ
ブルーチン、S1はセンサ6の温度Slを読み込む
サブルーチン、S2は温度差Td−Slの大きさに
応じて比例弁2の絞り量を決定し電流Iを出力す
るサブルーチンを示す。
In Fig. 6, IG is a subroutine for the ignition sequence of the burner 3, S1 is a subroutine for reading the temperature Sl of the sensor 6, and S2 is a subroutine that determines the throttle amount of the proportional valve 2 according to the size of the temperature difference Td-Sl and controls the current I. Indicates the subroutine to output.

点火後センサの温度Slが第2図で説明した温度
の不安定なTb部よりも高い温度に設定した温度
Tfになるまでは、図ののループを通りSl>Tf
となるのを待つ。
The temperature at which the post-ignition sensor temperature Sl is set higher than the unstable temperature Tb part explained in Figure 2.
Until Tf is reached, Sl>Tf goes through the loop shown in the figure.
Wait for it to become.

Sl>Tfとなつた場合の部分傾斜検知を開始
する。ここでは、第3図で説明したように測定し
たセンサ6の温度Slをサンプリング時間ΔX毎に
記憶する。つまりセンサ6の温度Slを計測する
と、いままで記憶していた2回前のサンプリング
温度の記憶を消して1回前のサンプリング時の温
度を2回前の温度として記憶し直し(Tn−2
Tn−1)、前回のサンプリング時に測定した値を
1回前の温度として記憶し直す(Tn−1←Tn)。
さらに今回計測した温度Slを今回の値Tnに記憶
する(Tn←Sl)。このようにして、サンプリング
時間毎に各記憶の値が入れ替わる構成にしてい
る。
Start partial tilt detection when Sl>Tf. Here, the temperature Sl of the sensor 6 measured as explained in FIG. 3 is stored for each sampling time ΔX. In other words, when the temperature Sl of sensor 6 is measured, the memory of the sampling temperature two times before is erased and the temperature at the time of the first sampling is re-memorized as the temperature two times before (Tn- 2
Tn- 1 ), the value measured during the previous sampling is re-stored as the previous temperature (Tn- 1 ←Tn).
Furthermore, the temperature Sl measured this time is stored as the current value Tn (Tn←Sl). In this way, the configuration is such that the values in each memory are replaced at every sampling time.

は屈曲点検出部の演算部で、図のTpは次式
で求まる値である。
is the calculation section of the bending point detection section, and Tp in the figure is a value determined by the following equation.

Tp=(Tn−Tn−1)/(Tn−1−Tn−2) つまりTpは、今回の計測値と1回前の計測値
の差と、1回前の計測値と2回前の計測値の差と
の比を求めていることになる。屈曲点の検出は、
このTpの値が予め定められた値Pよりも小さく
なつたとき、つまり各サンプリング温度の上昇が
少なくなつた点で屈曲点と判定する。
Tp = (Tn-Tn- 1 ) / (Tn- 1 - Tn- 2 ) In other words, Tp is the difference between the current measurement value and the previous measurement value, and the difference between the first measurement value and the second measurement value. This means that we are looking for the ratio of the difference in values. Detection of bending points is
When the value of Tp becomes smaller than a predetermined value P, that is, the point at which the increase in each sampling temperature becomes smaller is determined to be the inflection point.

Tp<Pの条件が満たされなければ次のサンプ
リング時間ΔTを計測してのループで記憶し直
す。
If the condition Tp<P is not satisfied, the next sampling time ΔT is measured and stored again in a loop.

Tp<Pとなり屈曲点を検出後は、図ののル
ープに移行し、比例制御になる。ここでは、屈曲
点を検出する前の温度差、つまり1回前の温度と
2回前の温度の差(Tn−1−Tn−2)に応じて比
例制御弁の最小絞り量Idを3段階に切り替える構
成としている(第4図W参照)。これは、傾斜が
大きければ、調理量が少ないために最小燃焼量も
少なくして(Id″)、調理物の焦げ付きを少なく
し、傾斜が小さければ調理物が多いと判断して、
最小燃焼量を多くし(Id′)、さめるのを防ぐ目的
のためである。さらに比例制御部Vでは、第4図
で説明したように屈曲点検知を行う直前のセンサ
の温度Tn−1を設定温度Tdとして記憶し、以後
このTdとセンサの検出温度Slの差Td−Slが零に
なるようにサブルーチンS2により比例弁2の絞
り量を決定し、比例制御弁を駆動する。つまり温
度差Td−Slが大きければ、調理物がさめてきて
いるためにバーナの燃焼量を増加させ、Td−Sl
が零あるいは負の値となつたときには、調理物が
充分沸騰しているとして、最少絞り量Idとするよ
うに動作する。
After Tp<P and the bending point is detected, the process shifts to the loop shown in the figure and becomes proportional control. Here, the minimum throttle amount Id of the proportional control valve is set in three stages according to the temperature difference before detecting the bending point, that is, the difference between the first temperature and the second temperature (Tn- 1 - Tn- 2 ). (See Fig. 4, W). This is because if the slope is large, the amount of food cooked is small, so the minimum combustion amount is also reduced (Id''), which reduces the chance of burning the food.If the slope is small, the amount of food cooked is large.
This is for the purpose of increasing the minimum combustion amount (Id') and preventing it from cooling down. Furthermore, the proportional control section V stores the temperature Tn- 1 of the sensor immediately before detecting the bending point as the set temperature Td, as explained in FIG. The throttle amount of the proportional valve 2 is determined by subroutine S2 so that the ratio becomes zero, and the proportional control valve is driven. In other words, if the temperature difference Td-Sl is large, the food being cooked is getting colder, so the combustion amount of the burner increases, and Td-Sl increases.
When becomes zero or a negative value, it is assumed that the food is sufficiently boiled, and the operation is performed to set the minimum squeezing amount Id.

XENDは予め設定した調理時間Xが終了した
場合にバーナの燃焼を停止するプログラムを示
す。
XEND indicates a program that stops combustion of the burner when a preset cooking time X ends.

以上のような実施例の効果としては、屈曲点の
センサの温度を設定温度として比例弁を比例制御
する比例制御部を構成することにより、一度沸騰
したらその温度を保ちながら自動的に弱火に切替
わり煮込みを行なうことができ、さらに材料等を
追加して温度低下があつた場合は自動的に燃焼量
を増加し短時間に元の温度に回復する。このため
焦げつきや吹きこぼれ等の失敗がなく安心して煮
込み調理が行なえる上に無駄な加熱を防ぎ省エネ
ルギとなる。
The effect of the above embodiment is that by configuring a proportional control section that proportionally controls the proportional valve using the temperature of the sensor at the bending point as the set temperature, once it boils, the temperature is maintained and the heat is automatically turned off to low. It is possible to perform simmering instead, and if the temperature drops due to the addition of additional ingredients, the amount of combustion will be automatically increased and the original temperature will be restored in a short time. Therefore, you can safely simmer and cook without any failures such as burning or boiling over, and you can save energy by preventing unnecessary heating.

本発明の実施例はガスコンロにより説明したが
電気コンロ等他の加熱器においても同様の効果が
得られる。さらに湯沸しポツトや炊飯器等の調理
器にも幅広く応用可能である。
Although the embodiment of the present invention has been described using a gas stove, similar effects can be obtained with other heaters such as an electric stove. Furthermore, it can be widely applied to cooking appliances such as kettles and rice cookers.

発明の効果 以上説明してきたように本発明の調理用温度制
御装置は次のような効果を有する。
Effects of the Invention As explained above, the cooking temperature control device of the present invention has the following effects.

(1) 煮込み調理で調理物の温度上昇の傾斜を測定
し、その値が予め定められた値よりも小さくな
る屈曲点を検出することにより調理物の温度が
沸騰点に達したことを検出する構成であるため
調理物の温度とセンサの温度の関係が一定でな
い時、つまりセンサのばらつきや実施例のよう
に鍋底の温度を検出して鍋の厚みや材質が変わ
つた時でも正確に沸騰点の検出が可能でとな
り、設定温度が低くて沸騰前に検知したり、設
定温度が高くて沸騰していてもいつまでも検知
できず吹きこぼしたり焦げ付かす心配はなく、
使い勝手が非常に良く調理失敗がない。
(1) Measuring the slope of the temperature rise of the food during simmering and detecting the inflection point where the value becomes smaller than a predetermined value to detect when the temperature of the food has reached the boiling point. Because of this configuration, even when the relationship between the temperature of the food being cooked and the temperature of the sensor is not constant, that is, there are variations in the sensor, and even when the temperature at the bottom of the pot is detected as in the example, the boiling point can be accurately determined even when the thickness or material of the pot changes. There is no need to worry about the temperature setting being low and the water being detected before it boils, or even if the setting temperature is high and the water is boiling, it will not be detected forever and the water will boil over or burn.
It is very easy to use and there are no cooking mistakes.

(2) 傾斜検知開始部Iにより加熱初期に結露等に
より傾斜が不安定な部分の傾斜検知を行なわな
い構成としたので、傾斜検知の誤差が少なく誤
動作を防止できる。
(2) Since the tilt detection starting section I does not perform tilt detection on a portion where the tilt is unstable due to dew condensation or the like in the early stage of heating, errors in tilt detection are small and malfunctions can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の調理用温度制御装置の一実施
例を示す制御システム図、第2図は第1図のセン
サ部と内部温度の立上り状態を示す特性図、第3
図は傾斜検知並に屈曲点検知状態を説明する特性
図、第4図は屈曲点検知後の比例制御部の動作を
説明する特性図、第5図は従来例で鍋底温度検知
による比例制御システムの制御システム図、第6
図は本発明の温度制御部(第1図7部)をマイク
ロコンピユータで構成した場合の一例を示す概略
のフロー図である。 2……比例制御弁(加熱制御手段)、3……バ
ーナ(加熱手段)、4……鍋(容器)、5……調理
物、6……センサ(温度検出手段)、7……温度
制御部、8……傾斜検知部、9……屈曲点検知
部、10……比例制御部、I……傾斜検知開始
部、Td……設定温度、Tf……測定開始温度、P
……予め定められた値。
FIG. 1 is a control system diagram showing one embodiment of the cooking temperature control device of the present invention, FIG. 2 is a characteristic diagram showing the sensor section of FIG. 1 and the rising state of internal temperature, and FIG.
The figure is a characteristic diagram explaining the state of inclination detection and bending point detection, Figure 4 is a characteristic diagram explaining the operation of the proportional control section after detecting the bending point, and Figure 5 is a conventional example of a proportional control system using pan bottom temperature detection. Control system diagram, No. 6
The figure is a schematic flow diagram showing an example of a case where the temperature control section (section 7 in FIG. 1) of the present invention is configured with a microcomputer. 2... Proportional control valve (heating control means), 3... Burner (heating means), 4... Pot (container), 5... Food to be cooked, 6... Sensor (temperature detection means), 7... Temperature control Part, 8... Tilt detection part, 9... Bend point detection part, 10... Proportional control part, I... Tilt detection start part, Td... Set temperature, Tf... Measurement start temperature, P
...predetermined value.

Claims (1)

【特許請求の範囲】[Claims] 1 鍋などの容器に入つた水分を含む調理物を加
熱する加熱手段と、前記容器の外底部に接して容
器の温度を検出する温度検出手段と、前記温度検
出手段の信号に応じて前記加熱手段の加熱量を制
御する加熱制御手段に制御信号を出力する温度制
御部を備え、前記温度制御部は、前記温度検出手
段による容器の温度上昇傾斜を検出する傾斜検知
部と、前記温度検出手段で検出した調理物の温度
の上昇が緩やかになり前記傾斜検知部で検出した
温度の時間傾斜が予め定められた値以下になる屈
曲点を検出する屈曲点検知部を有し、前記屈曲点
検知部の沸騰検出信号により前記加熱手段の加熱
量を可変あるいは停止する構成とし、前記傾斜検
知部は、温度検出手段の検出信号が予め定められ
た測定開始温度以上になつたことを検出する傾斜
検知開始部の信号により動作する調理用温度制御
装置。
1. A heating means for heating a food containing moisture contained in a container such as a pot; a temperature detection means for detecting the temperature of the container by contacting the outer bottom of the container; a temperature control unit that outputs a control signal to a heating control unit that controls the amount of heating of the unit; a bending point detection section for detecting a bending point at which the rise in temperature of the food detected by the food to be cooked becomes gradual and the time gradient of the temperature detected by the slope detection section becomes equal to or less than a predetermined value; The heating amount of the heating means is varied or stopped according to the boiling detection signal of the temperature detecting means, and the tilt detecting section is configured to detect when the detection signal of the temperature detecting means becomes equal to or higher than a predetermined measurement start temperature. A cooking temperature control device that operates based on a signal from the start section.
JP8325187A 1987-04-03 1987-04-03 Temperature controller for cooking Granted JPS62248926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8325187A JPS62248926A (en) 1987-04-03 1987-04-03 Temperature controller for cooking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8325187A JPS62248926A (en) 1987-04-03 1987-04-03 Temperature controller for cooking

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14368481A Division JPS5845414A (en) 1981-09-09 1981-09-10 Temperature control device for cooker

Publications (2)

Publication Number Publication Date
JPS62248926A JPS62248926A (en) 1987-10-29
JPH033854B2 true JPH033854B2 (en) 1991-01-21

Family

ID=13797116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8325187A Granted JPS62248926A (en) 1987-04-03 1987-04-03 Temperature controller for cooking

Country Status (1)

Country Link
JP (1) JPS62248926A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69320514T2 (en) * 1992-03-26 1999-04-29 Matsushita Electric Ind Co Ltd Gas appliance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117189A (en) * 1977-03-23 1978-10-13 Sony Corp Load controller
JPS54149042A (en) * 1978-05-15 1979-11-21 Daikin Ind Ltd Electric heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117189A (en) * 1977-03-23 1978-10-13 Sony Corp Load controller
JPS54149042A (en) * 1978-05-15 1979-11-21 Daikin Ind Ltd Electric heater

Also Published As

Publication number Publication date
JPS62248926A (en) 1987-10-29

Similar Documents

Publication Publication Date Title
EP0089247B1 (en) Cooking temperature control system
JP2538484Y2 (en) Cooker
JPH0137923B2 (en)
JP2009050487A (en) Induction heating cooker
JPH033854B2 (en)
JPH0243092B2 (en)
JPH028217B2 (en)
JPH022054B2 (en)
JPH0444529B2 (en)
CN113384161A (en) Cooking control method and device, storage medium and cooking appliance
JPH0258532B2 (en)
JPH0125967B2 (en)
JPH0257412B2 (en)
JPS58123027A (en) Cooking temperature controller
JPS6367104B2 (en)
JPH0152004B2 (en)
JPH0539926A (en) Range controller
JPS5880424A (en) Cooking temperature controlling device
JPS6348791A (en) Radio frequency electromagnetic induction heating cooker
JPS6116714A (en) Temperature control pressure kettle
JPH0228062B2 (en) KANETSUCHORIKI
JPH0715330B2 (en) Stove controller
JPS58183123A (en) Temperature control apparatus used in cooking
JPH0615210Y2 (en) Cooking device
JPH0225098B2 (en)