JP3654323B2 - Boiling cooler - Google Patents

Boiling cooler Download PDF

Info

Publication number
JP3654323B2
JP3654323B2 JP995097A JP995097A JP3654323B2 JP 3654323 B2 JP3654323 B2 JP 3654323B2 JP 995097 A JP995097 A JP 995097A JP 995097 A JP995097 A JP 995097A JP 3654323 B2 JP3654323 B2 JP 3654323B2
Authority
JP
Japan
Prior art keywords
heat
wall
boiling cooling
refrigerant
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP995097A
Other languages
Japanese (ja)
Other versions
JPH10209355A (en
Inventor
和雄 小林
清司 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP995097A priority Critical patent/JP3654323B2/en
Publication of JPH10209355A publication Critical patent/JPH10209355A/en
Application granted granted Critical
Publication of JP3654323B2 publication Critical patent/JP3654323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

【0001】
【発明の属する技術分野】
本発明は半導体素子等の発熱体を冷却する沸騰冷却装置に関する。
【0002】
【従来の技術】
従来より、冷媒の沸騰蒸発と凝縮液化の繰り返しによる熱伝達を利用して発熱体を冷却する沸騰冷却装置が知られている。
この沸騰冷却装置は、冷媒を収容する冷媒槽と、この冷媒槽の上部に設けられた放熱器とを備え、冷媒槽で発熱体の熱を吸収して沸騰した冷媒が冷媒槽から放熱器へ移動し、その放熱器で冷やされて凝縮液化した後、再び冷媒槽へ戻る様に構成されている。発熱体から発生した熱は、冷媒が放熱器で凝縮する際に凝縮潜熱として外部に放出される。
【0003】
【発明が解決しようとする課題】
近年、携帯端末等の需要により、あらゆる姿勢での使用に対応できる沸騰冷却装置が要求されているが、従来の沸騰冷却装置では、冷媒を如何に冷媒槽へ供給するかが問題となっている。例えば、沸騰冷却装置を天地方向に逆転した状態で使用する場合(冷媒槽が上で放熱器が下)、冷媒が放熱器内に溜まって冷媒槽へ供給できなくなるため、事実上、冷却装置として使用できない。
本発明は、上記事情に基づいて成されたもので、その目的は、あらゆる姿勢での使用に対応できる沸騰冷却装置を提供することにある。
【0004】
【課題を解決するための手段】
請求項1の手段によれば、伝熱性を有する伝熱部材が沸騰冷却容器内の閉空間で受熱壁と放熱壁とに接触して設けられている。これにより、受熱壁が放熱壁より下方に位置する使用状態では、閉空間に封入されている冷媒が受熱壁の内壁面に接触しているため、発熱体の熱は、冷媒の沸騰と凝縮の繰り返しによって受熱壁から放熱壁へ伝達されるとともに、伝熱部材を通じても放熱壁へ伝達されて、放熱壁より外部へ放出される。
また、注入口が設けられた壁面の一部を内側へ窪ませたことにより、注入口に接続される注入パイプが容器壁面より外側へ飛び出るのを無くすことができる。
【0005】
請求項2の手段によれば、受熱壁が放熱壁より天地方向の上方側に配置されている。この場合、閉空間の冷媒が受熱壁の内壁面に接触していないため、発熱体の熱は受熱壁から伝熱部材に伝わり、この伝熱部材を通じて放熱壁へ伝達されるとともに、伝熱部材から冷媒へ伝達され、冷媒の沸騰と凝縮の繰り返しによって放熱壁へ伝熱される。これにより、受熱壁が放熱壁より天地方向の上方側に配置されている場合でも冷媒の沸騰と凝縮の繰り返しによる熱伝達が可能となり、発熱体の冷却装置として用いることができる。
【0006】
請求項3の手段によれば、伝熱部材が柱状の部材で構成されている。これにより、請求項1と同様の効果が得られる。
【0007】
請求項4の手段によれば、伝熱部材は、受熱壁側より放熱壁側の方が太くなっている。この場合、受熱壁が放熱壁の上方側に配置される使用状態の時は、受熱壁が放熱壁の下方側に配置される使用状態の時より、閉空間に封入されている冷媒の液面が高くなる。これにより、発熱体の熱が受熱壁から伝熱部材を通じて冷媒へ伝わる伝熱経路が短くなり、その分、熱抵抗を小さくできるため、冷媒液面が低く伝熱経路が大きい場合より放熱性能が向上する。なお、受熱壁側より放熱壁側の方が太くなっている伝熱部材の形状としては、例えば円錐形状、あるいは受熱壁側から放熱壁側へ向かって段階的に太くなる段付き形状等が考えられる。
【0008】
請求項5の手段によれば、伝熱部材は、複数本設けられて、受熱壁及び放熱壁の平面内で発熱体の取付け部位に密に配置されている。
受熱壁の発熱体が取付けられている部分は、熱流束が高い(単位断面積当たりの移動熱量が大きい)ため、受熱壁が放熱壁の上方側に配置される使用状態において受熱壁からより速く冷媒へ伝熱するためには、伝熱部材の放熱面積(伝熱面積)を大きく取った方が良い。そこで、発熱体の取付け部位に伝熱部材を密に配置して放熱面積を大きくすることで放熱性を向上できる。
【0009】
請求項6の手段によれば、放熱壁の内壁面が凹形状に設けられている。この場合、受熱壁が放熱壁の上方側に配置される使用状態の時は、受熱壁が放熱壁の下方側に配置される使用状態の時より、閉空間に封入されている冷媒の液面が高くなる。これにより、発熱体の熱が受熱壁から伝熱部材を通じて冷媒へ伝わる伝熱経路が短くなり、その分、熱抵抗を小さくできるため、冷媒液面が低く伝熱経路が大きい場合より放熱性能が向上する。
【0010】
請求項7の手段によれば、閉空間の凝縮領域に冷媒より比重の重い可動体が収容され、この可動体が沸騰冷却容器の姿勢変化に応じて凝縮領域を移動できる。なお、凝縮領域とは、発熱体の熱を受けて沸騰した冷媒が凝縮潜熱を放出して凝縮できる領域である。これにより、閉空間の凝縮領域に可動体が収容されていない場合と比較して、凝縮領域での液冷媒の淀み(凝縮領域と沸騰領域とを循環しないで淀んでいる液冷媒)を少なくできることにより放熱性能を向上できる。
【0011】
請求項8の手段によれば、放熱フィンが放熱壁と同一部材で構成されている。この場合、放熱フィンを放熱壁と別体で形成して放熱壁に接触して取り付けた場合と比較して、両者(放熱フィンと放熱壁)間の接触熱抵抗が無くなるため、放熱性能が向上する。また、放熱フィンを放熱壁に取り付ける手間を省くこともできる。
【0012】
請求項9の手段によれば、放熱フィンが放熱壁と金属結合(例えば、ろう付け、溶接等)されている。この場合、両者を同一部材で構成した場合と同様に、両者間の接触熱抵抗が無くなるため、放熱性能が向上する。
【0013】
請求項10の手段によれば、放熱フィンが中空形状に形成され、その中空部と冷媒が封入された閉空間とが連通して設けられている。これにより、受熱壁を放熱壁より天地方向の下方側に配置した状態で沸騰冷却器を使用した時、沸騰気化した冷媒が放熱フィンの中空部へ入り込み、中空部の末端部近くで凝縮できるため、放熱性能が向上する。
また、放熱フィンは、中空部の体積が冷媒の液体体積より小さくなる様に形成されているため、放熱壁を受熱壁より天地方向の下方側に配置した状態で沸騰冷却器を使用した場合でも、冷媒の液面が放熱壁より上方に位置するため、発熱体の熱を受熱壁から柱部材を経由して冷媒へ伝達することができる。
【0015】
【発明の実施の形態】
次に、本発明の沸騰冷却装置を図面に基づいて説明する。
(第1実施例)
図1は沸騰冷却装置の断面図である。
本実施例の沸騰冷却装置1は、携帯端末に使用される半導体素子等を具備した発熱体2を冷却するもので、沸騰冷却容器3(下述する)と放熱フィン4から成る。
沸騰冷却容器3は、一定の間隔を保って対向する受熱壁5と放熱壁6、この両者間の外周を囲む周側壁7、受熱壁5と放熱壁6との間に設けられた複数の柱部材8(本発明の伝熱部材)より成り、受熱壁5、放熱壁6、及び周側壁7によって密閉された空間を形成して、その閉空間に所定量の冷媒Rが封入されている。
【0016】
この沸騰冷却容器3は、例えばアルミニウム等の熱伝導性に優れる金属材料から成り、横寸法及び縦寸法に対して高さ寸法(図1の上下方向の寸法)が小さい偏平な箱型(例えば縦:60〜70mm、横:60〜70mm、高さ:5〜10mm)に設けられている。なお、放熱壁6、周側壁7、及び柱部材8は一体に成形され、受熱壁5とろう付けにより気密に組合わされている。容器3の材料としては、アルミニウム以外に銅、ステンレス等を使用しても良い。
本実施例の特徴である柱部材8は、周側壁7と同じ高さで複数個設けられ、放熱壁6の平面上で相互に略等間隔に配置されている(図2参照)。
【0017】
冷媒Rは、容器3内に形成される閉空間の半分強程度(閉空間の容積の約6〜7割)の量が注入パイプ9を通じて注入されている(図1参照)。注入パイプ9は、図3に示す様に、周側壁7の一部に設けられた注入口10に接続され、冷媒Rを注入した後、先端を封じ切って密閉される。なお、容器3の形状は、注入パイプ9の飛び出しを無くすために、図4に示す様に、注入口10が設けられた周側壁7の一部を内側へ窪ませた形状としても良い。
発熱体2は、受熱壁5の表面略中央部に配されて、図示しないボルト等の締め付けによって受熱壁5の表面に密着した状態で固定されている。
放熱フィン4は、熱伝導性に優れるアルミニウム又は銅等で形成され、放熱壁6の表面全体に渡って配され、図示しないボルト等の締め付けにより放熱壁6の表面に密着した状態で固定されている。
【0018】
次に、本実施例の作動を説明する。
a)沸騰冷却装置1を図5に示す姿勢(受熱壁5が放熱壁6の下方側に位置する)で使用する場合。
発熱体2から発生した熱は、受熱壁5を通じて容器3内に封入された冷媒Rに伝達されて冷媒Rを沸騰させる。但し、発熱体2から受熱壁5へ伝わる熱は、発熱体2の取付け部位から遠くなる程少なくなるため、容器3内の冷媒Rは、主に発熱体2の取付け部位に対応する領域(沸騰領域)で沸騰する。沸騰領域で沸騰した蒸気冷媒Rは、閉空間を水平方向(図5の左右方向)に拡がり、閉空間の沸騰領域から外れた領域(凝縮領域)で容器内壁面(放熱壁6、周側壁7、柱部材8の各壁面)に凝縮して液化する。液化した冷媒Rは、凝縮領域から再び沸騰領域へ供給されて、上記サイクル(沸騰−凝縮−液化)を繰り返す。発熱体2から冷媒Rに伝達された熱は、蒸気冷媒Rが容器内壁面に凝縮する際に凝縮潜熱として放出され、その凝縮潜熱が放熱壁6全体に伝わり、放熱壁6から放熱フィン4を通じて大気に放出される。
この場合、柱部材8は、沸騰領域では放熱面積を増大し、凝縮領域では凝縮面積を増大させることができるため、その放熱面積及び凝縮面積の増大した分、放熱性能を向上させることができる。
【0019】
b)沸騰冷却装置1を図1に示す姿勢(受熱壁5が放熱壁6の上方側に位置する)で使用する場合。
発熱体2から発生した熱は、受熱壁5から柱部材8に伝達され、その柱部材8を通じて放熱壁6に伝達されるとともに、柱部材8に接触する冷媒Rに伝達されて冷媒Rを沸騰させる。但し、発熱体2の取付け部位から遠くなる程、柱部材8の温度も低下するため、容器3内の冷媒Rは、発熱体2の取付け部位に配置された柱部材8に接触する領域(沸騰領域)で主に沸騰する。沸騰した蒸気冷媒Rは、閉空間を水平方向(図1の左右方向)に拡がり、閉空間の沸騰領域から外れた領域(凝縮領域)で容器内壁面(受熱壁5、周側壁7、柱部材8の各壁面)に凝縮して液化する。液化した冷媒Rは、凝縮領域から再び沸騰領域へ供給されて、上記サイクル(沸騰−凝縮−液化)を繰り返す。発熱体2から冷媒Rに伝達された熱は、蒸気冷媒Rが容器内壁面に凝縮する際に凝縮潜熱として放出され、その凝縮潜熱が放熱壁6全体に伝わり、放熱壁6から放熱フィン4を通じて大気に放出される。一方、柱部材8を通じて放熱壁6に伝達された熱も、放熱壁6から放熱フィン4を通じて大気に放出される。
【0020】
(本実施例の効果)
本実施例によれば、受熱壁5が放熱壁6の上方側に位置する使用状態の時でも、発熱体2から発生した熱を柱部材8を通じて冷媒Rに伝達できるため、冷媒Rの沸騰/凝縮の繰り返しによる熱伝達によって発熱体2を冷却することができる。また、柱部材8によって直接受熱壁5から放熱壁6へ熱伝達できるため、高い放熱性能を得ることができる。
なお、本実施例では、複数の柱部材8を放熱壁6の平面上で略等間隔に配置したが、図6に示す様に、ランダムに配置しても良い。
【0021】
(第2実施例)
図7は沸騰冷却装置1の断面図である。
本実施例は、柱部材8の断面積を高さ方向(図7の上下方向)で変化させた一例を示すものである。
柱部材8は、図7に示す様に、受熱壁5側から放熱壁6側へ向かって断面積が次第に大きくなる略円錐形状に設けられている。
この場合、容器3内の閉空間は、容器3の高さ方向において放熱壁6側より受熱壁5側の方が広くなる。このため、受熱壁5が放熱壁6の上方側に位置する使用状態の時には、図7に示す様に、冷媒Rの液面が高くなって受熱壁5に近づけることができる。このため、受熱壁5から柱部材8を通じて冷媒Rへ伝熱される伝熱経路を小さく(短く)できることから、熱抵抗が小さくなって放熱性能を向上できる。
また、受熱壁5が放熱壁6の下方側に位置する使用状態の時には、図8に示す様に、冷媒Rの液面が低くなって容器3内の凝縮空間を大きく確保できるため、放熱性を向上する上で効果がある。
【0022】
(第3実施例)
図9は沸騰冷却装置1の断面図である。
本実施例は、柱部材8を閉空間の沸騰領域(発熱体2の取付け部位に対応する領域)に密に配置した一例を示すものである。
受熱壁5の発熱体2が取付けられている部分は、熱流束が高い(単位断面積当たりの移動熱量が大きい)ため、受熱壁5が放熱壁6の上方側に配置される使用状態において受熱壁5から冷媒Rへより速く熱を伝えるためには、柱部材8の放熱面積(伝熱面積)を大きく取れば良い。そこで、図9及び図10(図9のB−B線に沿う断面図)に示す様に、閉空間の沸騰領域に柱部材8を密に配置して放熱面積を大きくすることで放熱性を向上できる。
【0023】
(第4実施例)
図11は沸騰冷却装置1の断面図である。
本実施例は、放熱壁6の内壁面(受熱壁5と対向する面)を凹形状(緩やかに湾曲した形状)とした一例を示すものである。
本実施例の場合、容器3内の閉空間は、容器3の高さ方向(図11の上下方向)において放熱壁6側より受熱壁5側の方が広くなる。このため、受熱壁5が放熱壁6の上方側に配置される使用状態の時(図11に示す状態)は、受熱壁5が放熱壁6の下方側に配置される使用状態の時より、閉空間に封入されている冷媒Rの液面が高くなる。その結果、発熱体2の熱が受熱壁5から伝熱部材を通じて冷媒Rへ伝わる伝熱経路が短くなり、熱抵抗が小さくなって放熱性能が向上する。
【0024】
(第5実施例)
図12は沸騰冷却装置1の断面図である。
本実施例は、容器3内の凝縮領域に可動体11を収容した一例を示すものである。
可動体11は、図14(図12のC−C線に沿う断面図)に示す様に略口字形に設けられて、容器3内の沸騰領域に配置された柱部材8Aの周囲に配されている。この可動体11は、容器3に対して固定されておらず、容器3内を上下移動可能に設けられている。但し、可動体11は冷媒Rより比重が重く、容器3を天地方向に逆転して使用した場合でも絶えず容器3内の下部側に位置している(図12及び図13参照)。この様に、容器3内の凝縮領域に可動体11を収容したことで、沸騰領域の冷媒R液面が上昇するとともに、凝縮領域での液冷媒Rの淀み(凝縮領域と沸騰領域とを循環しないで淀んでいる液冷媒R)を少なくできることから放熱性能を向上できる効果が生じる。
【0025】
(第6実施例)
図15は沸騰冷却装置1の断面図である。
本実施例は、容器3内の凝縮領域に可動体11を収容した他の例を示すものである。
可動体11は、図15に示す様に容器3を立てた姿勢で使用した場合に、容器3内の下部側に形成される凝縮領域に収容されている。また、可動体11は、図16(図15のD−D線に沿う断面図)に示す様に、容器3内の凝縮領域を上下方向に移動可能な状態で収容されており、容器3を上下逆転して使用した場合でも絶えず容器3内の下部側に位置している(図15参照)。本実施例でも、凝縮領域での液冷媒Rの淀みを少なくできるので放熱性能の向上を期待できる。
【0026】
(第7実施例)
図17及び図18は沸騰冷却装置1の断面図である。
本実施例は、放熱壁6と放熱フィン4とを同一部材で構成した一例を示すものである。この場合、第1実施例の構成(放熱フィン4を放熱壁6と別体で形成して放熱壁6の表面に密着した状態でボルト等により固定している)と比較して、両者(放熱壁6と放熱フィン4)間の接触熱抵抗が無くなるため、放熱性能が向上する。また、放熱フィン4を放熱壁6に取り付ける手間を省くこともできる。なお、沸騰冷却容器3の周側壁7と柱部材8は、図17に示す様に、放熱壁6と一体に成形して受熱壁5とろう付けにより気密に接合しても良いし、図18に示す様に、受熱壁5と一体に成形して放熱壁6とろう付けにより気密に接合しても良い。
【0027】
(第8実施例)
図19は沸騰冷却容器3の分解斜視図である。
本実施例は、放熱壁6と放熱フィン4とを金属結合により組合わせた一例を示すもので、周側壁7と柱部材8が受熱壁5と一体に成形され、それに注入パイプ9、放熱壁6、及び放熱フィン4を一体ろう付けして組み合わせている。この場合、放熱壁6と放熱フィン4とを同一部材で構成しなくても、両者(放熱壁6と放熱フィン4)をろう付けにより結合することで、両者間の接触熱抵抗が無くなるため、放熱性能を向上できる。
なお、図19に示す様に、注入口10が設けられた周側壁7の一部を内側へ窪ませることにより、注入口10に接続された注入パイプ9が容器壁面より外側へ飛び出るのを防ぐことができる(図20参照)。
【0028】
(第9実施例)
図21は沸騰冷却装置1の断面図である。
本実施例は、放熱フィン4を中空形状とした一例を示すものである。
放熱フィン4は、放熱壁6と同一部材により構成されて、中空形状に形成され、且つその中空部4aが沸騰冷却容器3の内部空間(冷媒Rが封入された空間)と連通されている。これにより、図21に示す様に、受熱壁5を放熱壁6より天地方向の下方側に配置した状態で沸騰冷却容器3を使用した時、沸騰気化した冷媒Rが放熱フィン4の中空部4aへ入り込み、中空部4aの末端部近くで凝縮できるため、放熱性能が向上する。
また、放熱フィン4は、中空部4aの体積が冷媒Rの液体体積より小さくなる様に形成されている。これにより、図22に示す様に、放熱壁6を受熱壁5より天地方向の下方側に配置した状態で沸騰冷却容器3を使用した場合でも、冷媒Rの液面が放熱壁6より上方に位置するため、発熱体2の熱を受熱壁5から柱部材8を経由して冷媒Rへ伝達することができる。その結果、発熱体2から冷媒Rに伝達された熱は、蒸気冷媒が容器3の内壁面に凝縮する際に凝縮潜熱として放出され、その凝縮潜熱が放熱壁6全体に伝わり、放熱壁6から放熱フィン4を通じて大気に放出される。
【図面の簡単な説明】
【図1】沸騰冷却装置の断面図である(第1実施例)。
【図2】図1のA−A線に沿う断面図である(第1実施例)。
【図3】沸騰冷却容器の分解斜視図である(第1実施例)。
【図4】沸騰冷却容器の斜視図である(第1実施例)。
【図5】沸騰冷却装置の断面図である(第1実施例)。
【図6】柱部材の配置を示す沸騰冷却容器の断面図である(第1実施例)。
【図7】沸騰冷却装置の断面図である(第2実施例)。
【図8】沸騰冷却装置の断面図である(第2実施例)。
【図9】沸騰冷却装置の断面図である(第3実施例)。
【図10】図9のB−B線に沿う断面図である(第3実施例)。
【図11】沸騰冷却装置の断面図である(第4実施例)。
【図12】沸騰冷却装置の断面図である(第5実施例)。
【図13】沸騰冷却装置の断面図である(第5実施例)。
【図14】図12のC−C線に沿う断面図である(第5実施例)。
【図15】沸騰冷却装置の断面図である(第6実施例)。
【図16】図15のD−D線に沿う断面図である(第6実施例)。
【図17】沸騰冷却装置の断面図である(第7実施例)。
【図18】沸騰冷却装置の断面図である(第7実施例)。
【図19】沸騰冷却容器の分解斜視図である(第8実施例)。
【図20】沸騰冷却容器の外観を示す斜視図である(第8実施例)。
【図21】沸騰冷却装置の断面図である(第9実施例)。
【図22】沸騰冷却装置の断面図である(第9実施例)。
【符号の説明】
1 沸騰冷却装置
2 発熱体
3 沸騰冷却容器
4 放熱フィン
4a 中空部
5 受熱壁
6 放熱壁
8 柱部材(伝熱部材)
9 注入パイプ
10 注入口
11 可動体
R 冷媒
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a boiling cooling device for cooling a heating element such as a semiconductor element.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a boil cooling device that cools a heating element using heat transfer by repeated boiling and condensing of refrigerant is known.
The boiling cooling device includes a refrigerant tank that stores a refrigerant and a radiator provided at an upper portion of the refrigerant tank, and the refrigerant that has boiled by absorbing heat from the heating element in the refrigerant tank is transferred from the refrigerant tank to the radiator. After moving, being cooled by the radiator and condensing liquid, it is configured to return to the refrigerant tank again. The heat generated from the heating element is released to the outside as latent heat of condensation when the refrigerant is condensed by the radiator.
[0003]
[Problems to be solved by the invention]
In recent years, due to demand for portable terminals and the like, a boiling cooling device that can be used in all postures is required. However, in conventional boiling cooling devices, there is a problem of how to supply refrigerant to the refrigerant tank. . For example, when the boiling cooling device is used in the upside down direction (the refrigerant tank is up and the radiator is down), the refrigerant accumulates in the radiator and cannot be supplied to the refrigerant tank. I can not use it.
The present invention has been made based on the above circumstances, and an object thereof is to provide a boiling cooling device that can be used in any posture.
[0004]
[Means for Solving the Problems]
According to the means of claim 1, the heat transfer member having heat transfer property is provided in contact with the heat receiving wall and the heat radiating wall in the closed space in the boiling cooling container. As a result, in a use state where the heat receiving wall is located below the heat radiating wall, the refrigerant sealed in the closed space is in contact with the inner wall surface of the heat receiving wall, so that the heat of the heating element is caused by boiling and condensation of the refrigerant. By being repeatedly transmitted from the heat receiving wall to the heat radiating wall, it is also transmitted to the heat radiating wall through the heat transfer member, and is emitted from the heat radiating wall to the outside.
In addition, since a part of the wall surface provided with the injection port is recessed inward, the injection pipe connected to the injection port can be prevented from jumping out from the container wall surface.
[0005]
According to the means of claim 2, the heat receiving wall is disposed above the heat radiating wall in the vertical direction. In this case, since the refrigerant in the closed space is not in contact with the inner wall surface of the heat receiving wall, the heat of the heating element is transmitted from the heat receiving wall to the heat transfer member, and is transmitted to the heat radiating wall through the heat transfer member. To the refrigerant, and heat is transferred to the heat radiating wall by repeated boiling and condensation of the refrigerant. As a result, even when the heat receiving wall is disposed above the heat radiating wall in the vertical direction, heat transfer by repeated boiling and condensation of the refrigerant is possible, and the heat receiving wall can be used as a cooling device for the heating element.
[0006]
According to the means of claim 3, the heat transfer member is constituted by a columnar member. Thereby, the same effect as that of claim 1 can be obtained.
[0007]
According to the means of claim 4, the heat transfer member is thicker on the heat radiating wall side than on the heat receiving wall side. In this case, when the heat receiving wall is disposed above the heat radiating wall, the liquid level of the refrigerant sealed in the closed space is greater than when the heat receiving wall is disposed below the heat radiating wall. Becomes higher. As a result, the heat transfer path through which the heat of the heating element is transferred from the heat receiving wall to the refrigerant through the heat transfer member is shortened, and accordingly, the heat resistance can be reduced, so that the heat dissipation performance is higher than when the refrigerant liquid surface is low and the heat transfer path is large. improves. As the shape of the heat transfer member that is thicker on the heat radiating wall side than on the heat receiving wall side, for example, a conical shape or a stepped shape that gradually increases from the heat receiving wall side toward the heat radiating wall side is considered. It is done.
[0008]
According to the fifth aspect of the present invention, a plurality of heat transfer members are provided and are densely arranged at the mounting portion of the heating element within the plane of the heat receiving wall and the heat radiating wall.
The part of the heat receiving wall to which the heating element is attached has a high heat flux (the amount of heat transferred per unit cross-sectional area is large), so that the heat receiving wall is faster than the heat receiving wall in the usage state in which the heat receiving wall is disposed above the heat radiating wall. In order to transfer heat to the refrigerant, it is better to increase the heat dissipation area (heat transfer area) of the heat transfer member. Therefore, heat dissipation can be improved by densely arranging the heat transfer members at the attachment site of the heating elements to increase the heat dissipation area.
[0009]
According to the means of claim 6, the inner wall surface of the heat radiating wall is provided in a concave shape. In this case, when the heat receiving wall is disposed above the heat radiating wall, the liquid level of the refrigerant sealed in the closed space is greater than when the heat receiving wall is disposed below the heat radiating wall. Becomes higher. As a result, the heat transfer path through which the heat of the heating element is transferred from the heat receiving wall to the refrigerant through the heat transfer member is shortened, and accordingly, the heat resistance can be reduced, so that the heat dissipation performance is higher than when the refrigerant liquid surface is low and the heat transfer path is large. improves.
[0010]
According to the seventh aspect, the movable body having a specific gravity higher than that of the refrigerant is accommodated in the condensing region in the closed space, and the movable body can move in the condensing region according to the change in the posture of the boiling cooling container. In addition, a condensation area | region is an area | region which the refrigerant | coolant which boiled with the heat | fever of the heat generating body discharge | releases condensation latent heat, and can condense. Thereby, compared with the case where a movable body is not accommodated in the condensing area | region of closed space, the stagnation of the liquid refrigerant in the condensing area (liquid refrigerant stagnating without circulating between a condensing area and a boiling area) can be reduced. Can improve the heat dissipation performance.
[0011]
According to the means of Claim 8, the radiation fin is comprised with the same member as the radiation wall. In this case, compared to the case where the heat radiation fin is formed separately from the heat radiation wall and attached to the heat radiation wall, the contact heat resistance between the two (heat radiation fin and heat radiation wall) is eliminated, improving the heat radiation performance. To do. Further, it is possible to save the trouble of attaching the radiating fin to the radiating wall.
[0012]
According to the ninth aspect of the present invention, the radiating fin is metal-bonded (for example, brazed, welded, etc.) to the radiating wall. In this case, similarly to the case where both are constituted by the same member, the contact thermal resistance between them is eliminated, so that the heat radiation performance is improved.
[0013]
According to the means of the tenth aspect, the radiating fin is formed in a hollow shape, and the hollow portion is provided in communication with the closed space in which the refrigerant is sealed. As a result, when the boiling cooler is used with the heat receiving wall arranged below the heat radiating wall in the vertical direction, the boiled refrigerant can enter the hollow portion of the heat radiating fin and condense near the end of the hollow portion. , Heat dissipation performance is improved.
In addition, since the radiating fin is formed so that the volume of the hollow portion is smaller than the liquid volume of the refrigerant, even when the boiling cooler is used with the radiating wall disposed below the heat receiving wall in the vertical direction. Since the liquid level of the refrigerant is located above the heat radiating wall, the heat of the heating element can be transmitted from the heat receiving wall to the refrigerant via the column member.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, the boiling cooling device of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a sectional view of a boiling cooling device.
The boiling cooling device 1 of the present embodiment cools a heating element 2 equipped with a semiconductor element or the like used for a portable terminal, and includes a boiling cooling container 3 (described below) and a radiation fin 4.
The boiling cooling container 3 includes a plurality of columns provided between the heat receiving wall 5 and the heat radiating wall 6 facing each other with a constant space therebetween, a peripheral side wall 7 surrounding the outer periphery between them, and the heat receiving wall 5 and the heat radiating wall 6. A member 8 (heat transfer member of the present invention) is formed, and a space sealed by the heat receiving wall 5, the heat radiating wall 6, and the peripheral side wall 7 is formed, and a predetermined amount of the refrigerant R is sealed in the closed space.
[0016]
The boiling cooling container 3 is made of a metal material having excellent thermal conductivity, such as aluminum, and is a flat box shape (for example, a vertical dimension) whose height dimension (vertical dimension in FIG. 1) is smaller than the horizontal dimension and the vertical dimension. : 60-70 mm, width: 60-70 mm, height: 5-10 mm). In addition, the heat radiating wall 6, the peripheral side wall 7, and the column member 8 are integrally formed and are airtightly combined with the heat receiving wall 5 by brazing. As a material of the container 3, copper, stainless steel or the like may be used in addition to aluminum.
A plurality of column members 8 which are the features of this embodiment are provided at the same height as the peripheral side wall 7 and are arranged at substantially equal intervals on the plane of the heat radiating wall 6 (see FIG. 2).
[0017]
The refrigerant R is injected through the injection pipe 9 in an amount that is about half of the closed space formed in the container 3 (about 60 to 70% of the volume of the closed space) (see FIG. 1). As shown in FIG. 3, the injection pipe 9 is connected to an injection port 10 provided in a part of the peripheral side wall 7, and after injecting the refrigerant R, the tip is sealed and sealed. The shape of the container 3 may be a shape in which a part of the peripheral side wall 7 provided with the injection port 10 is recessed inward as shown in FIG. 4 in order to eliminate the injection pipe 9 from jumping out.
The heat generating body 2 is arranged at a substantially central portion of the surface of the heat receiving wall 5 and is fixed in a state of being in close contact with the surface of the heat receiving wall 5 by tightening a bolt or the like (not shown).
The heat radiating fins 4 are made of aluminum or copper having excellent thermal conductivity, are arranged over the entire surface of the heat radiating wall 6, and are fixed in close contact with the surface of the heat radiating wall 6 by tightening bolts (not shown). Yes.
[0018]
Next, the operation of this embodiment will be described.
a) When the boiling cooling device 1 is used in the posture shown in FIG. 5 (the heat receiving wall 5 is located below the heat radiating wall 6).
The heat generated from the heating element 2 is transmitted to the refrigerant R sealed in the container 3 through the heat receiving wall 5 to boil the refrigerant R. However, since the heat transmitted from the heating element 2 to the heat receiving wall 5 decreases as the distance from the mounting portion of the heating element 2 decreases, the refrigerant R in the container 3 mainly has a region (boiling) corresponding to the mounting portion of the heating element 2. Boiling in the area). The vapor refrigerant R boiled in the boiling region spreads in the closed space in the horizontal direction (left-right direction in FIG. 5), and in the region (condensation region) outside the boiling region of the closed space (condensation region) , Each wall surface of the column member 8 is condensed and liquefied. The liquefied refrigerant R is supplied again from the condensation region to the boiling region, and the above cycle (boiling-condensation-liquefaction) is repeated. The heat transmitted from the heating element 2 to the refrigerant R is released as condensation latent heat when the vapor refrigerant R condenses on the inner wall surface of the container, and the condensation latent heat is transmitted to the entire heat radiating wall 6 and from the heat radiating wall 6 through the heat radiating fins 4. Released into the atmosphere.
In this case, since the column member 8 can increase the heat radiation area in the boiling region and can increase the condensation area in the condensation region, the heat radiation performance can be improved by the increase in the heat radiation area and the condensation area.
[0019]
b) When the boiling cooling device 1 is used in the posture shown in FIG. 1 (the heat receiving wall 5 is located above the heat radiating wall 6).
Heat generated from the heating element 2 is transmitted from the heat receiving wall 5 to the column member 8, transmitted to the heat radiating wall 6 through the column member 8, and transmitted to the refrigerant R in contact with the column member 8 to boil the refrigerant R. Let However, since the temperature of the pillar member 8 decreases as the distance from the attachment portion of the heating element 2 decreases, the refrigerant R in the container 3 is in contact with the pillar member 8 disposed at the attachment portion of the heating element 2 (boiling). Boiling mainly in the area). The boiling vapor refrigerant R spreads in the closed space in the horizontal direction (left-right direction in FIG. 1), and in the region (condensation region) outside the boiling region of the closed space, the inner wall surface of the container (the heat receiving wall 5, the peripheral side wall 7, the column member). 8 each wall) is condensed and liquefied. The liquefied refrigerant R is supplied again from the condensation region to the boiling region, and the above cycle (boiling-condensation-liquefaction) is repeated. The heat transmitted from the heating element 2 to the refrigerant R is released as condensation latent heat when the vapor refrigerant R condenses on the inner wall surface of the container, and the condensation latent heat is transmitted to the entire heat radiating wall 6 and from the heat radiating wall 6 through the heat radiating fins 4. Released into the atmosphere. On the other hand, the heat transmitted to the heat radiating wall 6 through the column member 8 is also released from the heat radiating wall 6 to the atmosphere through the heat radiating fins 4.
[0020]
(Effect of this embodiment)
According to the present embodiment, since the heat generated from the heating element 2 can be transmitted to the refrigerant R through the column member 8 even when the heat receiving wall 5 is located above the heat radiating wall 6, The heating element 2 can be cooled by heat transfer due to repeated condensation. Moreover, since heat can be directly transferred from the heat receiving wall 5 to the heat radiating wall 6 by the column member 8, high heat radiating performance can be obtained.
In the present embodiment, the plurality of column members 8 are arranged at substantially equal intervals on the plane of the heat radiating wall 6, but may be arranged randomly as shown in FIG.
[0021]
(Second embodiment)
FIG. 7 is a sectional view of the boiling cooling device 1.
The present embodiment shows an example in which the cross-sectional area of the column member 8 is changed in the height direction (vertical direction in FIG. 7).
As shown in FIG. 7, the column member 8 is provided in a substantially conical shape whose cross-sectional area gradually increases from the heat receiving wall 5 side toward the heat radiating wall 6 side.
In this case, the closed space in the container 3 is wider on the heat receiving wall 5 side than on the heat radiating wall 6 side in the height direction of the container 3. For this reason, when the heat receiving wall 5 is in the use state positioned above the heat radiating wall 6, as shown in FIG. 7, the liquid level of the refrigerant R can be increased and approach the heat receiving wall 5. For this reason, since the heat transfer path transferred from the heat receiving wall 5 to the refrigerant R through the column member 8 can be reduced (shortened), the thermal resistance is reduced and the heat dissipation performance can be improved.
Further, when the heat receiving wall 5 is in a use state positioned below the heat radiating wall 6, the liquid level of the refrigerant R is lowered and a large condensing space in the container 3 can be secured as shown in FIG. It is effective in improving.
[0022]
(Third embodiment)
FIG. 9 is a cross-sectional view of the boiling cooling device 1.
The present embodiment shows an example in which the column members 8 are densely arranged in a boiling region of the closed space (a region corresponding to the attachment portion of the heating element 2).
The portion of the heat receiving wall 5 to which the heating element 2 is attached has a high heat flux (the amount of heat transferred per unit cross-sectional area is large), so that the heat receiving wall 5 receives heat in the usage state in which the heat receiving wall 5 is disposed above the heat radiating wall 6. In order to transfer heat from the wall 5 to the refrigerant R faster, the heat radiation area (heat transfer area) of the column member 8 may be increased. Therefore, as shown in FIG. 9 and FIG. 10 (cross-sectional view taken along line BB in FIG. 9), the heat dissipation is improved by arranging the column members 8 densely in the boiling region of the closed space to increase the heat dissipation area. It can be improved.
[0023]
(Fourth embodiment)
FIG. 11 is a cross-sectional view of the boiling cooling device 1.
The present embodiment shows an example in which the inner wall surface of the heat radiating wall 6 (the surface facing the heat receiving wall 5) is concave (a gently curved shape).
In the case of the present embodiment, the closed space in the container 3 is wider on the heat receiving wall 5 side than on the heat radiating wall 6 side in the height direction of the container 3 (vertical direction in FIG. 11). For this reason, when the heat receiving wall 5 is disposed above the heat radiating wall 6 (in the state shown in FIG. 11), when the heat receiving wall 5 is disposed below the heat radiating wall 6, The liquid level of the refrigerant R enclosed in the closed space is increased. As a result, the heat transfer path through which the heat of the heating element 2 is transferred from the heat receiving wall 5 to the refrigerant R through the heat transfer member is shortened, the thermal resistance is reduced, and the heat dissipation performance is improved.
[0024]
(5th Example)
FIG. 12 is a cross-sectional view of the boiling cooling device 1.
The present embodiment shows an example in which the movable body 11 is accommodated in the condensation region in the container 3.
The movable body 11 is provided in a substantially square shape as shown in FIG. 14 (cross-sectional view taken along the line C-C in FIG. 12), and is disposed around the column member 8 </ b> A disposed in the boiling region in the container 3. ing. The movable body 11 is not fixed to the container 3 and is provided so as to be movable up and down in the container 3. However, the movable body 11 has a higher specific gravity than the refrigerant R, and is always located on the lower side in the container 3 even when the container 3 is used upside down (see FIGS. 12 and 13). Thus, by accommodating the movable body 11 in the condensing region in the container 3, the liquid level of the refrigerant R in the boiling region rises and the stagnation of the liquid refrigerant R in the condensing region (circulates between the condensing region and the boiling region). This reduces the amount of liquid refrigerant R) that is not stored, and thus has the effect of improving the heat dissipation performance.
[0025]
(Sixth embodiment)
FIG. 15 is a cross-sectional view of the boiling cooling device 1.
The present embodiment shows another example in which the movable body 11 is accommodated in the condensation region in the container 3.
The movable body 11 is accommodated in a condensing region formed on the lower side in the container 3 when the container 3 is used in an upright posture as shown in FIG. Further, as shown in FIG. 16 (cross-sectional view taken along the line DD in FIG. 15), the movable body 11 is accommodated in a state in which the condensation region in the container 3 can be moved in the vertical direction. Even when used upside down, it is always located on the lower side in the container 3 (see FIG. 15). Also in this embodiment, since the stagnation of the liquid refrigerant R in the condensation region can be reduced, an improvement in the heat dissipation performance can be expected.
[0026]
(Seventh embodiment)
17 and 18 are cross-sectional views of the boiling cooling device 1.
The present embodiment shows an example in which the heat radiating wall 6 and the heat radiating fins 4 are formed of the same member. In this case, compared with the configuration of the first embodiment (the heat radiating fin 4 is formed separately from the heat radiating wall 6 and is fixed to the surface of the heat radiating wall 6 with a bolt or the like), both (heat radiating) Since the contact thermal resistance between the wall 6 and the radiation fin 4) is eliminated, the heat radiation performance is improved. Further, it is possible to save the trouble of attaching the radiating fins 4 to the radiating wall 6. As shown in FIG. 17, the peripheral side wall 7 and the column member 8 of the boiling cooling vessel 3 may be formed integrally with the heat radiating wall 6 and airtightly joined to the heat receiving wall 5 by brazing. As shown in FIG. 3, the heat receiving wall 5 may be integrally formed and air-tightly joined to the heat radiating wall 6 by brazing.
[0027]
(Eighth embodiment)
FIG. 19 is an exploded perspective view of the boiling cooling container 3.
This embodiment shows an example in which the heat radiating wall 6 and the heat radiating fins 4 are combined by metal bonding. The peripheral side wall 7 and the column member 8 are integrally formed with the heat receiving wall 5, and the injection pipe 9 and the heat radiating wall are formed thereon. 6 and the radiating fins 4 are integrally brazed and combined. In this case, even if the heat radiating wall 6 and the heat radiating fins 4 are not formed of the same member, the contact thermal resistance between the two is eliminated by joining both the heat radiating walls 6 and the heat radiating fins 4 by brazing. Heat dissipation performance can be improved.
As shown in FIG. 19, a part of the peripheral side wall 7 provided with the injection port 10 is recessed inward to prevent the injection pipe 9 connected to the injection port 10 from jumping out of the container wall surface. (See FIG. 20).
[0028]
(Ninth embodiment)
FIG. 21 is a sectional view of the boiling cooling device 1.
The present embodiment shows an example in which the radiating fins 4 are hollow.
The heat radiating fins 4 are made of the same member as the heat radiating walls 6 and are formed in a hollow shape, and the hollow portions 4a communicate with the internal space of the boiling cooling container 3 (the space in which the refrigerant R is enclosed). Accordingly, as shown in FIG. 21, when the boiling cooling container 3 is used in a state where the heat receiving wall 5 is disposed on the lower side in the vertical direction from the heat radiating wall 6, the refrigerant R boiled and vaporized becomes the hollow portions 4 a of the heat radiating fins 4. Since heat can enter and condense near the end of the hollow portion 4a, the heat dissipation performance is improved.
Further, the heat radiation fin 4 is formed so that the volume of the hollow portion 4 a is smaller than the liquid volume of the refrigerant R. Accordingly, as shown in FIG. 22, even when the boiling cooling container 3 is used with the heat radiating wall 6 disposed below the heat receiving wall 5 in the vertical direction, the liquid level of the refrigerant R is higher than the heat radiating wall 6. Therefore, the heat of the heating element 2 can be transmitted from the heat receiving wall 5 to the refrigerant R via the column member 8. As a result, the heat transferred from the heating element 2 to the refrigerant R is released as condensed latent heat when the vapor refrigerant condenses on the inner wall surface of the container 3, and the condensed latent heat is transmitted to the entire heat radiating wall 6. It is emitted to the atmosphere through the heat radiating fins 4.
[Brief description of the drawings]
FIG. 1 is a sectional view of a boiling cooling device (first embodiment).
FIG. 2 is a cross-sectional view taken along line AA in FIG. 1 (first embodiment).
FIG. 3 is an exploded perspective view of a boiling cooling container (first embodiment).
FIG. 4 is a perspective view of a boiling cooling container (first embodiment).
FIG. 5 is a sectional view of a boiling cooling device (first embodiment).
FIG. 6 is a cross-sectional view of a boiling cooling container showing the arrangement of pillar members (first embodiment).
FIG. 7 is a cross-sectional view of a boiling cooling device (second embodiment).
FIG. 8 is a sectional view of a boiling cooling device (second embodiment).
FIG. 9 is a sectional view of a boiling cooling device (third embodiment).
FIG. 10 is a sectional view taken along line BB in FIG. 9 (third embodiment).
FIG. 11 is a sectional view of a boiling cooling device (fourth embodiment).
FIG. 12 is a sectional view of a boiling cooling device (fifth embodiment).
FIG. 13 is a sectional view of a boiling cooling device (fifth embodiment).
14 is a sectional view taken along the line CC of FIG. 12 (fifth embodiment).
FIG. 15 is a sectional view of a boiling cooling device (sixth embodiment).
FIG. 16 is a sectional view taken along line DD of FIG. 15 (sixth embodiment).
FIG. 17 is a sectional view of a boiling cooling device (seventh embodiment).
FIG. 18 is a sectional view of a boiling cooling device (seventh embodiment).
FIG. 19 is an exploded perspective view of a boiling cooling container (eighth embodiment).
FIG. 20 is a perspective view showing an appearance of a boiling cooling container (eighth embodiment).
FIG. 21 is a sectional view of a boiling cooling device (9th embodiment).
FIG. 22 is a sectional view of a boiling cooling device (9th embodiment).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Boiling cooling device 2 Heat generating body 3 Boiling cooling container 4 Radiation fin 4a Hollow part 5 Heat receiving wall 6 Heat radiating wall 8 Column member (heat transfer member)
9 Injection pipe 10 Inlet 11 Movable body R Refrigerant

Claims (10)

対向して配置された受熱壁と放熱壁とを有し、この受熱壁及び放熱壁とともに閉空間を形成してその閉空間に冷媒が封入された沸騰冷却容器を備え、
前記受熱壁の表面に固定された発熱体の熱を前記受熱壁から冷媒を媒体として前記放熱壁へ伝達して外部へ放出する沸騰冷却装置であって、
前記沸騰冷却容器は、伝熱性を有する伝熱部材が前記閉空間で前記受熱壁と前記放熱壁とに接触して設けられると共に、容器内部に冷媒を注入するための注入パイプが接続される注入口を有し、前記注入口が設けられた壁面の一部を内側へ窪ませていることを特徴とする沸騰冷却装置。
A boiling cooling container having a heat receiving wall and a heat radiating wall arranged opposite to each other, forming a closed space together with the heat receiving wall and the heat radiating wall, and having a refrigerant sealed in the closed space,
A boiling cooling device for transferring heat from the heat receiving wall fixed to the surface of the heat receiving wall to the heat radiating wall from the heat receiving wall as a medium and releasing it to the outside,
The boil cooling container is connected to the injection pipe for injecting refrigerant Rutotomoni, inside the container heat transfer member is provided in contact with said heat-receiving wall and the heat radiating wall between said closed space having a heat conductivity A boiling cooling device having an injection port, wherein a part of a wall surface provided with the injection port is recessed inward .
前記沸騰冷却容器は、前記受熱壁が前記放熱壁より天地方向の上方側に配置されていることを特徴とする請求項1に記載した沸騰冷却装置。  2. The boiling cooling device according to claim 1, wherein the heat receiving wall of the boiling cooling container is disposed above the heat radiating wall in the vertical direction. 前記伝熱部材は、柱状の部材から成ることを特徴とする請求項1または2に記載した沸騰冷却装置。  3. The boiling cooling device according to claim 1, wherein the heat transfer member is a columnar member. 前記伝熱部材は、前記受熱壁側より前記放熱壁側の方が太くなっていることを特徴とする請求項1〜3に記載した何れかの沸騰冷却装置。  The boiling cooling device according to any one of claims 1 to 3, wherein the heat transfer member is thicker on the heat radiating wall side than on the heat receiving wall side. 前記伝熱部材は、複数本設けられ、前記受熱壁及び前記放熱壁の平面内で前記発熱体の取付け部位に対応する領域に密に配置されていることを特徴とする請求項1〜4に記載した何れかの沸騰冷却装置。  A plurality of the heat transfer members are provided, and the heat transfer members are densely arranged in a region corresponding to a mounting portion of the heating element within a plane of the heat receiving wall and the heat radiating wall. Any of the boiling cooling devices described. 前記放熱壁の内壁面が凹形状に設けられていることを特徴とする請求項1〜5に記載した何れかの沸騰冷却装置。  6. The boiling cooling device according to claim 1, wherein an inner wall surface of the heat radiating wall is provided in a concave shape. 前記閉空間にて冷媒が凝縮する凝縮領域に冷媒より比重の重い可動体が収容され、この可動体が前記沸騰冷却容器の姿勢変化に応じて前記凝縮領域を移動できることを特徴とする請求項1〜6に記載した何れかの沸騰冷却装置。  The movable body having a heavier specific gravity than the refrigerant is accommodated in a condensing region where the refrigerant condenses in the closed space, and the movable body can move in the condensing region in accordance with a change in posture of the boiling cooling container. Any one of the boiling cooling apparatuses described in -6. 前記放熱壁に伝達された熱を放出する放熱フィンを備え、この放熱フィンが前記放熱壁と同一部材で構成されていることを特徴とする請求項1〜7に記載した何れかの沸騰冷却装置。  8. The boiling cooling device according to claim 1, further comprising a radiating fin that releases heat transmitted to the radiating wall, wherein the radiating fin is formed of the same member as the radiating wall. 9. . 前記放熱壁に伝達された熱を放出する放熱フィンを備え、この放熱フィンが前記放熱壁と金属結合されていることを特徴とする請求項1〜7に記載した何れかの沸騰冷却装置。  8. The boiling cooling device according to claim 1, further comprising a radiation fin that releases heat transmitted to the radiation wall, wherein the radiation fin is metal-bonded to the radiation wall. 9. 前記放熱フィンは、中空形状に形成されて、その中空部と前記沸騰冷却容器の冷媒が封入された空間とが連通して設けられ、且つ前記中空部の体積が冷媒の液体体積より小さいことを特徴とする請求項8または9に記載した沸騰冷却装置。  The radiating fin is formed in a hollow shape, the hollow portion thereof is provided in communication with the space in which the refrigerant of the boiling cooling container is sealed, and the volume of the hollow portion is smaller than the liquid volume of the refrigerant. The boiling cooling device according to claim 8 or 9, characterized in that
JP995097A 1996-11-25 1997-01-23 Boiling cooler Expired - Fee Related JP3654323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP995097A JP3654323B2 (en) 1996-11-25 1997-01-23 Boiling cooler

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31353696 1996-11-25
JP8-313536 1996-11-25
JP995097A JP3654323B2 (en) 1996-11-25 1997-01-23 Boiling cooler

Publications (2)

Publication Number Publication Date
JPH10209355A JPH10209355A (en) 1998-08-07
JP3654323B2 true JP3654323B2 (en) 2005-06-02

Family

ID=26344776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP995097A Expired - Fee Related JP3654323B2 (en) 1996-11-25 1997-01-23 Boiling cooler

Country Status (1)

Country Link
JP (1) JP3654323B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140326441A1 (en) * 2013-05-06 2014-11-06 GCorelab Private, Ltd. Cluster of inclined structures

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6227287B1 (en) 1998-05-25 2001-05-08 Denso Corporation Cooling apparatus by boiling and cooling refrigerant
JP2002141449A (en) 2000-10-31 2002-05-17 Denso Corp Boiling cooler
JP5789684B2 (en) * 2014-01-10 2015-10-07 株式会社フジクラ Vapor chamber
WO2018030478A1 (en) * 2016-08-10 2018-02-15 古河電気工業株式会社 Vapor chamber
TWI811504B (en) * 2019-12-16 2023-08-11 訊凱國際股份有限公司 Heat dissipating device
CN114383453A (en) * 2020-10-22 2022-04-22 讯凯国际股份有限公司 Heat sink device
CN116648594A (en) * 2021-02-25 2023-08-25 尼得科株式会社 Heat conduction member and heat exchange device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140326441A1 (en) * 2013-05-06 2014-11-06 GCorelab Private, Ltd. Cluster of inclined structures

Also Published As

Publication number Publication date
JPH10209355A (en) 1998-08-07

Similar Documents

Publication Publication Date Title
US7369410B2 (en) Apparatuses for dissipating heat from semiconductor devices
KR100606283B1 (en) Heat pipe unit and heat pipe type heat exchanger
JP3654326B2 (en) Boiling cooler
US6749013B2 (en) Heat sink
JPH04233259A (en) Removal device of heat
JPH08340189A (en) Boiling cooling device
JP3654323B2 (en) Boiling cooler
JPH1131768A (en) Boiling-cooling device
JP2000065456A (en) Ebullient cooler
JP2007115917A (en) Thermal dissipation plate
JP4278720B2 (en) Plate heat pipe
JPH1054624A (en) Thermoelectric cooling device
JP4026038B2 (en) Boiling cooler
JP2550162B2 (en) Boiling cooler
JP3653916B2 (en) Boiling cooler
JPH08186208A (en) Boiling cooling device
JP2004349652A (en) Boiling cooler
JP3665583B2 (en) Box heat pipe
JPH07106478A (en) Boiling and cooling apparatus and its manufacture
JP3161504B2 (en) Boiling type cooling device
JP4026249B2 (en) Boiling cooler
JPH0340953B2 (en)
JP2000183259A (en) Boiling and cooling device
JP2005064092A (en) Boiling cooler
JP2000091482A (en) Cooler for semiconductor element and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees