JPS58119659A - Formation of heat pipe type heat connecting element structure and cooling structure - Google Patents
Formation of heat pipe type heat connecting element structure and cooling structureInfo
- Publication number
- JPS58119659A JPS58119659A JP147182A JP147182A JPS58119659A JP S58119659 A JPS58119659 A JP S58119659A JP 147182 A JP147182 A JP 147182A JP 147182 A JP147182 A JP 147182A JP S58119659 A JPS58119659 A JP S58119659A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- container
- connection element
- thermal connection
- working fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は回路基板上に設着された発熱素子とヒートシン
ク間を熱的に接続して発熱素子を冷却し、回路基板及び
機器筐体内の温度上昇を防止する為のヒートパイプ式熱
接続素子の構造に関するものであり、又該ヒートパイプ
式熱接続素子の多数とヒートシンクとに依シ構成される
冷却補遺体の形成方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for thermally connecting a heat generating element installed on a circuit board and a heat sink to cool the heat generating element and preventing a rise in temperature inside the circuit board and equipment housing. The present invention relates to the structure of a heat pipe type thermal connection element, and to a method of forming a cooling complement consisting of a plurality of heat pipe type thermal connection elements and a heat sink.
′4=発明に係るヒートパイプ式熱接続素子の新規な構
造は従来構造の熱接続素子の熱伝達能力を大巾に改善し
、即ちその熱吸収能力、放熱能力を大巾に向上せしめる
だけで彦<、熱接続素子のヒートシンクに対する取付け
を容易ならしめると共に発熱素子との接着を容易にする
新規な冷却構造体の形成方法を提供する。'4 = The novel structure of the heat pipe type thermal connection element according to the invention greatly improves the heat transfer ability of the conventional structure thermal connection element, that is, it only greatly improves its heat absorption ability and heat dissipation ability. The present invention provides a method for forming a novel cooling structure that facilitates attachment of a thermal connection element to a heat sink and facilitates adhesion to a heat generating element.
発熱素子を冷却する従来方法としては発熱素子のみを1
t11路基板から分離してヒートシンクに直接設置する
方法やヒートシンクに回路基板を装着し1!:!回路基
板を介して間接的に発熱素子を冷却する方法が採用され
て来た。前者は機器筐体容積が過大となる欠点があり、
佐者は機器筐体内温度は低下せしめることが出来るが回
路基板温度は充分には冷却され雛<、又発熱素子の冷却
も不充分となる欠点があっち。近時の高密度回路基板上
に多数の発熱素子を装設した如き電子機器婢に於いては
上述の如き欠点を改善する冷却方法として水冷ジャケッ
トを有する金属板やヒートパイプ冷却装置を組合せた金
属板等のヒートシンクと回路基板上の発熱素子とを直接
ヒートパイプ式熱接続素子で連−結して冷却する方法が
採用されつ\ある。The conventional method for cooling a heat generating element is to cool only the heat generating element.
How to separate it from the t11 circuit board and install it directly on the heat sink, or attach the circuit board to the heat sink 1! :! A method has been adopted in which heat generating elements are indirectly cooled through a circuit board. The former has the disadvantage that the volume of the equipment case becomes excessively large.
Although it is possible to lower the temperature inside the device case, the circuit board temperature is not sufficiently cooled, and the heat generating elements are not sufficiently cooled. In modern electronic equipment such as those equipped with a large number of heat generating elements on a high-density circuit board, a cooling method to improve the above-mentioned drawbacks is to use a metal plate with a water cooling jacket or a metal combined with a heat pipe cooling device. A cooling method is being adopted in which a heat sink such as a plate and a heat generating element on a circuit board are directly connected by a heat pipe type thermal connection element.
第1図はその一例を示し第2図社他の一例を示す。FIG. 1 shows one example, and FIG. 2 shows an example of the company et al.
第1図は熱接続素子として通常のヒートパイプ1“が用
いてありその一端面3は発熱素子10に半田接着され他
の端面4はヒートシンク11に半田接着されである。ヒ
ートパイプの作用に依シ発熱素子で発生し★熱エネルギ
ーは迅速にヒートシンクに移送されて発熱素子は基板1
5や機器内の温度を上昇させることなく冷却される。In FIG. 1, an ordinary heat pipe 1'' is used as a thermal connection element, one end surface 3 of which is soldered to a heating element 10, and the other end surface 4 is soldered to a heat sink 11. Thermal energy is generated in the heating element and quickly transferred to the heat sink, and the heating element is transferred to the substrate 1.
5. It is cooled without increasing the temperature inside the equipment.
然しこの場合は多数の素子を接着する場合に接着作業が
極めて困難であシ、又基板の製作上の寸法誤差や熱歪み
を吸収する為にはヒートシンクと基板間に大き冷圧着力
を加える必要があシ、更に半田接着部の寿命及び信頼性
の保証が困難である等の欠点があった。第2図はそれ等
の欠点を防ぐ丸めに提案されている熱接続素子でコンテ
ナ2はへりカルベローズになっている。However, in this case, the bonding work is extremely difficult when bonding a large number of elements, and it is necessary to apply a large cold compression force between the heat sink and the substrate in order to absorb dimensional errors and thermal distortions caused by the manufacturing of the substrate. In addition, there were drawbacks such as the fact that it was difficult to guarantee the lifespan and reliability of the solder joints. FIG. 2 shows a thermal connection element proposed for rounding to avoid these drawbacks, and the container 2 has curved edges.
ベローズの伸縮性は半田接着作業を容易にすると共に基
板平面の製作誤差中熱歪みに依るヒートシンクと基板間
の距離の相異に依る応力発生を吸収して接着信頼性を向
上させる。又へリヵルベ四−ズは作′動液の還流路とな
り、第1図の如きウィックを必要としないので構造が簡
単となり製作費が安価になる等の多くの改善がなされる
ものである。The elasticity of the bellows not only facilitates the soldering work but also improves bonding reliability by absorbing stress generated due to differences in distance between the heat sink and the substrate due to manufacturing errors in the plane of the substrate and thermal distortion. Furthermore, the helical vessel 4 serves as a return path for the working fluid and does not require a wick as shown in FIG. 1, resulting in many improvements such as a simpler structure and lower manufacturing costs.
然しヒートパイプの端面を熱交換面とする第1図及び第
2図の如き熱接続素子には次の如き欠点があシ改善の必
要性が残されていた。However, the thermal connection elements shown in FIGS. 1 and 2, in which the end face of the heat pipe is used as the heat exchange surface, have the following drawbacks, and there remains a need for improvement.
a)熱交換面積が小さく従ってヒートパイプの特性とし
ての充分な吸熱放熱が困難であった。a) The heat exchange area was small, so it was difficult to absorb and dissipate sufficient heat, which is a characteristic of heat pipes.
(ロ)ベローズの伸縮性に依シ改善されるとは云え、多
数の素子を両端面共に接着することは困難である。4!
にベローズヒートパイプは半田付けの際の温度上昇に依
シ作動液蒸気圧が上昇し、ベローズが伸長され、両端面
で伸張を制限する様押えても横方向に屈曲して座屈する
恐れがあるので、半田付けはヒートパイプとして完成す
る前の状態即ち作動液封入前に予めヒートシンクに対す
る半田接着を行ない、後に作動液封入を実施する等の工
夫が必要であ抄、その様な作動液の封入も決して容易な
作業ではないものである。(b) Although the improvement depends on the elasticity of the bellows, it is difficult to bond a large number of elements to both end faces. 4!
Bellows heat pipes are dependent on the rise in temperature during soldering, which causes the vapor pressure of the working fluid to rise, causing the bellows to stretch, and even if pressure is applied to limit the stretch at both ends, there is a risk of it bending laterally and buckling. Therefore, it is necessary to solder to the heat sink before the heat pipe is completed, that is, before filling the hydraulic fluid, and then fill in the hydraulic fluid. It is by no means an easy task.
(ハ) ヒートパイプの製造1糧では僅かな手順の過誤
に依ってコンテナ内に多少の非凝縮性ガスが混入したり
、コンテナ金属から非凝縮性ガスが発生することがある
。これ等のガスはヒートパイプの上端面に蓄積されるも
のであり、第1図や第2図の如き上端面が熱交換面であ
る熱接続ヒートパイプ素子の場合極めて僅かな非凝縮性
ガスの発生であっても、熱交換面の内面全体に拡がって
熱絶縁層を形成し致命的な性能低下を生せしめる。従っ
て熱接続素子製造上の歩留が大巾に悪化し、又製造に当
っては極めて高度な製造上の管理技術な行使する゛必要
が生ずる。(c) In the production of heat pipes, a small amount of non-condensable gas may get mixed into the container due to a slight error in the procedure, or non-condensable gas may be generated from the container metal. These gases accumulate on the upper end surface of the heat pipe, and in the case of a thermal connection heat pipe element whose upper end surface is the heat exchange surface as shown in Figures 1 and 2, a very small amount of non-condensable gas is accumulated. Even if it occurs, it spreads over the entire inner surface of the heat exchange surface and forms a thermal insulation layer, resulting in a fatal drop in performance. Therefore, the yield rate for manufacturing thermal connection elements is greatly reduced, and it becomes necessary to use extremely sophisticated manufacturing control techniques during manufacturing.
に) ヒートパイプ式熱接続素子は極めて小型であるの
で作動液の必要量が極めて小量である為作動液の定量封
入が困難であり、又作動液封入量の僅かな誤差も熱接続
素子の性能に大きな影響が生ずる。(2) Since the heat pipe type thermal connection element is extremely small, the amount of working fluid required is extremely small, making it difficult to fill in a fixed amount of working fluid.Also, even a slight error in the amount of hydraulic fluid filled in can cause damage to the thermal connection element. Performance will be significantly affected.
本発明に係るヒートパイプ式熱接続素子は上記各項の従
来型のヒートパイプ式熱接続素子の欠点の総べてを改善
するもので第3図及び第4図はその実施例を示す構造略
図であシ何れ4縦断面図で示しである。その基本的な構
造及びその作用効果は次の如くである。The heat pipe type thermal connection element according to the present invention improves all of the drawbacks of the conventional heat pipe type thermal connection element mentioned above, and FIGS. 3 and 4 are structural diagrams showing an embodiment thereof. Each side is shown in four longitudinal cross-sectional views. Its basic structure and its effects are as follows.
0) ヒートパイプ式熱接続素子の一端面3は熱吸収面
であシ、回路基板15に設置された発熱素子10に隣接
している。0) One end surface 3 of the heat pipe type thermal connection element is a heat absorption surface and is adjacent to the heating element 10 installed on the circuit board 15.
(ロ)他端に近いコンテナの外周面1は放熱面でありヒ
ートシンク11に設けられた挿接孔11’に密接に挿入
固着されである。(b) The outer peripheral surface 1 of the container near the other end is a heat radiation surface and is tightly inserted and fixed into an insertion hole 11' provided in a heat sink 11.
(ハ) 1の部分に於いてコンテナは極めて薄肉に形成
されてあり、高温加熱に依る素子内作動液の蒸気圧上昇
に依って素子コンテナの他の部分に先んじて容易に拡管
される様薄肉に形成されである。(c) The container is formed to have an extremely thin wall in part 1, so that it can be easily expanded before other parts of the element container due to the rise in vapor pressure of the working fluid inside the element due to high temperature heating. It is formed.
上記(ロ)環の1の部分の密接な挿入固着はこの拡管方
法に依って容易に挿入し容易に固着されるもCである。(B) The close insertion and fixation of part 1 of the ring is easily inserted and easily fixed by this tube expansion method.
又この拡管方法に依る場合は多数の熱接続素子を一斉に
挿入し、−斉に拡管せしめ、同時に挿着することが可能
であり、その挿着程度は全体の拡管温度を均一にするこ
とで均一な挿着強度となし得る。又この挿入固着法を採
用する場合、ヒートシンクに設ける挿接孔の直径は多少
のむらがあっても又孔の内壁は多少の凹凸があっても素
子コンテナ壁はそれに倣って拡管され完全な密着状態を
得ることが可能となる利点もある。本発明に係る熱接続
素子においてはベローズ山数が少ないので拡管温度に依
る伸張に依る横方向座屈発生の恐れは全くかい。In addition, when using this tube expansion method, it is possible to insert a large number of thermal connection elements at the same time, expand the tube at the same time, and insert them at the same time, and the degree of insertion can be adjusted by making the overall tube expansion temperature uniform. Uniform insertion strength can be achieved. In addition, when this insertion and fixing method is adopted, even if the diameter of the insertion hole provided in the heat sink is slightly uneven, or the inner wall of the hole is slightly uneven, the element container wall will expand to follow suit, resulting in a perfect seal. There is also the advantage that it is possible to obtain Since the thermal connection element according to the present invention has a small number of bellows threads, there is no possibility of lateral buckling occurring due to elongation due to tube expansion temperature.
に)吸熱端面3に近い短かな部分のコンテナは蛇腹状ベ
ローズ2に形成しである。該ベローズの役目は次の如く
である。(6)熱接続素子に適当な伸縮性、及び弾力性
を与え組立作業を容易にする。(b) The short portion of the container near the heat-absorbing end face 3 is formed into an accordion-like bellows 2. The role of the bellows is as follows. (6) Providing appropriate stretchability and elasticity to the thermal connection element to facilitate assembly work.
0適切な押圧力で発熱素子との接触を維持し、発熱素子
との接着信頼性を保証する。0ヒートシンク11及び回
路基板15間の距離に誤差があっても組立てが容易とな
る。■ヒートシンク及び回路基板間の熱膨張や熱収縮に
依シ発生する熱接続素子、発熱素子間の位置ずれを吸収
し、歪応力を緩和して熱接続素子、発熱素子間の接着信
頼性を長年月にわたり保証する。(ト)コンテナ内部に
おいて放熱フィンの役目を発揮し、作動液の蒸発を促進
する。0 Maintain contact with the heat generating element with appropriate pressing force to ensure adhesion reliability with the heat generating element. Even if there is an error in the distance between the heat sink 11 and the circuit board 15, assembly becomes easy. ■ Absorbs misalignment between thermal connection elements and heating elements that occur due to thermal expansion and contraction between the heat sink and circuit board, alleviates strain stress, and maintains bonding reliability between thermal connection elements and heating elements for many years. Guaranteed for months. (g) Acts as a heat radiation fin inside the container and promotes evaporation of the working fluid.
[F]作動液蒸発部において作動液を円周方向〜に均一
に分散せしめ、作動液蒸発部における作動液の偏シを防
止するので熱交換効率が改善される。[F] Since the working fluid is uniformly dispersed in the circumferential direction in the working fluid evaporating section and uneven distribution of the working fluid in the working fluid evaporating section is prevented, heat exchange efficiency is improved.
(ホ)上述の如き構造であるから第1図、第2図の如き
ヒートパイプ式熱接続素子に比較して放熱面積が大巾に
増加し、又吸熱効率が大巾に増加する。(E) Because of the structure as described above, the heat dissipation area is greatly increased and the heat absorption efficiency is also greatly increased compared to the heat pipe type thermal connection element as shown in FIGS. 1 and 2.
(へ)多少の非凝縮性ガスが発生して端面4に滞溜して
も熱交換能力には影響がない。熱交換はコンテナ1の外
筒で行なわれるからである。(f) Even if some non-condensable gas is generated and accumulates on the end face 4, it does not affect the heat exchange ability. This is because heat exchange is performed in the outer cylinder of the container 1.
@3図及び執4図例示の本発明に係る熱接続素子の基本
的な特徴及び作用効果は以上の如くである。The basic features and effects of the thermal connection element according to the present invention illustrated in Figures 3 and 4 are as described above.
図中5は作動液封人後封止されである作動液注入細管を
示し、7は熱接続素子コンテナの薄肉部コンテナ1と厚
肉部コンテナ1′の溶接接合部を示す。In the figure, reference numeral 5 indicates a hydraulic fluid injection capillary which is sealed after the hydraulic fluid has been sealed, and reference numeral 7 indicates a welded joint between the thin-walled container 1 and the thick-walled container 1' of the thermal connection element container.
8は熱接続素子が未作動時である場合の作動液量を示し
である。9は、発熱素子10とベローズ2の間を充填し
伝熱面積を増大せしめる為のライナーである。12.1
2’はヒートシンク11内に吸収された熱エネルギーを
更に筐体外に移送放熱させるための水管若しくはヒート
パイプの如き熱移送手段を示す。8 shows the amount of working fluid when the thermal connection element is not in operation. A liner 9 is filled between the heating element 10 and the bellows 2 to increase the heat transfer area. 12.1
Reference numeral 2' indicates a heat transfer means such as a water pipe or a heat pipe for further transferring and dissipating the thermal energy absorbed in the heat sink 11 to the outside of the housing.
第3図応用実施例に於ける6は作動液計量細管である。6 in the applied embodiment of FIG. 3 is a hydraulic fluid metering capillary.
該細管はコンテナ1′を貫通してコンテナに気密に溶接
されてあり、そのコンテナ内端末は熱接続素子を所定の
姿勢(本図では垂直姿勢)に保持し、ベローズの伸張状
態を所定の長さに保持し、且つ所定の温度(本図では常
温時)に於いて作動液がコンテナ底部に凝縮して形成す
る水平面にはy一致する平面上で開口されである。又該
細管のコンテナ外端末は作動液を素子コンテナ内に定量
化完了後気密に溶接封止されである。The capillary tube passes through the container 1' and is hermetically welded to the container, and its end in the container holds the thermal connection element in a predetermined position (vertical position in this figure) and extends the bellows to a predetermined length. The opening is opened on a plane that coincides with y in the horizontal plane that is formed when the working fluid condenses on the bottom of the container at a predetermined temperature (in this figure, at room temperature). Further, the end of the thin tube outside the container is hermetically sealed by welding after the hydraulic fluid has been quantified into the element container.
この様な作動液計量細管はヒートパイプ形成時に作動液
を必要な量を正確且つ迅速に定量注入する為に設けるも
のであり、その使用方法は次の如くである。Such a working fluid metering capillary is provided to accurately and quickly inject a required amount of working fluid when forming a heat pipe, and its usage is as follows.
(イ)蒸溜法 コンテナを冷却し乍ら作動液の過熱蒸気
を作動液注入細管から送入し、計量細管から排出せしめ
る。コンテナ内の空気その他非凝縮性ガスが完全に排出
され、計量細管から蒸榴作動液が噴出される状態で作動
液計量細管及び作動液注入細管を封止する。(a) Distillation method While cooling the container, superheated steam from the working fluid is introduced through the working fluid injection capillary and discharged through the metering capillary. The hydraulic fluid measuring capillary and the hydraulic fluid injection capillary are sealed in a state in which air and other non-condensable gases in the container are completely exhausted and steamed hydraulic fluid is spouted from the metering capillary.
←)蒸気に依る作動液排出法。一旦コンテナ内を精製作
動液で充−填充満せしめた後、注入細管から作動液の過
熱蒸気を送入し、計量細管から作動液を排出せしめ、計
量細管から過熱蒸気が出始めたら両細管を封止する。←) Hydraulic fluid discharge method using steam. Once the inside of the container is filled with purified working fluid, superheated steam of the working fluid is introduced from the injection capillary, and the working fluid is discharged from the metering capillary. When superheated steam starts coming out from the metering capillary, both capillaries are closed. Seal.
(→コンテナ加熱に依る作動液排出法。一旦コンテナ内
を精製作動液で充填充満せしめた後作動液注入細管を封
止する。然る後コンテナを加熱し、コンテナ内蒸気圧を
上昇せしめてこれに依シ作動液計量細管から作動液を排
出せしめ、作動液の排出が無くなり、蒸気が噴出し始め
たら計量細管を封止する。(→Drainage method of hydraulic fluid by heating the container. Once the inside of the container is filled with purified hydraulic fluid, the hydraulic fluid injection tube is sealed. After that, the container is heated to increase the vapor pressure inside the container. The hydraulic fluid is then discharged from the hydraulic fluid metering capillary, and when the hydraulic fluid is no longer discharged and steam begins to blow out, the metering capillary is sealed.
に)コンテナ内外気圧差に依る作動液排出法。(ハ)項
のコンテナ加熱と計量細管に依る吸引とを2併用して実
施する方法。2) A hydraulic fluid discharge method that relies on the pressure difference inside and outside the container. A method in which container heating and suction using a metering capillary as described in item (c) are used in combination.
上記の如き各種の計量細管利用に依シ熱接続素子内に注
入する作動液を定量化することが出来る。By using the various metering tubes as described above, it is possible to quantify the amount of hydraulic fluid injected into the thermal connection element.
然し従来構造のヒートパイプコンテナの場合は作動液の
種類、熱接続素子の使用条件等に依って作動液量を変更
する必要があ)、その為には計量細管のコンテナ内に於
ける開口位置の異なるコンテナを製造する必要があった
。然し本発明に係る熱接続素子のコンテナはその底部が
ベローズになっている為、作動液計量細管の開口位置を
ベローズを伸縮させることに依シ自在に調節することが
出来るので、同一コンテナで作動液量を自在に加減する
ことが可能となる。これは本発明に係る熱接続素子構造
の作用効果の一つである。However, in the case of a heat pipe container with a conventional structure, it is necessary to change the amount of working fluid depending on the type of working fluid, the usage conditions of the thermal connection element, etc.). It was necessary to manufacture different containers. However, since the container for the thermal connection element according to the present invention has a bellows at its bottom, the opening position of the hydraulic fluid metering capillary can be freely adjusted by expanding and contracting the bellows, so that operations can be performed using the same container. It becomes possible to freely adjust the amount of liquid. This is one of the effects of the thermal connection element structure according to the present invention.
第4図応用実施例に於いては前述基本構造の他にコンテ
ナの熱吸収面に近い部分にはベローズ外径よジ大きな内
径の外筒13が設けである。該外筒はその底部13′に
於いて熱接続素子の端面3と共に発熱素子10の端面に
隣接せしめられてあり、熱接続素子の端面と共に熱吸収
面を形成している。In the applied embodiment shown in FIG. 4, in addition to the basic structure described above, an outer cylinder 13 having an inner diameter larger than the outer diameter of the bellows is provided in a portion near the heat absorption surface of the container. At its bottom 13', the outer cylinder adjoins the end face of the heat-generating element 10 together with the end face 3 of the thermal connection element and together with the end face of the heat connection element forms a heat-absorbing surface.
又外筒13の上端部は自由端になって、熱接続素子コン
テナの伸縮に対しては独立して滑動自在になっている。Further, the upper end of the outer cylinder 13 is a free end, and is slidable independently of expansion and contraction of the thermal connection element container.
外筒13と熱接続素子コンテナ2との間隙は非蒸発性で
、且つ熱伝導性の良好な、且つ流動可能な熱媒物質14
で充填されである。外筒13の上端部が自由端になって
いる点と充填熱媒物質が流動性を有している点とに依っ
てベローズコンテナ2はその伸縮性及び弾性は何等阻害
されることがない。熱媒物質14はベローズの谷の間に
も完全に充填されである。これ等13.14の如き附加
的な構造は熱吸収面3からの熱伝導だけでなく、外筒の
底部13’で吸収した熱エネルギーに依っても熱媒物質
を介してベローズコンテナ部2を加熱し、更に、ベロー
ズ2はコンテナ内で放熱フィンの役目をなしているので
作動液の加熱蒸発は一層促進せしめられる。即ち上記外
筒構造は熱吸収面及びベローズ部から彦る作動液蒸発部
における熱交換能力を大巾に向上せしめる作用効果を発
揮するものである。The gap between the outer cylinder 13 and the thermal connection element container 2 is filled with a heat transfer material 14 that is non-evaporative, has good thermal conductivity, and is flowable.
It is filled with. Due to the fact that the upper end of the outer cylinder 13 is a free end and the filling heat transfer material has fluidity, the elasticity and elasticity of the bellows container 2 are not hindered in any way. The heat transfer material 14 is also completely filled between the valleys of the bellows. These additional structures such as 13 and 14 not only allow heat conduction from the heat absorbing surface 3, but also rely on thermal energy absorbed at the bottom 13' of the outer cylinder to transfer the bellows container part 2 through the heat transfer material. Further, since the bellows 2 serves as a radiation fin within the container, heating and evaporation of the working fluid is further promoted. That is, the above-mentioned outer cylinder structure exhibits the effect of greatly improving the heat exchange ability in the heat absorption surface and the working fluid evaporation section that returns from the bellows section.
上述の如く本発明に係るヒートパイプ式熱接続素子は従
来構造のヒートパイプ式熱接続素子の欠点を改善するだ
けで攻<、その熱伝導能力を大巾に改善し、又該熱接続
素子の多数とヒートシンクを組合わせて高能率且つ信頼
性高い冷却構造体を提供すると共に1極めて容易に且つ
品質の安定した上記冷却構造体を組立てることを可能に
する新規な形成方法をも提供するもqである。As mentioned above, the heat pipe type thermal connection element according to the present invention overcomes the drawbacks of the heat pipe type thermal connection element of the conventional structure, greatly improves its heat conduction ability, and also improves the heat transfer ability of the heat pipe type thermal connection element. In addition to providing a highly efficient and reliable cooling structure by combining a large number of heat sinks and a heat sink, the present invention also provides a novel forming method that makes it possible to assemble the cooling structure extremely easily and with stable quality. It is.
第1図及び第2図は従来例を示す断面図、第3図は本発
明の一実施例を示す断面図、第4図は本発明の他の実施
例を示す縦断面図である。
106.薄肉部コンテナ、l’@@11厚肉部コンテナ
、20・ベローズ、3・拳・端面、5・・・作動液注入
細管、6・・・作動液計量細管、7・・・溶接接合部、
8@・・作動液量、9・・・ライナー、10・・・発熱
素子、】l・■ヒートシンク、13・・・外筒、14・
・・熱媒物質。1 and 2 are cross-sectional views showing a conventional example, FIG. 3 is a cross-sectional view showing one embodiment of the present invention, and FIG. 4 is a longitudinal cross-sectional view showing another embodiment of the present invention. 106. Thin wall container, l'@@11 thick wall container, 20, bellows, 3, fist, end face, 5... hydraulic fluid injection capillary, 6... hydraulic fluid measuring capillary, 7... welded joint,
8@...Amount of working fluid, 9...Liner, 10...Heating element, ]l・■Heat sink, 13...Outer cylinder, 14・
...heat transfer material.
Claims (4)
ンクとを熱的に接続して発熱素子に発生する熱エネルギ
ーを吸収し、回路基板及び機器筐体内のm度上昇を防止
するためのヒートパイプ式熱接続素子であって、該熱接
続素子の一端の端面は発熱素子の端間に隣接して熱吸収
面を形成しており、該熱接続素子のコンテナの熱吸収面
に近い部分には小ピツチのベローズ部が設けられてあり
、熱接続素子コンテナの他の一端に近い部分の外周面は
、ヒートシンクに設けられた挿゛着孔に密接に挿入固着
されて放熱面を形成しておシ、該放熱面部分の大部分に
於いて熱接続素子コンテナの肉厚は極めて薄肉に形成さ
れてあり、その厚さは加熱に依る作動液蒸気圧の昇圧手
段で容易に拡管することが出来る程度の厚さであること
を特徴とするヒートパイプ式熱接続素子の構造。(1) A heat source installed on a circuit board that thermally connects a heat generating element and a heat sink to absorb the thermal energy generated in the heat generating element and prevent an increase in temperature within the circuit board and device housing. A pipe type thermal connection element, wherein the end surface of one end of the thermal connection element forms a heat absorption surface adjacent to the ends of the heating element, and a portion of the thermal connection element near the heat absorption surface of the container is provided with a small pitch bellows part, and the outer peripheral surface of the part near the other end of the thermal connection element container is tightly inserted and fixed into the insertion hole provided in the heat sink to form a heat dissipation surface. Moreover, the wall thickness of the thermal connection element container is formed to be extremely thin in most of the heat dissipation surface portion, and the thickness is such that it can be easily expanded by means of increasing the vapor pressure of the working fluid by heating. The structure of a heat pipe type thermal connection element is characterized by being as thick as possible.
管が設けてあり、該細管はコンテナを貫通して設けられ
た中空細管であり、そのコンテナ内側の端末は熱接続素
子を所定の姿勢で且つベローズの伸張状態を所定の長さ
に保持した場合、所定の温度に於いて作動液がコンテナ
内に形成する水平面にはy一致する面附近に開口されて
あり、コンテナ外側の端末は熱接続素子内に定着の作動
液を封入した状態で気密に溶接封止されであることを特
徴とする特許請求の範囲第1項に記載のヒートパイプ式
熱接続素子の構造。(2) A hydraulic fluid metering capillary is provided at a predetermined location in the thermal connection element container, and the capillary is a hollow capillary provided through the container, and the terminal inside the container holds the thermal connection element in a predetermined posture. And when the bellows is kept stretched at a predetermined length, the horizontal surface formed by the hydraulic fluid inside the container at a predetermined temperature has an opening near the plane that coincides with y, and the terminal outside the container is exposed to heat. 2. The structure of the heat pipe type thermal connection element according to claim 1, wherein the connection element is airtightly welded and sealed with a fixing working fluid sealed inside the connection element.
ローズ外径より大きな内径の外筒が設けてあシ、該外m
はその底部に於いて熱接続素子の端面と共に発熱素子の
端面に隣接せしめられてあシ、熱接続素子の端面と共に
熱吸収面を形成しており、又外筒の頂部は自由i4にな
っており、熱接続素子コンテナの伸縮に対し滑動自在に
!!に立させられてあり、外筒と熱接続素子コンテナと
の間隙には非蒸発性で且つ熱伝導性の良好な、且つ流動
可能な熱媒物質に依り充填されてあゐことを特徴とする
特許請求の範囲第1項に記載のヒートパイプ式熱接続素
子の構造。(3) An outer cylinder with an inner diameter larger than the outer diameter of the bellows is provided in the part near the heat absorption surface of the thermal connection element container, and the outer cylinder has an outer diameter of m
is adjacent to the end surface of the heating element together with the end surface of the thermal connection element at its bottom, forming a heat absorption surface together with the end surface of the thermal connection element, and the top of the outer cylinder is free i4. It can slide freely when the thermal connection element container expands and contracts! ! The space between the outer cylinder and the thermal connection element container is filled with a non-evaporative, highly thermally conductive, and flowable heat transfer material. A structure of a heat pipe type thermal connection element according to claim 1.
に対応する位置に被挿接孔を設けであるヒートシンクの
各挿接孔に特許請求の範囲(1)に係る熱接続素子の挿
着部を挿入したる後、ヒートシンクと挿入された熱接続
素子群の全体を一括して加熱し、所定の温度に均一に温
度上昇せしめ、作動液蒸気圧の昇圧に依り、各々の熱接
続素子コンテナ3の挿入部分を拡管せしめて、被挿壁孔
群の内壁に圧接固着せしめることを特徴とする冷却構造
体の形成方法。(4) The thermal connection element according to claim (1) is inserted into each insertion hole of the heat sink, which is provided with insertion holes at positions corresponding to the respective elements of the heating element group installed at the circuit board temperature. After inserting the heat sink, the heat sink and the entire group of inserted thermal connection elements are heated all at once to uniformly raise the temperature to a predetermined temperature, and each thermal connection element is heated by increasing the vapor pressure of the working fluid. A method for forming a cooling structure, which comprises expanding the insertion portion of the container 3 and press-fitting it to the inner wall of a group of wall holes to be inserted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP147182A JPS58119659A (en) | 1982-01-08 | 1982-01-08 | Formation of heat pipe type heat connecting element structure and cooling structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP147182A JPS58119659A (en) | 1982-01-08 | 1982-01-08 | Formation of heat pipe type heat connecting element structure and cooling structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58119659A true JPS58119659A (en) | 1983-07-16 |
Family
ID=11502369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP147182A Pending JPS58119659A (en) | 1982-01-08 | 1982-01-08 | Formation of heat pipe type heat connecting element structure and cooling structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58119659A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5458189A (en) * | 1993-09-10 | 1995-10-17 | Aavid Laboratories | Two-phase component cooler |
US5587880A (en) * | 1995-06-28 | 1996-12-24 | Aavid Laboratories, Inc. | Computer cooling system operable under the force of gravity in first orientation and against the force of gravity in second orientation |
US5944093A (en) * | 1997-12-30 | 1999-08-31 | Intel Corporation | Pickup chuck with an integral heat pipe |
US6345664B1 (en) * | 1997-02-24 | 2002-02-12 | Fujitsu Limited | Heat sink and information processor using heat sink |
-
1982
- 1982-01-08 JP JP147182A patent/JPS58119659A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5458189A (en) * | 1993-09-10 | 1995-10-17 | Aavid Laboratories | Two-phase component cooler |
US5587880A (en) * | 1995-06-28 | 1996-12-24 | Aavid Laboratories, Inc. | Computer cooling system operable under the force of gravity in first orientation and against the force of gravity in second orientation |
US6345664B1 (en) * | 1997-02-24 | 2002-02-12 | Fujitsu Limited | Heat sink and information processor using heat sink |
US6460608B2 (en) | 1997-02-24 | 2002-10-08 | Fujitsu Limited | Heat sink and information processor using heat sink |
US7828045B2 (en) | 1997-02-24 | 2010-11-09 | Fujitsu Limited | Heat sink and information processor using heat sink |
US5944093A (en) * | 1997-12-30 | 1999-08-31 | Intel Corporation | Pickup chuck with an integral heat pipe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6490160B2 (en) | Vapor chamber with integrated pin array | |
KR950014044B1 (en) | Integral heat pipe heat exchanger and clamping plate | |
US4830100A (en) | Heat-pipe device and heat-sink device | |
US7331379B2 (en) | Heat dissipation device with heat pipe | |
JPH0612370Y2 (en) | Double tube heat pipe type heat exchanger | |
US20110005727A1 (en) | Thermal module and manufacturing method thereof | |
JP4426684B2 (en) | heatsink | |
US7451806B2 (en) | Heat dissipation device with heat pipes | |
WO2010150064A1 (en) | Heat spreading device and method therefore | |
JPS61187351A (en) | Semiconductor module for power integrating heat pipe | |
CN109819635B (en) | Heat dissipation device | |
WO2018153111A1 (en) | Connected body vapour chamber heat sink and electronic device | |
WO2024066703A9 (en) | Heat dissipation system and power apparatus | |
JP2005175163A (en) | Cooling structure of semiconductor module | |
JPS58119659A (en) | Formation of heat pipe type heat connecting element structure and cooling structure | |
JP4193188B2 (en) | Thin composite plate heat pipe | |
JP3654323B2 (en) | Boiling cooler | |
JP4558258B2 (en) | Plate heat pipe and manufacturing method thereof | |
CN116096055A (en) | Radiator with sealing plate | |
JP2011169506A (en) | Connecting section of heat pipe heat receiving section and method of connecting heat pipe heat receiving section | |
JPH1054624A (en) | Thermoelectric cooling device | |
TWM628154U (en) | Air-liquid dual cooling radiator for memory modules | |
TWM560615U (en) | Heat dissipating device | |
CN111818756B (en) | Heat exchanger with integrated two-phase radiator | |
CN210014689U (en) | Multi-section plate type heat pipe and radiator |