JPS5862432A - Controller for temperature for cooking - Google Patents

Controller for temperature for cooking

Info

Publication number
JPS5862432A
JPS5862432A JP16164481A JP16164481A JPS5862432A JP S5862432 A JPS5862432 A JP S5862432A JP 16164481 A JP16164481 A JP 16164481A JP 16164481 A JP16164481 A JP 16164481A JP S5862432 A JPS5862432 A JP S5862432A
Authority
JP
Japan
Prior art keywords
temperature
bending point
section
inclination
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16164481A
Other languages
Japanese (ja)
Other versions
JPS6367104B2 (en
Inventor
Manabu Takada
学 高田
Shojiro Inoue
井上 象二郎
Keiichi Mori
慶一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16164481A priority Critical patent/JPS5862432A/en
Priority to US06/411,954 priority patent/US4465228A/en
Priority to EP82108205A priority patent/EP0074108B1/en
Priority to DE8282108205T priority patent/DE3263279D1/en
Publication of JPS5862432A publication Critical patent/JPS5862432A/en
Publication of JPS6367104B2 publication Critical patent/JPS6367104B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C3/00Stoves or ranges for gaseous fuels
    • F24C3/12Arrangement or mounting of control or safety devices
    • F24C3/126Arrangement or mounting of control or safety devices on ranges

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Temperature (AREA)
  • Electric Ovens (AREA)

Abstract

PURPOSE:To control temperature accurately regardless of the kinds of pans and the quantity of cooking by detecting the temperature-rise gradient of a material to be cooked and the point of bending where a temperature gradient reaches a predetermined value or lower. CONSTITUTION:The detecting signals of a temperature sensor 6 set up to the bottom of the pan 4 heating a material to be cooked 5 are tramsmitted to a temperature control section 7, and a proportional control valve 2 is controlled. In the temperature control section 7, a temperature change DELTAT at every sampling time DELTAX is measured in a gradient detecting section 8, a point where the temperature change DELTAT reaches a prescribed value P or lower is judged as the point of bending in a bending-point detecting section 9, a temperature where the temperatue of content reaches 100 deg.C at a temperature Td at that time is obtained, and the temperature is outputted to a proportional control section 10.

Description

【発明の詳細な説明】 本発明は、コンロ等の加熱調理器により、例えば、煮込
み調理等の水分の多い調理を行う場合に調理物の温度を
一定に精度よく制御することを可能とした調理用温度制
御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method of cooking that makes it possible to accurately control the temperature of food to be cooked using a heating cooker such as a stove when cooking with a high content of water such as stewing. The present invention relates to a temperature control device for use.

従来、シチーー等の煮込み調理は、初期強い火力で加熱
して内容物が煮立ったら弱火で長時間煮込むという手順
が必要である。これらの操作は、今まで人間が手で行っ
ていたため、煮立っているのに火力を絞り忘れて焦げつ
かしたりする失敗が多かった。また、この場合はエネル
ギーの無駄々消費を行っていることになる。
Traditionally, when cooking stews such as shichi, it is necessary to initially heat the food with strong heat, and then boil the contents over low heat for a long time. Until now, these operations had been done by hand, so there were many mistakes such as forgetting to turn down the heat even when the food was boiling, resulting in burnt food. Moreover, in this case, energy is wasted.

そこで、内容物の温度を検出して、内容物が煮立った時
に、自動的に火力を絞る自動制御装置が考えられている
。しかし、内容物の温度を検出するために温度センサを
調理鍋の中に投入するのは使い勝手が悪く、壕だ、不潔
感がある。このため温度センサを調理鍋の底に接触させ
て、鍋底温度を検出して内容物温度を類推する方法が考
案された。しかし、この方法では、鍋底温度と内容物温
度が一定でなく鍋の材質、厚み、形状や内容物の量等に
より変化するという欠点があった。
Therefore, an automatic control device is being considered that detects the temperature of the contents and automatically reduces the heat when the contents reach a boil. However, inserting a temperature sensor into a cooking pot to detect the temperature of the contents is inconvenient and gives a dirty and dirty feeling. For this reason, a method has been devised in which a temperature sensor is brought into contact with the bottom of a cooking pot to detect the bottom temperature of the pot and to infer the temperature of the contents. However, this method has the disadvantage that the temperature at the bottom of the pot and the temperature of the contents are not constant and vary depending on the material, thickness, shape, amount of contents, etc. of the pot.

本発明は、鍋底の温度を検出する調理温度制御装置にお
いて、特に煮込み調理等の水分が多く、内部温度を10
0℃に制御する場合に鍋の種類や内容物の量に無関係に
設定できる調理温度制御装置を提供することを目的とす
る。この目的達成のため本発明調理温度制御装置は、煮
込み調理の内容物が煮立つまでの温度上昇の傾斜を検知
し、その傾斜度合に応じて、温度上昇の屈曲点(100
℃の水分の沸点となる点)検出の値を変更して、どのよ
うな温度上昇の傾斜においても、誤った屈曲点検知のな
いよう正確に制御を行なうようにしかも以下図に従って
本発明を説明する。
The present invention is a cooking temperature control device that detects the temperature of the bottom of a pot.
To provide a cooking temperature control device that can be set to 0° C. regardless of the type of pot or the amount of contents. In order to achieve this objective, the cooking temperature control device of the present invention detects the slope of temperature rise until the content of the simmering cooking boils, and depending on the degree of slope, the temperature rise bending point (100
By changing the detection value (the point at which the boiling point of water in °C do.

第1図は、本発明を応用した制御システムの例を示す図
であり、ガステープルコンロでの実施例を示す。1は、
ガス入口で、ガスは、比例制御弁2を通ってバーナ3で
燃焼する。バーナ3は、鍋4の底部を加熱し内容調理物
5に熱を加える。6ば鍋4の底面温度を検出する温度セ
ンサであり、この信号は、温度制御部7に伝達される。
FIG. 1 is a diagram showing an example of a control system to which the present invention is applied, and shows an example of a gas staple stove. 1 is
At the gas inlet, the gas passes through a proportional control valve 2 and is combusted in a burner 3. The burner 3 heats the bottom of the pot 4 and adds heat to the food 5 to be cooked. 6 is a temperature sensor that detects the bottom surface temperature of the pot 4, and this signal is transmitted to the temperature control section 7.

温度制御部7は、内部に傾斜検知部8、屈曲点検知部9
、比例制御部1oにより構成され比例制御弁2を駆動し
てバーナ3の燃焼量を制御する。
The temperature control section 7 includes an inclination detection section 8 and a bending point detection section 9 inside.
, a proportional control section 1o, which drives the proportional control valve 2 to control the combustion amount of the burner 3.

ここで、従来の制御方法であれば、第7図のように、セ
ンサ6′の信号を直接、比例制御部1σに入力し、これ
により、比例制御弁2′の駆動信号を出力する。つ捷り
、センサσの信号が比例制御部1σの設定温度より低い
場合は比例制御弁2′が全開となりバーナ3′が最大燃
焼となる。センサ6′の温度が上昇して設定温度に近ず
くにつれて比例制御弁2′は徐々に絞り始められ燃焼量
も絞られる。
Here, in the conventional control method, as shown in FIG. 7, the signal from the sensor 6' is directly input to the proportional control section 1σ, thereby outputting a drive signal for the proportional control valve 2'. When the signal from the sensor σ is lower than the set temperature of the proportional control section 1σ, the proportional control valve 2' is fully opened and the burner 3' is at maximum combustion. As the temperature of the sensor 6' rises and approaches the set temperature, the proportional control valve 2' gradually begins to throttle and the amount of combustion is also throttled.

センサ6′の温度が設定温度になったときは、比例制御
弁2′は最少に絞られバーナ3′は、安全燃焼可能な最
少燃焼量となる。この場合、センサ6′の温度と調理物
5′の温度の相関が一定であれば問題はないが、調理物
によって、鍋の種類や調理量が種々変化するため、セン
サ6′と調理物5′の温度の相関は困難である。特に、
煮込み調理では、煮立って火を絞り込むタイミングは内
容物の温度が100℃になったときであるため、100
℃を越えるような設定温度であると、いつまでだっても
内容物の温度は、設定温度になることがなく(水は10
0℃以上にならないため)比例制御弁2′が働かず、火
力を絞ることはない。反対に100℃より低い設定温度
であると、内容物の温度が100℃になる前に火を絞っ
てしまい弱火で加熱することになるためなかなか煮立っ
てこない、というように非常に精度の高い設定温度が要
求される。これに加えて前述の鍋の種類や調理物の量に
よるバラツキを考えると温度制御は大変むずかしくなる
。なお、1′と4′は、第1図と同じように、ガス入口
と鍋である〇そこで本発明では、水が100℃以上の温
度にならないので内容物が100℃になり、それ以上上
昇しなくなれば鍋底の温度上昇も少なくなることに着眼
し鍋底温度の傾斜の屈曲点を検出する構成とした。
When the temperature of the sensor 6' reaches the set temperature, the proportional control valve 2' is throttled down to the minimum, and the burner 3' reaches the minimum combustion amount that allows safe combustion. In this case, there is no problem if the correlation between the temperature of the sensor 6' and the temperature of the food 5' is constant, but since the type of pot and the amount of cooking vary depending on the food, the sensor 6' and the temperature of the food 5' vary. ′ is difficult to correlate with temperature. especially,
In stewing cooking, the timing to boil and reduce the heat is when the temperature of the contents reaches 100℃, so 100℃
If the set temperature exceeds ℃, the temperature of the contents will never reach the set temperature (water has a temperature of 10
Since the temperature does not rise above 0°C, the proportional control valve 2' does not work and the fire power is not reduced. On the other hand, if the temperature is set lower than 100℃, the heat will be turned off before the temperature of the contents reaches 100℃, and the contents will have to be heated over low heat, making it difficult for the contents to come to a boil. Temperature required. In addition to this, temperature control becomes extremely difficult when considering the aforementioned variations depending on the type of pot and the amount of food to be cooked. Note that 1' and 4' are the gas inlet and the pot, as in Fig. 1. Therefore, in the present invention, since the water does not reach a temperature of 100°C or higher, the contents reach 100°C and do not rise any higher. We focused on the fact that if the temperature at the bottom of the pot stops rising, the rise in temperature at the bottom of the pot will decrease, so we designed the system to detect the inflection point of the slope of the temperature at the bottom of the pot.

第2図は、温度上昇特性を示し横軸Xは時間、縦軸Tは
温度を示し、図は、湯を沸かした時の特性例でA、l¥
は内容物の温度つまり水温、B 、 B’は鍋底の温度
つまり温度センサ6による検知温度を示す。実線で示し
たA、Bは、温度上昇が大きい例えば、水量が少量であ
るか、又は、鍋4が熱伝導の良い材質で厚みが薄いもの
であり、破線で示しだA/ 、 B/の温度上昇は、小
さく例えば、水量が多量であるか、又は、鍋4が熱伝導
の悪い材質或は厚さが厚いものである。
Figure 2 shows the temperature rise characteristics, the horizontal axis X shows time and the vertical axis T shows temperature.The figure shows an example of the characteristics when boiling water.
indicates the temperature of the contents, that is, the water temperature, and B and B' indicate the temperature of the bottom of the pot, that is, the temperature detected by the temperature sensor 6. A and B indicated by solid lines are cases where the temperature rise is large, for example, the amount of water is small, or the pot 4 is made of a material with good heat conductivity and is thin, and the cases A/ and B/ indicated by broken lines are The temperature rise is small, for example, if the amount of water is large, or if the pot 4 is made of a material with poor heat conductivity or is thick.

温度Taは常温で加熱により、カーブA、B。Curves A and B are obtained by heating the temperature Ta at room temperature.

A/、 B1共に上昇していく。温度センサ6の検知温
度B 、 B’は、温度Tbで上昇カーブが一度緩やか
、  になり、温度Tfから再度上昇を始める。これは
温度TbからTf近辺で鍋底に結露し、さらに蒸発する
ためで、鍋4の大きさや材質により異なるが、温度Tb
−Tfは、約40〜70℃である。
Both A/ and B1 will rise. For the temperatures B and B' detected by the temperature sensor 6, the rising curve becomes gentle once at the temperature Tb, and then starts to rise again from the temperature Tf. This is because dew condenses on the bottom of the pan at temperatures around Tb and Tf, and then evaporates.
-Tf is approximately 40-70°C.

さらに、温度上昇してゆき温度Tcが100℃であり、
水温A 、 A’は沸騰して100℃以上は上昇しなく
なる。この時のセンサ温度B、B’はTdであ玄Tdも
水温A 、 A’が100℃になった点から上昇特が非
常に少なくなるか、或は、なくなる。このTc点100
℃とTdの温度差が鍋4の種類(材質や厚さ)や調理物
の量、種類により大きくバラン〈0しかし、温度上昇の
傾斜か変化する屈曲点C,Cは、常に水温A 、 A’
が沸騰してからである。
Furthermore, the temperature continues to rise and the temperature Tc is 100°C,
Water temperatures A and A' boil and do not rise above 100°C. At this time, the sensor temperatures B and B' are Td, and the water temperature A and A' are 100° C., so the rising characteristic becomes very small or disappears. This Tc point 100
The temperature difference between °C and Td varies greatly depending on the type of pot 4 (material and thickness) and the amount and type of food to be cooked. '
After it has boiled.

第3図はセンサ温度Bの傾斜検知或は、屈曲点検知の一
例を示す図である。この方法は、サンプリング時間△X
毎の温度変化ΔTを測定してゆき屈曲点検知部9は、Δ
Tが一定値P以下になった点が屈曲点であると判断して
、そのときの温度Tdで内容物温度が100℃になる温
度とする方法である。屈曲点検知部9は、この他にも、
温度上昇の比が一定値P以下になることを検出する方法
も考えられ、っ捷り、(Ttl−Tn、)/(T、1−
Tn−2)が一定値P以下となった点をTdとする。 
分母は、もっと前の温度、例えば(Tn−5”n−6)
でもよい。この屈曲値Pは、センサ温度Bの上昇カーブ
が安定する温度Tf、例えば80℃でサンプリング時間
△Xにおける温度の傾斜(T1−T0=TD)によって
、任意に変更できるようになっている。なお、傾斜検知
部8、屈曲点検知部9のサンプリング時間△xけ、同じ
でなくともよい。
FIG. 3 is a diagram showing an example of inclination detection or bending point detection of sensor temperature B. This method uses sampling time △X
The bending point detection unit 9 measures the temperature change ΔT for each
This is a method in which the point where T becomes below a certain value P is determined to be the inflection point, and the temperature Td at that time is set as the temperature at which the content temperature becomes 100°C. In addition to this, the bending point detection unit 9
A method of detecting when the ratio of temperature rise becomes less than a certain value P can also be considered.
The point at which Tn-2) becomes equal to or less than a certain value P is defined as Td.
The denominator is the previous temperature, for example (Tn-5"n-6)
But that's fine. This bending value P can be arbitrarily changed by changing the temperature slope (T1-T0=TD) at the sampling time ΔX at a temperature Tf at which the rising curve of the sensor temperature B is stable, for example 80°C. Note that the sampling time Δx of the inclination detection section 8 and the bending point detection section 9 may not be the same.

温度制御部10は屈曲点検知部9の信号により種々の制
御へ移行可能である。その−例として、屈曲点検知部9
の信号によって比例制御弁2を閉じて燃焼を停止する方
法が考えられ、これは湯を沸かす場合に最適である。も
う一つの例として、屈曲点検知部9の信号により燃焼量
を絞り小カロリーで、さらに加熱する方法で、一般に煮
込み調理に適し弱火で時間をかけて煮込むことができる
0第4図は、この制御特性を示し横軸又は時間、特性V
の縦軸Tは温度で、破線Aは第2図と同様に内容物の温
度、実線Bは鍋底のセンサ温度特性を示す。特性Wの縦
軸工は比例制御弁20制御霊流を示し、こり、は、バー
ナ3の燃焼量に比例する。
The temperature control section 10 can shift to various types of control based on the signal from the bending point detection section 9. As an example, the bending point detection unit 9
One possible method is to close the proportional control valve 2 and stop combustion in response to the signal, and this is most suitable for boiling water. Another example is a method that uses the signal from the bending point detection unit 9 to reduce the amount of combustion and further heat the food with a small amount of calories, which is generally suitable for simmering and can be simmered over low heat over a long period of time. The horizontal axis or time indicates the control characteristics, and the characteristics V
The vertical axis T of is the temperature, the broken line A is the temperature of the contents as in FIG. 2, and the solid line B is the sensor temperature characteristic of the bottom of the pot. The vertical axis of the characteristic W indicates the proportional control valve 20 controlled spiritual flow, and the stiffness is proportional to the combustion amount of the burner 3.

時間Xdまでは、第3図に示す屈曲点検知部9の信号が
出力される前で比例制御弁電流工は最大でありバーナ3
の燃焼量も最大燃焼となる。時間Xdで内部温度がTc
点(100℃)となり沸騰を始めると屈曲点検出部9が
、これを検出して比例制御弁電流工を最小値にし、燃焼
量を最少燃焼量に絞り込む。このとき比例制御部10は
温度Tdが、設定温度として設定され、この設定温度と
センサ温度の差に応じて、比例制御弁電流工つまり燃焼
量を比例制御する。今、時間Xθで調理物を追加すれば
、内容物温度Aは低下する。これに伴いセンサ温度Bも
低下して内容物温度Aの低下を検出する。比例制御部1
0はこの温度Toと設定温度Tdの差に応じて比例制御
弁電流IをIsに増加させる。これによシ、燃焼量も増
加して、温度Aは元の温度Tcに戻り、燃焼量も最少燃
焼量に戻る。上記Ieの大きさは(Td−To)の大き
さに応じて変化し、(Td−To)が大きければIsは
犬きく、(Td−To)が小さければ、Isは0 小さくなる。
Until time Xd, the proportional control valve current is at its maximum before the signal from the bending point detector 9 shown in FIG.
The amount of combustion is also the maximum combustion. At time Xd, the internal temperature is Tc
When the temperature reaches a point (100° C.) and boiling begins, the bending point detection unit 9 detects this and sets the proportional control valve current to the minimum value, narrowing down the combustion amount to the minimum combustion amount. At this time, the temperature Td is set as a set temperature in the proportional control section 10, and the proportional control valve current, that is, the combustion amount, is proportionally controlled in accordance with the difference between the set temperature and the sensor temperature. Now, if the food to be cooked is added at time Xθ, the content temperature A will decrease. Along with this, the sensor temperature B also decreases, and a decrease in the content temperature A is detected. Proportional control section 1
0 increases the proportional control valve current I to Is according to the difference between the temperature To and the set temperature Td. As a result, the combustion amount also increases, the temperature A returns to the original temperature Tc, and the combustion amount also returns to the minimum combustion amount. The magnitude of the above Ie changes depending on the magnitude of (Td-To); if (Td-To) is large, Is will be large, and if (Td-To) is small, Is will be small by 0.

さらに、傾斜検知部8の屈曲点に至るまでの傾斜特性は
、はぼ内容物の量に比例する。つまり量が多ければ傾斜
は緩く、量が少なければ、傾斜は急である。また、傾斜
特性は、鍋の熱伝導が悪い材質や厚さが厚いと緩く、熱
伝導の良い材質で薄いと急になってぐる。
Furthermore, the inclination characteristic up to the bending point of the inclination detection part 8 is proportional to the amount of the contents of the container. In other words, if the amount is large, the slope will be gentle; if the amount is small, the slope will be steep. In addition, the gradient characteristics will be gentler if the pot is made of a material with poor thermal conductivity or is thick, and steeper if the material is thin and has good thermal conductivity.

このため、傾斜検知部8の傾斜に応じて屈曲点検知後の
最少絞り量Idを可変させることによりさらに良好な調
理が可能となる。例えば、傾斜が緩い場合は、量が多い
か、熱伝導の悪い鍋であるため、燃焼量1dも多くして
I d’とする。反対に傾斜が急な場合は、量が少ない
か、熱伝導の良い鍋であるため、燃焼量をId“として
少なくするものでる。
Therefore, by varying the minimum squeeze amount Id after the bending point is detected according to the inclination of the inclination detection section 8, even better cooking is possible. For example, if the slope is gentle, the amount of burnt is large or the pot has poor heat conduction, so the combustion amount 1d is also increased to be Id'. On the other hand, if the slope is steep, the amount of combustion is reduced as Id" because the amount is small or the pot has good heat conduction.

また、第2図で説明したように、温度(Tb〜Tf)に
よる屈曲を屈曲点検知部9が検知しないように、屈曲点
検知部9は、測定開始温度Tf以上(温度上昇が安定し
た温度)から動作する構成とすることにより屈曲点検出
ミスがなくなる。
In addition, as explained in FIG. 2, in order to prevent the bending point detecting unit 9 from detecting bending due to temperature (Tb to Tf), the bending point detecting unit 9 is set at a temperature equal to or higher than the measurement start temperature Tf (a temperature at which the temperature rise is stable). ) will eliminate bending point detection errors.

以上のような、複雑な制御システムを作成する場合、最
近、マイクロコンピュータ(以後マイコンと呼ぶ)がよ
く使用される。第6図に、第1〜4図で説明した内容の
制御システムをマイコンを使用して作成した場合の簡単
なフロー図で示す。
Recently, microcomputers (hereinafter referred to as microcomputers) are often used to create complex control systems such as those described above. FIG. 6 shows a simple flowchart when the control system described in FIGS. 1 to 4 is created using a microcomputer.

図でIQは、バーナ3の着火シーケンスのサブルーチン
、Fば○か1の指標を示し、Slはセンサ6の温度S1
を読込むサブルーチン、S2は温度差(Td−81)の
大きさに応じて比例弁2の絞り景を決定し、電流工を出
力するサブルーチンを示す。点火後、センサ温度S1が
Tfよりも低い場合は図のIのループを通り、S1’)
Tfとなるのを待つ。S 1)T fとなった場合、F
−1の図の■のループを通り、図の■の部分で、第3図
で説明した傾斜TDを検出する。■は、屈曲点検知部9
で順時サンプリングを行い前述のTn−Tn−メTn−
1”n−2が’rpを示し、屈曲値Pと比較している。
In the figure, IQ indicates the subroutine of the ignition sequence of the burner 3, Fba○ or 1, and Sl indicates the temperature S1 of the sensor 6.
S2 is a subroutine that determines the aperture view of the proportional valve 2 according to the magnitude of the temperature difference (Td-81) and outputs the electric current. After ignition, if the sensor temperature S1 is lower than Tf, the process goes through the loop I in the figure and goes through S1')
Wait for Tf. S 1) If T f, then F
The inclination TD explained in FIG. 3 is detected in the section marked ■ in the figure after passing through the loop marked ■ in the figure -1. ■ is the bending point detection section 9
The above-mentioned Tn-Tn-MeTn-
1''n-2 indicates 'rp and is compared with the bending value P.

TpがPよりも小さくなければ、サンプリング時間ΔX
を計測して■のループを構成する。
If Tp is not smaller than P, the sampling time ΔX
Measure and construct the loop shown in ■.

・Tp<Pとなり、屈曲点を検出後は■のループに移行
し、比例制御部1oになる。ここで■は、前述の温度傾
斜TDに応じて最少燃焼量を可変する部分で、TDがa
、b、cの3点で分岐している0xENDは予め設定し
た調理時間Xが終了した場合に動作を停止するプログラ
ムを示す。第5図の屈曲点検知部■は、■の傾斜TDに
、ある定数Kを乗じて、屈曲値Pを無段階に求めるよう
にし2だ例を示し、第6図は、他の実施例を示し■で傾
斜TDがa、b、aの3点で分岐し、屈曲値Pをα、β
- Tp<P, and after detecting the bending point, the process shifts to loop (3) and becomes the proportional control section 1o. Here, ■ is the part where the minimum combustion amount is varied according to the temperature gradient TD mentioned above, and TD is a
, b, and c indicate a program that stops operating when a preset cooking time X ends. The bending point detection unit (■) in Fig. 5 shows an example in which the bending value P is determined steplessly by multiplying the slope TD of (■) by a certain constant K. Fig. 6 shows another example. Indicated by ■, the slope TD branches at three points a, b, and a, and the bending value P is α, β.
.

γの3段階に分岐したものであり、他は第6図と同様に
制御される。
It is divided into three stages of γ, and the others are controlled in the same way as in FIG.

以上の如く、本発明調理用温度制御装置は、煮込み調理
で調理物の温度上昇の傾斜を測定し、その傾斜に応じて
、屈曲値を変更して、屈曲点を検出することにより、調
理物の温度が沸騰点に達したことを検出する構成である
ため調理物の温度とセンサ温度との関係が一定でなくと
も、正確に沸騰点の検出が可能である。すなわち、セン
サ温度の上昇カーブは鍋内の容量の多少や鍋の種類、鍋
の材質や厚さによって温度傾斜が異なり、温度上3 昇の比でとれば沸騰点での屈曲点を検出する屈曲値は異
なってくる。例えば傾斜の緩やかな物は屈曲値は大きく
傾斜が緩いため分母が小さくなる。
As described above, the cooking temperature control device of the present invention measures the slope of the temperature rise of the food during simmering, changes the bending value according to the slope, and detects the bending point. Since the structure detects when the temperature of the food reaches the boiling point, it is possible to accurately detect the boiling point even if the relationship between the temperature of the food and the sensor temperature is not constant. In other words, the temperature slope of the sensor temperature increase curve varies depending on the capacity of the pot, the type of pot, and the material and thickness of the pot. The values will be different. For example, if the slope is gentle, the bending value will be large and the denominator will be small because the slope is gentle.

傾斜の急な物は、屈曲値は小さくなってくる。従って、
傾斜度合に応じて、屈曲値を無段階或は数段階に変更す
ることにより、沸騰点の正確な検出ができる。特に、傾
斜の緩やかな物での誤検出は解消できるものである。
The steeper the slope, the smaller the bending value. Therefore,
By changing the bending value steplessly or in several steps depending on the degree of inclination, the boiling point can be detected accurately. In particular, erroneous detection of objects with a gentle slope can be eliminated.

また、傾斜や屈曲点の検知方法は、一定の定められた時
間毎のサンプリングにより、センサ温度の差を求めるこ
とにより、マイコン等による制御が容易となりプログラ
ムの処理のみで正確な屈曲点検知が可能となり簡単にシ
ステムを構成できるさらに前記傾斜の検知は、センサ温
度が予め定められた温度以上になった点からスタートす
ることにより、加熱初期の鍋底に結露した水による傾斜
フラツキがあっても無視するだめ安定で確実な傾斜の検
知ができ、従って、屈曲点(沸騰点)の検出ができる。
In addition, the method for detecting inclinations and bending points is to obtain the difference in sensor temperature by sampling at fixed time intervals, which makes it easy to control with a microcomputer, etc., and allows accurate bending point detection just by processing a program. This makes it easy to configure the system.Furthermore, the detection of the tilt starts from the point where the sensor temperature reaches a predetermined temperature or higher, so that even if there is tilt fluctuation due to water condensing on the bottom of the pot during the initial heating stage, it is ignored. Therefore, it is possible to detect the slope stably and reliably, and therefore the bending point (boiling point) can be detected.

また、屈曲点のセンサ温度を設定温度として比4 側弁を比例制御する比例制御部を有することにより、一
度沸騰したら、その温度を保ちながら自動的に弱火に切
替わり煮込みを行うことができ、さらに材料等を追加し
て温度低下があった場合は、自動的に燃焼量を増加し短
時間に元の温度に回復する。このため、焦げつきや吹き
こぼれ等の失敗がなく安心して煮込み調理が行える上に
無駄な加熱を防ぎ省エネルギーとなる。
In addition, by having a proportional control section that proportionally controls the ratio 4 side valve using the sensor temperature at the bending point as the set temperature, once it boils, it is possible to automatically switch to low heat and simmer while maintaining that temperature. If the temperature drops due to the addition of additional materials, the amount of combustion is automatically increased and the original temperature is restored in a short time. Therefore, you can safely simmer and cook without any failures such as burning or boiling over, and you can save energy by preventing unnecessary heating.

その上、傾斜検知部の傾斜に応じて、沸騰後の最少燃焼
量を加減することで、調理内容物の多少や、鍋の種類に
応じて加熱量を加減する等のきめ細かな煮込み調理がで
きる。
Furthermore, by adjusting the minimum amount of combustion after boiling according to the inclination of the inclination detection part, fine-grained simmering cooking can be achieved by adjusting the amount of heating depending on the amount of cooking contents and the type of pot. .

尚、本p41−Jでは、ガステープルコンロの比例制御
式を例にして説明したが、電気コンロでもよく、マた、
コンロ以外にオープン等にも応用可能である。さらに、
比例制御でなく、ハイロー制御やオンオフ制御であって
もよい。
In addition, in this page 41-J, the proportional control type of a gas staple stove was explained as an example, but an electric stove may also be used.
It can be applied to open stoves as well as stoves. moreover,
Instead of proportional control, high-low control or on-off control may be used.

このように、センサ温度の傾斜度合に応じて雁、  曲
点を検知する屈曲値を変更することにより調理物の多少
や鍋の種類に関係なく、正確に沸騰点を1#5 検出でき煮込み調理に最適な温度制御で自動化が図られ
、実用価値大なる調理器を提供できる。
In this way, by changing the curvature value that detects the curvature point according to the degree of inclination of the sensor temperature, the boiling point can be accurately detected regardless of the amount of food being cooked or the type of pot. Automation is achieved with optimal temperature control, making it possible to provide a cooking device with great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の調理温度制御器の一実施例を示す制
御システム図、第2図は、第1図のセンサ温度と内部温
度の相関を示す特性図、第3図は傾斜検知並びに屈曲点
検知状態を説明する特性図第4図(す屈曲点検知後の比
例制御部の動作を説明する特性図、第6図は、本発明の
温度制御部(第1図7の部分)をマイコンで構成した場
合の一例を示す概略のフロー図、第6図は、第5図の屈
曲点検知部■の他の実施例を示すマイコンの概略フロー
図、第7図は、従来の鍋底温度検知による比例制御シス
テム図を示す。 2・・・・・・比例制御弁(加熱制御手段)、3・・・
・バーナ(加熱手段)、6・・・・・・調理物、6・・
・・・・温度センサ(温度検出手段)、7・・・・・・
温度制御部、8・・・・・・傾斜検知部、9・・・・・
・屈曲点検知部、T ・・・・・・傾斜度合、P・・・
・・屈曲値(予め定められた屈曲点となる値)、K・・
・・・・ある定数、特開昭58−G2432C5−) C・・・・・屈曲点 代理人の氏名 弁理士 中 尾 敏 男 ほか1名11
図 第2図 □X 第3図 第4図 第5図 TART Iα F・θ r    ovr []Sl ” Sr>Tf    F=l   霞←St    
    Ak’ F=I?“ 11N] P=To家に    1 1 1 1 1     ←  1 図1        斜−j ←      1 1 、      r−−1 1 N  Tp<P 1       α し−−−−−−−−−−−−−1(17D    c巨
  T14− x4′Id←  ← −国 YXrw。 〃
Fig. 1 is a control system diagram showing one embodiment of the cooking temperature controller of the present invention, Fig. 2 is a characteristic diagram showing the correlation between the sensor temperature in Fig. 1 and the internal temperature, and Fig. 3 is a diagram showing the correlation between the sensor temperature in Fig. 1 and the internal temperature. FIG. 4 is a characteristic diagram illustrating the bending point detection state. FIG. 6 is a characteristic diagram explaining the operation of the proportional control section after the bending point is detected. A schematic flowchart showing an example of a configuration using a microcomputer; FIG. 6 is a schematic flowchart of a microcomputer showing another embodiment of the bending point detection section (■) in FIG. 5; FIG. A diagram of a proportional control system based on detection is shown. 2... Proportional control valve (heating control means), 3...
・Burner (heating means), 6...Cooked food, 6...
...Temperature sensor (temperature detection means), 7...
Temperature control section, 8... Tilt detection section, 9...
・Bending point detection part, T...Inclination degree, P...
...bending value (value that becomes a predetermined bending point), K...
... Certain constant, JP-A-58-G2432C5-) C... Name of the inflection point agent Patent attorney Toshio Nakao and one other person 11
Figure 2 □X Figure 3 Figure 4 Figure 5 TART Iα F・θ r ovr []Sl ” Sr>Tf F=l Kasumi←St
Ak'F=I? “ 11N] P=To family 1 1 1 1 1 ← 1 Figure 1 Diagonal −j ← 1 1 , r−−1 1 N Tp<P 1 α Shi−−−−−−−−−−−−1 (17D c giant T14- x4'Id← ← -Country YXrw.

Claims (4)

【特許請求の範囲】[Claims] (1)調理物を加熱する加熱手段と調理物の温度を検出
する温度検出手段と温度検出手段の信号に応じて加熱手
段の加熱量を制御する加熱制御手段に制御信号を出力す
る温度制御部を有し、前記、温度制御部は、温度検出手
段による調理物の温度上昇傾斜を検出する傾斜検知部と
温度傾斜が予め定められた値以下になる屈曲点を検出す
る屈曲点検知部を有し、前記屈曲点検知部の信号により
加熱手段の加熱量を可変あるいは停止する構成とすると
ともに、前記温度制御部の傾斜検知部の傾斜度合に応じ
て屈曲点検知部の屈曲点となる、前記値を変更させてな
る調理用温度制御装置。
(1) A heating means that heats the food, a temperature detection means that detects the temperature of the food, and a temperature control section that outputs a control signal to the heating control means that controls the heating amount of the heating means according to the signal from the temperature detection means. The temperature control section includes a slope detection section that detects a temperature increase slope of the food to be cooked by the temperature detection means, and a bending point detection section that detects a bending point where the temperature slope becomes less than or equal to a predetermined value. The heating amount of the heating means is varied or stopped according to a signal from the bending point detection section, and the bending point of the bending point detection section is determined according to the degree of inclination of the inclination detection section of the temperature control section. A cooking temperature control device that changes the value.
(2)傾斜検知部での傾斜度合が犬であれば、屈曲点検
知部の屈曲点となる値を小に、傾斜度合が小であれば、
前記屈曲点となる値を大にしてなる特許請求の範囲第1
項記載の調理用温度制御装置。
(2) If the degree of inclination in the inclination detection section is dog, the value that becomes the bending point of the bending point detection section is set small, and if the degree of inclination is small,
Claim 1 in which the value of the bending point is increased.
Cooking temperature control device as described in .
(3)傾斜検知部での傾斜度合に応じて、ある定数(6
)を乗じて、屈曲点検知部の屈曲点となる値を無段階に
制御してなる特許請求の範囲第1項記載の調理用温度制
御装置。
(3) A certain constant (6
2. The cooking temperature control device according to claim 1, wherein the value that becomes the bending point of the bending point detection unit is controlled steplessly by multiplying by .
(4)傾斜検知部での傾斜度合に応じて、屈曲点検知部
の屈曲点となる値を数段階に分岐してなる特許請求の範
囲第1項記載の調理用温度制御装置。
(4) The cooking temperature control device according to claim 1, wherein the value of the bending point of the bending point detecting section is divided into several stages depending on the degree of inclination at the inclination detecting section.
JP16164481A 1981-09-09 1981-10-09 Controller for temperature for cooking Granted JPS5862432A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16164481A JPS5862432A (en) 1981-10-09 1981-10-09 Controller for temperature for cooking
US06/411,954 US4465228A (en) 1981-09-09 1982-08-26 Cooker with heating control system
EP82108205A EP0074108B1 (en) 1981-09-09 1982-09-06 Cooker with heating control system
DE8282108205T DE3263279D1 (en) 1981-09-09 1982-09-06 Cooker with heating control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16164481A JPS5862432A (en) 1981-10-09 1981-10-09 Controller for temperature for cooking

Publications (2)

Publication Number Publication Date
JPS5862432A true JPS5862432A (en) 1983-04-13
JPS6367104B2 JPS6367104B2 (en) 1988-12-23

Family

ID=15739095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16164481A Granted JPS5862432A (en) 1981-09-09 1981-10-09 Controller for temperature for cooking

Country Status (1)

Country Link
JP (1) JPS5862432A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016202680A (en) * 2015-04-24 2016-12-08 リンナイ株式会社 Heating cooking device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016202680A (en) * 2015-04-24 2016-12-08 リンナイ株式会社 Heating cooking device

Also Published As

Publication number Publication date
JPS6367104B2 (en) 1988-12-23

Similar Documents

Publication Publication Date Title
KR950005885B1 (en) Heating apparatus and heating power control method
JPH02277421A (en) Method and apparatus for automatic cooking
JP2538484Y2 (en) Cooker
JPH0137923B2 (en)
JPS5862432A (en) Controller for temperature for cooking
JPH0243092B2 (en)
JPS61149729A (en) Heating and cooking unit
JPH06123429A (en) Temperature control device in heating and cooking device
JPH0444529B2 (en)
JPS58123027A (en) Cooking temperature controller
JPS58123026A (en) Temperature controller for cooking purpose
JPS6116715A (en) Cooker
JP2903681B2 (en) Temperature control device of cooking device
JPH028217B2 (en)
JPS62248926A (en) Temperature controller for cooking
JPH077873Y2 (en) Fried cooker
JPS59131829A (en) Cooking unit
JPS6116714A (en) Temperature control pressure kettle
JPS63176930A (en) Temperature controller for cooking
JPS5880424A (en) Cooking temperature controlling device
JPS62258933A (en) Cooking temperature control device
JP2970655B2 (en) Cooking device
JP3055531B2 (en) Cooking device
JPH0228062B2 (en) KANETSUCHORIKI
JP2024000915A (en) Cooker