JP2000091482A - Cooler for semiconductor element and manufacture thereof - Google Patents

Cooler for semiconductor element and manufacture thereof

Info

Publication number
JP2000091482A
JP2000091482A JP10256734A JP25673498A JP2000091482A JP 2000091482 A JP2000091482 A JP 2000091482A JP 10256734 A JP10256734 A JP 10256734A JP 25673498 A JP25673498 A JP 25673498A JP 2000091482 A JP2000091482 A JP 2000091482A
Authority
JP
Japan
Prior art keywords
refrigerant
boiling
section
cooler
condensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10256734A
Other languages
Japanese (ja)
Inventor
Toshiharu Obe
利春 大部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10256734A priority Critical patent/JP2000091482A/en
Publication of JP2000091482A publication Critical patent/JP2000091482A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooler for semiconductor element having higher performance and using water which is gentle to the environment as a refrigerant. SOLUTION: Thin hollow flat plate 1 of copper having closed opposite ends comprises a boiling section 4, having outer wall being fixed with a semiconductor element 2 while encapsulating refrigerant, i.e., water, in the hollow section thereof, a condensing section 6 which is fixed with heat dissipating fins 5 to the outer wall thereof, and a coupling section 7 for separating the boiling section 4 from the condensing section 6. Heat generated from the semiconductor element 2 is dissipated through the evaporation of the refrigerant at the boiling section 4 and condensation of the refrigerant at the condensing section 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、外壁に半導体素子
が取り付けられ、内部は中空で冷媒が封入されている沸
騰部と、前記沸騰部の中空流路と連通し他端が閉塞され
ている凝縮部とからなり、半導体素子の発熱損失を沸騰
部での冷媒の沸騰気化、凝縮部での冷媒蒸気の凝縮液化
にて放熱する半導体素子用冷却器およびその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiling portion in which a semiconductor element is mounted on an outer wall, a hollow inside is filled with a refrigerant, and the other end is closed by communicating with a hollow flow path of the boiling portion. The present invention relates to a semiconductor device cooler that includes a condensing section and radiates heat loss of a semiconductor element by boiling vaporization of refrigerant in a boiling section and condensing and liquefaction of refrigerant vapor in a condensing section, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】半導体素子用冷却器として従来から沸騰
冷却器が用いられている。この沸騰冷却器は材質がアル
ミニウムであり、内部には冷媒として、一般的にパーフ
ルオロカーボンが封入されている。
2. Description of the Related Art Boiling coolers have conventionally been used as coolers for semiconductor devices. This boiling cooler is made of aluminum, and generally contains perfluorocarbon as a refrigerant inside.

【0003】近年の地球環境保護の高まりにより、代替
フロンであるパーフルオロカーボンは排出規制対象物質
となった。
With the recent increase in global environmental protection, perfluorocarbons, which are alternative fluorocarbons, have become substances subject to emission control.

【0004】そこで、冷媒としてパーフルオロカーボン
と同等の冷却性能を有し環境破壊の問題もない水を用い
ることが望まれている。
[0004] Therefore, it is desired to use water having the same cooling performance as perfluorocarbon and no problem of environmental destruction as a refrigerant.

【0005】しかし、沸騰冷却器の冷媒として水を用い
ると、水はアルミニウムを腐食し水素を発生するので、
沸騰冷却器の冷却性能が著しく低下する。故に、従来の
沸騰冷却器においては、冷媒として水を用いることがで
きない。
However, if water is used as a refrigerant for the boiling cooler, the water corrodes aluminum and generates hydrogen.
The cooling performance of the boiling cooler is significantly reduced. Therefore, water cannot be used as a refrigerant in the conventional boiling cooler.

【0006】また、従来から沸騰冷却器と同様に、半導
体素子用冷却器としてヒートバイプ式冷却器が用いられ
ている。ヒートパイプは材質が銅であり、冷媒として水
を用いることは可能であるが、以下で説明するように冷
却性能があまり高くない。
A heat-bipe type cooler has been conventionally used as a cooler for semiconductor devices, like a boiling cooler. The heat pipe is made of copper and can use water as a refrigerant, but does not have high cooling performance as described below.

【0007】以下、従来のヒートパイプ式冷却器の構造
及び動作を、図11を参照して説明する。図11におい
て、(a)は正面図、(b)は(a)のA−A断面図で
ある。図11(a)、(b)において、ヒートパイプ式
冷却器は、内部が中空で冷媒3として少量の水が封入さ
れているヒートパイプ21が銅製ブロック22に埋め込
まれている。また、ヒートパイプ21の上部には、放熱
性能を高めるための放熱フィン5が多数取り付けられて
いる。銅製ブロック22の外壁面に、半導体素子2が取
り付けられている。
Hereinafter, the structure and operation of the conventional heat pipe type cooler will be described with reference to FIG. 11A is a front view, and FIG. 11B is a cross-sectional view taken along line AA of FIG. In FIGS. 11A and 11B, the heat pipe type cooler has a heat pipe 21 in which the inside is hollow and a small amount of water is sealed as a coolant 3 is embedded in a copper block 22. In addition, a large number of radiating fins 5 are attached to the upper part of the heat pipe 21 to enhance the radiating performance. The semiconductor element 2 is mounted on the outer wall surface of the copper block 22.

【0008】このように構成されたヒートパイプ式冷却
器においては、半導体素子2の発熱損失は、銅製ブロッ
ク内を熱伝導しヒートパイプまで伝わる。ヒートパイプ
21の内壁面である沸騰伝熱面とこれに接する冷媒であ
る水の温度が蒸気相を形成するのに十分な条件の下で、
沸騰伝熱面の発泡点より気泡核が発生し、気泡9に成長
し沸騰伝熱面8より離脱し、沸騰伝熱面12から冷媒3
である水に発熱損失が伝わる。
In the heat pipe type cooler thus configured, the heat loss of the semiconductor element 2 is conducted through the copper block and transmitted to the heat pipe. Under conditions that the temperature of the boiling heat transfer surface that is the inner wall surface of the heat pipe 21 and the temperature of the water that is in contact with the boiling surface are sufficient to form a vapor phase,
Bubble nuclei are generated from the bubbling point of the boiling heat transfer surface, grow into bubbles 9, separate from the boiling heat transfer surface 8, and move from the boiling heat transfer surface 12 to the refrigerant 3.
The heat loss is transmitted to the water.

【0009】離脱した気泡9は浮力により液面に上昇し
蒸気となり凝縮部6に移動し、発熱損失は凝縮部6に運
ばれる。凝縮部6に運ばれた発熱損失は、放熱フィン5
間を通る冷却風11により放熱される。
The detached bubbles 9 rise to the liquid surface by buoyancy and turn into vapor to move to the condenser 6, and the heat loss is carried to the condenser 6. The heat loss transferred to the condenser 6 is
The heat is radiated by the cooling air 11 passing through the space.

【0010】一方、蒸気10は冷却され凝縮伝熱面で凝
縮して液化し凝縮液13となり、沸騰部4に戻るサイク
ルを繰り返す。以上のようにして、半導体素子2は冷却
される。
On the other hand, the cycle in which the steam 10 is cooled and condensed and condensed on the condensing heat transfer surface to become the condensed liquid 13 and returns to the boiling section 4 is repeated. As described above, the semiconductor element 2 is cooled.

【0011】[0011]

【発明が解決しようとする課題】以上述べた従来のヒー
トパイプ式冷却器では、冷媒3として水を用いることが
できるが、次のような問題点がある。
In the conventional heat pipe type cooler described above, water can be used as the refrigerant 3, but it has the following problems.

【0012】1)沸騰伝熱面8及び凝縮伝熱面の面積が
小さいため、沸騰伝熱面8と冷媒3及び凝縮電熱面12
と蒸気10の間の温度差が大きい。
1) Since the areas of the boiling heat transfer surface 8 and the condensation heat transfer surface are small, the boiling heat transfer surface 8 and the refrigerant 3 and the condensation heat transfer surface 12
The temperature difference between the steam and the steam 10 is large.

【0013】2)沸騰部4及び凝縮部6内で蒸気10と
凝縮液13が干渉し、液戻りのむらが発生し、沸騰部4
内で冷媒3の枯渇がおきる。これにより熱輸送能力が小
さい。
2) The vapor 10 and the condensate 13 interfere with each other in the boiling section 4 and the condensing section 6 to cause uneven return of the liquid.
Of the refrigerant 3 in the chamber. This results in low heat transport capability.

【0014】3)沸騰伝熱面8が平面であるため、沸騰
伝熱面8での発砲点密度が小さく、気泡9の発生を助長
し安定化させることができず沸騰熱伝達率が小さい。
3) Since the boiling heat transfer surface 8 is a flat surface, the firing point density on the boiling heat transfer surface 8 is low, and the generation and stabilization of the bubbles 9 cannot be promoted and the boiling heat transfer coefficient is small.

【0015】このようなことから、沸騰伝熱面8と冷媒
3及び凝縮伝熱面12と蒸気10の温度差が大きくなる
分、ヒートパイプ21の外壁面と冷却風11の温度差が
小さくなり、放熱フィン5が大型化し、冷却器の外形が
大型化する。比較的低い熱流束で冷媒の枯渇によるドラ
イアウトが発生し熱輸送能力が小さく、半導体素子2の
発熱損失増大に対応できない。また、上下に取り付けら
れた半導体索子2間の温度差が大きく、素子2間の電気
的特性に差が出る等の問題がある。
Accordingly, the temperature difference between the outer wall surface of the heat pipe 21 and the cooling air 11 decreases as the temperature difference between the boiling heat transfer surface 8 and the refrigerant 3 and between the condensation heat transfer surface 12 and the steam 10 increases. In addition, the size of the radiation fins 5 increases, and the outer shape of the cooler also increases. Dry-out due to the depletion of the refrigerant occurs at a relatively low heat flux, the heat transport ability is small, and it is impossible to cope with an increase in heat loss of the semiconductor element 2. In addition, there is a problem that the temperature difference between the semiconductor wires 2 mounted on the upper and lower sides is large and the electrical characteristics between the elements 2 are different.

【0016】そこで、本発明の目的は、冷媒として環境
にやさしい水を用い、さらにより性能の高い半導体素子
用冷却器およびその製造方法を提供することにある。具
体的には、 (1)冷媒として環境にやさしい水を用いた冷却器を提
供する。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor device cooler which uses environmentally friendly water as a refrigerant and has higher performance, and a method of manufacturing the same. Specifically, (1) A cooler using environmentally friendly water as a refrigerant is provided.

【0017】(2)放熱フィンを小型化し、より小型な
冷却器を提供する。
(2) The heat radiation fins are downsized to provide a smaller cooler.

【0018】(3)半導体素子の発熱損失増大、すなわ
ち大容量化、高速化に対応できる冷却器を提供する。
(3) To provide a cooler capable of coping with an increase in heat loss of a semiconductor element, that is, a large capacity and a high speed.

【0019】(4)半導体素子間の温度差を極力小さく
し、素子間の電気的特性の差を小さくできる冷却器を提
供する。
(4) To provide a cooler capable of minimizing a temperature difference between semiconductor elements and minimizing a difference in electrical characteristics between the elements.

【0020】[0020]

【課題を解決するための手段】前記目的を達成するため
に、請求項1に対応する発明は、半導体素子用冷却器
を、材質が銅で両端が閉塞されており内部が中空である
薄肉平板であり、前記薄肉平板は外壁に半導体素子が取
付けられ中空部に冷媒として水が封入されている沸騰部
と、外壁に放熱フィンが取付けられる凝縮部と、沸騰部
と凝縮部を分離している連結部により構成したものであ
る。
According to a first aspect of the present invention, there is provided a cooler for a semiconductor device, comprising: a thin plate having a copper closed end at both ends and a hollow inside; The thin flat plate separates a boiling portion in which a semiconductor element is mounted on an outer wall and water is sealed in a hollow portion as a refrigerant, a condensing portion in which a radiation fin is mounted on the outer wall, and a boiling portion and a condensing portion. It is constituted by a connecting portion.

【0021】請求項1に対応する発明によれば、冷媒と
して水が封入できるのみでなく、沸騰伝熱面及び凝縮伝
熱面の面積が大きいため、沸騰伝熱面と冷媒及び凝縮伝
熱面と蒸気の間の温度差を小さくできる。さらに、冷媒
としての水が半導体素子が取り付けられている範囲より
も上部まで封入されているため、上下に取り付けられた
半導体素子間の温度差が小さく、素子間の電気的特性の
差が少なくなる。
According to the first aspect of the present invention, not only water can be sealed as a refrigerant, but also the boiling heat transfer surface and the condensation heat transfer surface are large because the areas of the boiling heat transfer surface and the condensation heat transfer surface are large. Temperature difference between the steam and the steam can be reduced. Further, since water as a refrigerant is sealed up to an upper portion than a range where the semiconductor element is mounted, a temperature difference between the semiconductor elements mounted above and below is small, and a difference in electrical characteristics between the elements is reduced. .

【0022】前記目的を達成するため、請求項2に対応
する発明は、沸騰部に凝縮部で液化した冷媒を沸騰部に
戻すための液戻り流路を冷媒流路構成用部材により設
け、また凝縮部には冷媒が気化して発生した蒸気を凝縮
部に導くための蒸気流路構成用の部材により設け、さら
に連結部には沸騰部と凝縮部を分離するための仕切用部
材3を設け、冷媒流路構成用部材部材を接合し、自然循
環を利用し冷媒を一方向に循環させるように構成したも
のである。
In order to achieve the above object, the invention according to claim 2 provides a liquid return flow path for returning the refrigerant liquefied in the condensing section to the boiling section by a refrigerant flow path forming member in the boiling section. The condensing part is provided with a member for forming a vapor flow path for guiding the vapor generated by the vaporization of the refrigerant to the condensing part, and the connecting part is provided with a partitioning member 3 for separating the boiling part and the condensing part. In addition, the refrigerant flow path forming members are joined to each other so that the refrigerant is circulated in one direction using natural circulation.

【0023】請求項2に対応する発明によれば、請求項
1に対応する発明の作用に加え、沸騰部内での気泡と凝
縮液の干渉、凝縮部内での蒸気と凝縮液の干渉がなくな
り液戻りがスムーズになり、沸騰部内での冷媒の枯渇を
防ぐことができる。これにより、熱輸送能力が向上す
る。
According to the invention corresponding to claim 2, in addition to the effect of the invention corresponding to claim 1, there is no interference between bubbles and condensate in the boiling portion, and no interference between vapor and condensate in the condensation portion. The return is smooth, and the depletion of the refrigerant in the boiling portion can be prevented. Thereby, the heat transport capacity is improved.

【0024】前記目的を達成するため、請求項3に対応
する発明は、請求項1また請求項2の外壁に風冷ヒート
シンクをろう付けにて取付けたものである。
According to a third aspect of the present invention, an air-cooled heat sink is attached to the outer wall of the first or second aspect by brazing.

【0025】請求項3に対応する発明によれば、冷媒と
して水が封入できるのみでなく、沸騰伝熱面及び凝縮伝
熱面の面積が大きいため、沸騰伝熱面と冷媒及び凝縮伝
熱面と蒸気の間の温度差を小さくできる。さらに、冷媒
としての水が半導体素子が取り付けられている範囲より
も上部まで封入されているため、上下に取り付けられた
半導体素子間の温度差が小さく、素子間の電気的特性の
差が少なくなる。
According to the third aspect of the present invention, not only water can be sealed as the refrigerant, but also the boiling heat transfer surface and the condensation heat transfer surface have a large area. Temperature difference between the steam and the steam can be reduced. Further, since water as a refrigerant is sealed up to an upper portion than a range where the semiconductor element is mounted, a temperature difference between the semiconductor elements mounted above and below is small, and a difference in electrical characteristics between the elements is reduced. .

【0026】前記目的を達成するため、請求項4に対応
する発明は、請求項1まは2記載の凝縮部の外壁に1個
以上の風冷ヒートシンクをネジ止めにて取付けたもので
ある。
According to a fourth aspect of the present invention, at least one air-cooled heat sink is attached to the outer wall of the condensing section by screws.

【0027】請求項4に対応する発明によれば、上述し
た作用に加え、放熱フィンをネジ止めによって凝縮部に
取り付ける場合、放熱フィンを複数個に分割して取り付
けることにより、放熱フィンと凝縮部の外壁面の間に存
在する接触熱抵抗を小さくすることができる。
According to the fourth aspect of the present invention, in addition to the above-described operation, when the radiation fin is attached to the condenser by screwing, the radiation fin is divided into a plurality of parts and attached, so that the radiation fin and the condenser are separated. The contact thermal resistance existing between the outer wall surfaces of the first and second substrates can be reduced.

【0028】前記目的を達成するため、請求項5に対応
する発明は、蒸気流路を除いた凝縮部の内壁面に、ピッ
チ及び高さが1.0mm〜0.1mmのフィンを、内壁
面の重力方向に設けた特徴とする請求項1〜4のいずれ
か一つに記載の半導体素子用冷却器である。
According to a fifth aspect of the present invention, a fin having a pitch and a height of 1.0 mm to 0.1 mm is provided on an inner wall surface of a condensing portion excluding a steam flow path. The semiconductor device cooler according to any one of claims 1 to 4, wherein the cooler is provided in the direction of gravity.

【0029】請求項5に対応する発明によれば、前述し
た作用に加え、凝縮伝熱面の面積を増大させることがで
き、さらに凝縮伝熱面と蒸気の間の温度差を小さくでき
る。前記目的を達成するため、請求項6に対応する発明
は、液戻り流路を除いた前記沸騰部の内壁面に、ピッチ
が0.12mm〜1.2mm、幅が0.06mm〜0.
6mm、高さが0.1mm〜1.0mmのフィンを、内
壁面の重力方向及び重力方向と直交する方向に設けるこ
とを特徴とする請求項1〜5のいずれか一つに記載の半
導体素子用冷却器である。
According to the fifth aspect of the invention, in addition to the above-described operation, the area of the condensation heat transfer surface can be increased, and the temperature difference between the condensation heat transfer surface and the steam can be reduced. In order to achieve the above object, the invention according to claim 6 is directed to an inner wall surface of the boiling portion excluding a liquid return flow path, which has a pitch of 0.12 mm to 1.2 mm and a width of 0.06 mm to 0.2 mm.
The semiconductor device according to claim 1, wherein fins having a height of 6 mm and a height of 0.1 mm to 1.0 mm are provided in a direction of gravity of the inner wall surface and a direction perpendicular to the direction of gravity. It is a cooler for.

【0030】請求項6に対応する発明によれば、上述し
た作用に加え、沸騰伝熱面での発砲点密度を高め、気泡
の発生を助長し安定化させることができ、沸騰熱伝達率
を向上させることができ、沸騰熱伝達率を向上させるこ
とができ、沸騰伝熱面と冷媒の温度差を小さくでき、ま
た、上下に取り付けられた半導体素子間の温度差をさら
に小さくすることができ、素子間の電気的特性の差がさ
らに少なくなる。
According to the sixth aspect of the present invention, in addition to the above-described functions, the firing point density on the boiling heat transfer surface can be increased, the generation of bubbles can be promoted and stabilized, and the boiling heat transfer coefficient can be reduced. Can improve the boiling heat transfer coefficient, can reduce the temperature difference between the boiling heat transfer surface and the refrigerant, and can further reduce the temperature difference between the vertically mounted semiconductor elements. In addition, the difference in electrical characteristics between the elements is further reduced.

【0031】前記目的を達成するため、請求項7に対応
する発明は、沸騰部内に封入する液体を不凍液とする。
In order to achieve the above object, the invention according to claim 7 uses an antifreeze liquid as the liquid sealed in the boiling portion.

【0032】請求項7に対応する発明によれば、上述し
た作用に加え、本発明の冷却器が寒冷地で使用された場
合に冷媒である水の凍結を防ぐことができる。
According to the seventh aspect of the present invention, in addition to the above-described operation, when the cooler of the present invention is used in a cold region, it is possible to prevent freezing of water as a refrigerant.

【0033】前記目的を達成するため、請求項8に対応
する発明は、沸騰部の内壁面に微細なフィンを加工した
後に前記冷媒流路構成用部材をろう付けし、また連結部
に蒸気流路構成用部材をろう付けし、さらに凝縮部の内
壁面に微細なフィンを加工した後に仕切用部材をろう付
けした後、前記沸騰部と前記連結部をろう付けし、さら
に前記連結部に前記凝縮部をろう付けして密閉容器を構
成し、冷媒を注入した後真空脱気する半導体素子用冷却
器の製造方法である。
In order to achieve the above object, an invention according to claim 8 is that, after processing fine fins on the inner wall surface of the boiling portion, the member for forming the refrigerant flow passage is brazed, and the steam flow is connected to the connecting portion. After brazing the road forming member, further brazing the partition member after processing fine fins on the inner wall surface of the condensing portion, brazing the boiling portion and the connecting portion, and further brazing the connecting portion to the connecting portion. This is a method for manufacturing a semiconductor device cooler in which a closed vessel is formed by brazing a condensing portion, and a refrigerant is injected and vacuum degassed.

【0034】請求項8に対応する発明によれば、冷却器
を容易に製造することができる。
According to the invention corresponding to claim 8, the cooler can be easily manufactured.

【0035】[0035]

【発明の実施の形態】以下、本発明の実施形態につい
て、図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0036】<第1の実施形態>本発明の第1の実施形
態を、図1を参照して説明する。図1は半導体素子用冷
却器の全体図で、(a)は正面図であり、(b)は
(a)のA−A断面図であり、(c)は(a)のB−B
断面図である。
<First Embodiment> A first embodiment of the present invention will be described with reference to FIG. 1 is an overall view of a cooler for a semiconductor element, (a) is a front view, (b) is a cross-sectional view taken along line AA of (a), and (c) is a BB line of (a).
It is sectional drawing.

【0037】図1(a)、(b)、(c)において、半
導体素子用冷却器を、材質が銅で両端が閉塞されており
内部が中空である薄肉平板であり、街薄肉平板は外壁に
半導体素子2が取付けられ中空部に冷媒として水3が封
人されている沸騰部4と、外壁に放熱フィン5が取付け
られる凝縮部6と、沸騰部4と凝縮部6を分離している
連結部7から構成する。
In FIGS. 1 (a), 1 (b) and 1 (c), a semiconductor device cooler is a thin flat plate whose both ends are closed with copper and whose inside is hollow, and a street thin flat plate is an outer wall. A boiling part 4 in which a semiconductor element 2 is mounted on the inside and water 3 is sealed as a refrigerant in a hollow part, a condenser part 6 in which a radiation fin 5 is mounted on an outer wall, and the boiling part 4 and the condenser part 6 are separated. It is composed of a connecting portion 7.

【0038】放熱フィン5は、アルミニウム製の櫛形の
押し出しフィンであり、凝縮部6にロウ付けにより取り
付ける。
The radiation fins 5 are extrusion fins made of aluminum comb and are attached to the condenser 6 by brazing.

【0039】また、冷媒としての水3は半導体素子2が
取り付けられている範囲よりも上部まで封入する。
Further, the water 3 as a refrigerant is filled up to an upper portion of a region where the semiconductor element 2 is mounted.

【0040】図1の様に構成された半導体素子用冷却器
においては、半導体素子2の発熱損失は、沸騰部4の壁
面内を熱伝導し沸騰部4内の内璧面である沸騰伝熱面8
まで伝わる。
In the semiconductor element cooler configured as shown in FIG. 1, the heat loss of the semiconductor element 2 is caused by the heat conduction inside the wall of the boiling portion 4 and the boiling heat transfer on the inner wall surface inside the boiling portion 4. Face 8
Transmitted to.

【0041】沸騰伝熱面8とこれに接する冷媒である水
3の温度が蒸気相を形成するのに十分な条件の下で、沸
騰伝熱面8の発泡点より気泡核が発生し気泡9に成長し
沸騰伝熱面8より離脱し、沸騰伝熱面8から冷媒である
水3に発熱損失が伝わる。
Under the condition that the temperature of the boiling heat transfer surface 8 and the temperature of the water 3 which is in contact with the boiling heat transfer surface 8 are sufficient to form a vapor phase, bubble nuclei are generated from the bubbling point of the boiling heat transfer surface 8 and the bubbles 9 The heat generation loss is transferred from the boiling heat transfer surface 8 to the water 3 serving as the refrigerant.

【0042】離脱した気泡9は浮力により液面に上弄し
燕気となり凝縮部6に移動し、発熱損失は凝縮部6に運
ばれる。凝縮部6に運ばれた発熱損失は、放熱フィン5
間を通る冷却風11により放熱される。
The detached air bubbles 9 buoyant on the liquid surface due to buoyancy, become swallowing air, and move to the condenser 6, and the heat loss is carried to the condenser 6. The heat loss transferred to the condenser 6 is
The heat is radiated by the cooling air 11 passing through the space.

【0043】一方、蒸気10は冷却され凝縮伝熱面12
で凝縮して液化し凝縮液13となり、沸騰部4に戻るサ
イクルを繰り返す。以上のようにして、半導体素子2は
冷却される。
On the other hand, the steam 10 is cooled and condensed heat transfer surface 12
The liquid is condensed and liquefied to form a condensed liquid 13, and a cycle of returning to the boiling portion 4 is repeated. As described above, the semiconductor element 2 is cooled.

【0044】このとき、沸騰部4及び連結部7ならびに
凝縮部6が銅製であるため、冷媒として水3が封入でき
るのみでなく、沸騰伝熱面8及び凝縮伝熱面14の面積
が大きいため、沸騰伝熱面8と冷媒及び凝縮伝熱面14
と蒸気10の間の温度差を小さくできる。
At this time, since the boiling portion 4, the connecting portion 7, and the condensing portion 6 are made of copper, not only water 3 can be sealed as a refrigerant, but also the area of the boiling heat transfer surface 8 and the condensation heat transfer surface 14 is large. , Boiling heat transfer surface 8 and refrigerant and condensation heat transfer surface 14
Temperature difference between the steam and the steam 10 can be reduced.

【0045】さらに、冷媒としての水3が半導体素子2
が取り付けられている範囲よりも上部まで封入されてい
るため、上下に取り付けられた半導体素子2間の温度差
が小さく、素子2間の電気的特性の差が少なくなる。
Further, water 3 as a coolant is
Is sealed up to the upper part of the range in which the semiconductor elements 2 are mounted, so that the temperature difference between the semiconductor elements 2 mounted above and below is small, and the difference in electrical characteristics between the elements 2 is reduced.

【0046】図1の様に構成された半導体素子用冷却器
においては、 1)冷媒として環境にやさしい水3を用いることができ
る。
In the semiconductor device cooler configured as shown in FIG. 1, 1) eco-friendly water 3 can be used as a refrigerant.

【0047】2)沸騰伝熱面8と冷媒及び凝縮伝熱面1
2と蒸気101の間の温度差が減少し、その分凝縮部外
壁面14と冷却風11の温度差を増大させることがで
き、放熱フィン5を小型化し、冷却器を小型化できる。
2) Boiling heat transfer surface 8, refrigerant and condensation heat transfer surface 1
The temperature difference between the steam 2 and the steam 101 is reduced, and the temperature difference between the outer wall surface 14 of the condensing part and the cooling air 11 can be increased accordingly, so that the radiation fins 5 can be downsized and the cooler can be downsized.

【0048】3)半導体素子2間の電気的特性の差を小
さくできる。
3) The difference in electrical characteristics between the semiconductor elements 2 can be reduced.

【0049】<第2の実施形態>図2は本発明の第2の
実施形態の半導体素子用冷却器の全体図である。(a)
は正面図であり、(b)は(a)のA−A断面図であ
り、(c)は(a)のB−B断面図である。
<Second Embodiment> FIG. 2 is an overall view of a semiconductor device cooler according to a second embodiment of the present invention. (A)
Is a front view, (b) is an AA sectional view of (a), and (c) is a BB sectional view of (a).

【0050】放熱フィン5は、アルミニウム製のピンフ
ィンであり、凝縮部6にロウ付けにより取り付ける。そ
の他は図1と同様である。
The heat radiation fins 5 are pin fins made of aluminum, and are attached to the condenser 6 by brazing. Others are the same as FIG.

【0051】<第3の実施形態>次に、本発明の第3の
実施形態を、図3を参照して説明する。
Third Embodiment Next, a third embodiment of the present invention will be described with reference to FIG.

【0052】図3は半導体素子用冷却器の正面断面図で
ある。
FIG. 3 is a front sectional view of the semiconductor device cooler.

【0053】図3において、沸騰部4に凝縮部6で液化
した冷媒を沸騰部4に戻すための液戻り流路を冷媒流路
構成用部材16により設け、また凝縮部6には冷媒が気
化して発生した蒸気10を凝縮部6に導くための蒸気流
路17を蒸気流路構成用部材18により設け、さらに連
結部7には沸騰部4と凝縮部6を分離するための仕切用
部材19を設け、冷媒流路構成用部材16から仕切用部
材19を接合し、自然循環を利用し冷媒を一方向に循環
させる。
In FIG. 3, a refrigerant return flow path for returning the refrigerant liquefied in the condensing section 6 to the boiling section 4 is provided by the refrigerant flow path forming member 16 in the boiling section 4. A steam flow path 17 for guiding the vaporized steam 10 to the condensing section 6 is provided by a steam flow path forming member 18, and a connecting member 7 for separating the boiling section 4 and the condensing section 6 is provided. 19 is provided, and the partitioning member 19 is joined from the refrigerant flow path forming member 16 to circulate the refrigerant in one direction using natural circulation.

【0054】これにより、沸騰部4内での気泡9と凝縮
液13の干渉、凝縮部6内での蒸気10と凝縮液13の
干渉がなくなり液戻りがスムーズになり、沸騰部4内で
の冷媒の枯渇を防ぐことができる。これにより、熱輸送
能力が向上する。
As a result, interference between the bubbles 9 and the condensed liquid 13 in the boiling section 4 and interference between the vapor 10 and the condensed liquid 13 in the condensing section 6 are eliminated, and the liquid returns smoothly. The exhaustion of the refrigerant can be prevented. Thereby, the heat transport capacity is improved.

【0055】<第4の実施形態>本発明の第4の実施形
態を、図4を参照して説明する。図4は半導体素子用冷
却器の全体図であり、(a)は正面図で、(b)は右側
面図である。放熱フィン5をネジ止めによって熱伝導グ
リースを塗布して凝縮部6に取り付ける場合、一個の大
型のフィン5を周囲4点でネジ20により取り付ける
と、中央部分の取付け力が小さくなるため中央部分の接
触熱抵抗が増大する。放熱フィン5を複数個に分割して
取り付けることにより、放熱フィン5と凝縮部6の外壁
面の間に存在する接触熱抵抗を低減することができる。
<Fourth Embodiment> A fourth embodiment of the present invention will be described with reference to FIG. FIG. 4 is an overall view of the cooler for a semiconductor element, (a) is a front view, and (b) is a right side view. When the heat dissipating fins 5 are applied to the condensing section 6 by applying heat conduction grease by screwing, if one large fin 5 is attached by screws 20 at four points around the periphery, the attaching force at the central portion becomes small, so that the central portion has a small attaching force. The contact thermal resistance increases. By dividing and attaching the radiation fin 5 to a plurality of parts, the contact thermal resistance existing between the radiation fin 5 and the outer wall surface of the condensing part 6 can be reduced.

【0056】<第5の実施形態>本発明の第5の実施形
態を、図5を参照して説明する。図5は微細なフィン5
Aの斜視図である。蒸気流路を除いた凝縮部6の内壁面
に、ピッチ及び高さが1.0mm以下の微細なフィンを
内壁面の重力方向に設けることにより、凝縮伝熱面12
の面積を増大させることができ、さらに凝縮伝熱面12
と蒸気10の間の温度差を小さくできる。
<Fifth Embodiment> A fifth embodiment of the present invention will be described with reference to FIG. FIG. 5 shows fine fins 5
It is a perspective view of A. By providing fine fins having a pitch and height of 1.0 mm or less in the direction of gravity on the inner wall surface of the condenser 6 excluding the vapor flow path, the condensation heat transfer surface 12
The area of the heat transfer surface 12 can be increased.
Temperature difference between the steam and the steam 10 can be reduced.

【0057】<第6の実施形態>本発明の第6の実施形
態を、図6〜図10を参照して説明する。図6は本発明
の第6の実施形態の微細なフィン5Bの斜視図である。
図8は第6の実施形態の、伝熱面過熱度(沸騰伝熱面と
冷媒の温度差)一熱流束特性図である。図9は第6の実
施形態のフィンピッチー伝熱面過熱度特性図である。図
10は第6の実施形態の熱流束一素子間最大温度差特性
図である。
<Sixth Embodiment> A sixth embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a perspective view of a fine fin 5B according to the sixth embodiment of the present invention.
FIG. 8 is a heat flux characteristic diagram of the degree of superheat of the heat transfer surface (temperature difference between the boiling heat transfer surface and the refrigerant) according to the sixth embodiment. FIG. 9 is a fin pitch-heat transfer surface superheat degree characteristic diagram of the sixth embodiment. FIG. 10 is a graph showing a heat flux-to-element maximum temperature difference characteristic of the sixth embodiment.

【0058】液戻り流路を除いた沸騰部4の内壁面に、
ピッチが0.12mm〜1.2mm)幅が0.06mm
〜0.6mm)、高さが0.1mm〜1.0mmの徴細
なフィン5Bを、内壁面の重力方向及び重力方向と直交
する方向に設ける。
On the inner wall surface of the boiling part 4 except for the liquid return flow path,
Pitch is 0.12mm ~ 1.2mm) width is 0.06mm
Fine fins 5B having a height of 0.1 mm to 1.0 mm are provided in the direction of gravity of the inner wall surface and in a direction perpendicular to the direction of gravity.

【0059】このように構成することにより、沸騰伝熱
面8での発砲点密度を高め気泡9の発生を助長し安定化
させることができ、沸騰熱伝達率を向上させることがで
きるので、図8に示すように沸騰伝熱面8が平滑面であ
る場合に比べ沸騰伝熱面8と冷媒の温度差を小さくでき
る。
With this configuration, the firing point density on the boiling heat transfer surface 8 can be increased, the generation of bubbles 9 can be promoted and stabilized, and the boiling heat transfer coefficient can be improved. As shown in FIG. 8, the temperature difference between the boiling heat transfer surface 8 and the refrigerant can be smaller than when the boiling heat transfer surface 8 is a smooth surface.

【0060】さらに、図10に示すように上下に取り付
けられた半導体素子2間の温度差をさらに小さくするこ
とができ、素子2間の電気的特性の差がさらに少なくな
る。
Further, as shown in FIG. 10, the temperature difference between the vertically mounted semiconductor elements 2 can be further reduced, and the difference in the electrical characteristics between the elements 2 is further reduced.

【0061】また、液戻り流路を除いた沸騰部の内壁面
に、図5に示すようなピッチが0.12mm〜1.2m
m、幅が0.06mm〜0.6mm、高さが0.1mm
〜1.0mmの微細なフィンを、重力方向に設けるか、
図7に示すようなピッチが0.12mm〜1.2mm、
幅が0.06mm〜0.6mm、高さが0.1mm〜
1.0mmの微細なフィン5Cを、重力方向と直交する
方向に設けに設けても、図6の実施形態とほぼ同等の効
果を得ることができる。
The pitch as shown in FIG. 5 is 0.12 mm to 1.2 m on the inner wall surface of the boiling portion except for the liquid return flow path.
m, width 0.06mm ~ 0.6mm, height 0.1mm
A fine fin of ~ 1.0 mm is provided in the direction of gravity,
The pitch as shown in FIG. 7 is 0.12 mm to 1.2 mm,
0.06mm to 0.6mm width and 0.1mm height
Even if the fine fins 5C of 1.0 mm are provided in the direction orthogonal to the direction of gravity, the same effect as in the embodiment of FIG. 6 can be obtained.

【0062】<第7の実施形態>本発明の第7の実施形
態を説明する。前述の沸騰部4に封入する冷媒である水
に、例えばエチレングリコールやエタノ一ルを凍結が防
止できる濃度だけ混合する。これにより、冷却器が寒冷
地で使用された場合に冷媒である水の凍結を防ぐことが
でき、冷却器の凍結による破壊を防ぐことができる。
<Seventh Embodiment> A seventh embodiment of the present invention will be described. For example, ethylene glycol or ethanol is mixed with water, which is a refrigerant to be sealed in the boiling portion 4, in such a concentration as to prevent freezing. Thereby, when the cooler is used in a cold region, it is possible to prevent freezing of water as a refrigerant, and to prevent breakage due to freezing of the cooler.

【0063】<第8の実施形態>本発明の第8の実施形
態を説明する。前述の半導体素子用冷却器の製造方法は
次のように行う。前述した沸騰部4の内壁面に微細なフ
ィンを加工した後に、図3の冷媒流路構成用部材16を
ろう付けし、また連結部7に蒸気流路構成用部材18を
ろう付けし、さらに凝縮部16の内壁面に微細なフィン
を加工した後に仕切用部材19をろう付けした後、沸騰
部4と連結部7をろう付けし、さらに連結部7に凝縮部
6をろう付けして密閉容器を構成し、冷媒である水3を
注入した後、真空脱気する製造方法である。
<Eighth Embodiment> An eighth embodiment of the present invention will be described. The method for manufacturing the above-described semiconductor device cooler is performed as follows. After processing the fine fins on the inner wall surface of the boiling portion 4 described above, the coolant flow path forming member 16 of FIG. 3 is brazed, and the steam flow path forming member 18 of the connecting portion 7 is brazed. After processing the fine fins on the inner wall surface of the condensing part 16 and brazing the partition member 19, the brazing part 4 and the connecting part 7 are brazed, and the condensing part 6 is further brazed to the connecting part 7 and hermetically sealed. This is a manufacturing method in which a container is formed, water 3 as a refrigerant is injected, and then vacuum degassing is performed.

【0064】このような製造方法によれば、本発明の冷
却器を容易に作成することができる。
According to such a manufacturing method, the cooler of the present invention can be easily manufactured.

【0065】[0065]

【発明の効果】本発明によれば、冷媒として環境にやさ
しい水を用い、さらにより性能の高い半導体素子用冷却
器およびその製造方法を提供することができる。
According to the present invention, it is possible to provide an even higher performance cooler for a semiconductor device using environmentally friendly water as a refrigerant and a method for producing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体素子用冷却器の第1の実施形態
を説明するための全体図。
FIG. 1 is an overall view for explaining a first embodiment of a semiconductor element cooler of the present invention.

【図2】本発明の半導体素子用冷却器の第2の実施形態
を説明するための全体図。
FIG. 2 is an overall view for explaining a second embodiment of a semiconductor device cooler of the present invention.

【図3】本発明の半導体素子用冷却器の第3の実施形態
を説明するための全体図。
FIG. 3 is an overall view for explaining a third embodiment of a semiconductor device cooler of the present invention.

【図4】本発明の半導体素子用冷却器の第4の実施形態
を説明するための全体図。
FIG. 4 is an overall view for explaining a fourth embodiment of a semiconductor device cooler of the present invention.

【図5】本発明の半導体素子用冷却器の第5の実施形態
のフィンを説明するための斜視図。
FIG. 5 is a perspective view illustrating a fin according to a fifth embodiment of the semiconductor device cooler of the present invention.

【図6】本発明の半導体素子用冷却器の第6の実施形態
のフィンを説明するための斜視図。
FIG. 6 is a perspective view illustrating a fin according to a sixth embodiment of the semiconductor device cooler of the present invention.

【図7】本発明の半導体素子用冷却器の第7の実施形態
のフィンを説明するための斜視図。
FIG. 7 is a perspective view illustrating a fin of a semiconductor device cooler according to a seventh embodiment of the present invention.

【図8】本発明の半導体素子用冷却器の第6の実施形態
を説明するための伝熱面過熱度と熱流束特性図。
FIG. 8 is a diagram showing a heat transfer surface superheat degree and a heat flux characteristic for explaining a sixth embodiment of the semiconductor device cooler of the present invention.

【図9】本発明の半導体素子用冷却器の第6の実施形態
を説明するためのフィンピッチと伝熱面過熱度特性図。
FIG. 9 is a fin pitch and heat transfer surface superheat degree characteristic diagram for explaining a sixth embodiment of the semiconductor device cooler of the present invention.

【図10】本発明の半導体素子用冷却器の第6の実施形
態を説明するための熱流束素子間最大温度特性図。
FIG. 10 is a maximum temperature characteristic diagram between heat flux elements for describing a sixth embodiment of the cooler for a semiconductor element of the present invention.

【図11】従来のヒートパイプ式冷却器を説明するため
の図。
FIG. 11 is a view for explaining a conventional heat pipe type cooler.

【符号の説明】[Explanation of symbols]

1…中空薄肉平板 2…半導体素子 3…冷媒 4…沸騰部 5…放熱フィン 6…凝縮部 7…連結部 8…沸騰伝熱板 9…気泡 10…蒸気 11…冷却用 12…凝縮伝熱面 13…凝縮液 14…凝縮部外壁面 DESCRIPTION OF SYMBOLS 1 ... Hollow thin flat plate 2 ... Semiconductor element 3 ... Refrigerant 4 ... Boiling part 5 ... Radiating fin 6 ... Condensing part 7 ... Connecting part 8 ... Boiling heat transfer plate 9 ... Bubbles 10 ... Steam 11 ... Cooling 12 ... Condensing heat transfer surface 13: Condensed liquid 14: Condensing part outer wall surface

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 材質が銅で両端が閉塞されており、内部
が中空である薄肉平板であり、前記薄肉平板は外壁に半
導体素子が取付けられ中空部に冷媒として水が封入され
ている沸騰部と、 外壁に放熱フィンが取付けられる凝縮部と、 前記沸騰部と前記凝縮部を分離している連結部から構成
され、 前記半導体素子の発熱損失を前記沸騰部での冷媒の沸騰
気化、前記凝縮部での冷媒蒸気の凝縮液化にて放熱する
ことを特徴とする半導体素子用冷却器。
1. A boiling section in which a material is copper and both ends are closed, and a thin flat plate having a hollow inside is provided. A semiconductor element is mounted on an outer wall of the thin flat plate and water is sealed in a hollow portion as a refrigerant. A condensing section having a radiation fin mounted on an outer wall; and a connecting section separating the boiling section and the condensing section, wherein the heat loss of the semiconductor element is reduced by the vaporization of the refrigerant in the boiling section by the vaporization of the refrigerant. A cooler for a semiconductor device, which radiates heat by condensing and liquefying refrigerant vapor in a section.
【請求項2】 前記沸騰部に凝縮部で液化した冷媒を前
記沸騰部に戻すための液戻り流路を冷媒流路構成用部材
により設け、また前記凝縮部には冷媒が気化して発生し
た蒸気を前記凝縮部に導くための蒸気流路を前記蒸気流
路構成用部材により設け、さらに前記連結部には前記沸
騰部と前記凝縮部を分離するための仕切用部材を設け、
前記冷媒流路構成用部材から前記仕切用部材を接合し、
自然循環を利用し冷媒を一方向に循環させることを特徴
とする請求項1記載の半導体素子用冷却器。
2. A refrigerant return flow path for returning the refrigerant liquefied in the condensing section to the boiling section by the refrigerant flow path forming member, and the refrigerant is generated in the condensing section by vaporization of the refrigerant. A steam flow path for guiding steam to the condensing section is provided by the steam flow path forming member, and the connecting section is further provided with a partitioning member for separating the boiling section and the condensing section,
Joining the partition member from the refrigerant flow path forming member,
2. The cooler for a semiconductor device according to claim 1, wherein the refrigerant is circulated in one direction using natural circulation.
【請求項3】 前記凝縮部の外壁に、風冷ヒートシンク
をろう付けにて取付けることを特徴とする請求項1また
は2記載の半導体素子用冷却器。
3. The semiconductor device cooler according to claim 1, wherein an air-cooled heat sink is attached to an outer wall of the condensing section by brazing.
【請求項4】 前記凝縮部の外璧に、複数個の風冷ヒー
トシンクをネジ止めにて取付けることを特徴とする請求
項1または2記載の半導体素子用冷却器。
4. The cooler for a semiconductor device according to claim 1, wherein a plurality of air-cooled heat sinks are attached to an outer wall of the condensing section by screws.
【請求項5】 前記蒸気流路を除いた前記凝縮部の内壁
面に、ピッチ及び高さが1.0mm〜0.1mmのフィ
ンを、内壁面の重力方向に設けることを特徴とする請求
項1〜4のいずれか一つに記載の半導体素子用冷却器。
5. A fin having a pitch and a height of 1.0 mm to 0.1 mm is provided on an inner wall surface of the condensing section excluding the vapor flow path in a gravity direction of the inner wall surface. 5. The cooler for a semiconductor element according to any one of 1 to 4.
【請求項6】 前記液戻り流路を除いた前記沸騰部の内
壁面に、ピッチが0.12mm〜1.2mm、幅が0.
06mm〜0.6mm、高さが0.1mm〜1.0mm
のフィンを、内壁面の重力方向及び重力方向と直交する
方向に設けることを特徴とする請求項1〜5のいずれか
一つに記載の半導体素子用冷却器。
6. The inner wall surface of the boiling portion excluding the liquid return flow path has a pitch of 0.12 mm to 1.2 mm and a width of 0.1 mm to 0.2 mm.
06mm-0.6mm, height 0.1mm-1.0mm
6. The semiconductor device cooler according to claim 1, wherein the fins are provided in a direction of gravity of the inner wall surface and a direction perpendicular to the direction of gravity.
【請求項7】 前記沸騰部内に封入する冷媒を不凍液と
したことを特徴とする請求項1〜6のいずれか一つに記
載の半導体素子用冷却器。
7. The semiconductor device cooler according to claim 1, wherein the refrigerant filled in the boiling portion is an antifreeze.
【請求項8】 沸騰部の内壁面に微細なフィンを加工し
た後に前記冷媒流路構成用部材をろう付けし、また連結
部に蒸気流路構成用部材をろう付けし、さらに凝縮部の
内壁面に微細なフィンを加工した後に仕切用部材をろう
付けした後、前記沸騰部と前記連結部をろう付けし、さ
らに前記連結部に前記凝縮部をろう付けして密閉容器を
構成し、冷媒を注入した後真空脱気する半導体素子用冷
却器の製造方法。
8. After processing fine fins on the inner wall surface of the boiling portion, the coolant channel forming member is brazed, and the steam channel forming member is brazed to the connecting portion. After processing the fine fins on the wall surface and brazing the partitioning member, brazing the boiling portion and the connecting portion, further brazing the condensing portion to the connecting portion to form a closed container, Of manufacturing a cooler for semiconductor devices, which is subjected to vacuum degassing after injecting the gas.
JP10256734A 1998-09-10 1998-09-10 Cooler for semiconductor element and manufacture thereof Pending JP2000091482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10256734A JP2000091482A (en) 1998-09-10 1998-09-10 Cooler for semiconductor element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10256734A JP2000091482A (en) 1998-09-10 1998-09-10 Cooler for semiconductor element and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000091482A true JP2000091482A (en) 2000-03-31

Family

ID=17296709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10256734A Pending JP2000091482A (en) 1998-09-10 1998-09-10 Cooler for semiconductor element and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000091482A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050326A (en) * 2008-08-22 2010-03-04 Denso Corp Cooling device
WO2010150064A1 (en) 2009-05-18 2010-12-29 Huawei Technologies Co. Ltd. Heat spreading device and method therefore
JP2011108685A (en) * 2009-11-12 2011-06-02 Toyota Industries Corp Natural circulation type boiling cooler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050326A (en) * 2008-08-22 2010-03-04 Denso Corp Cooling device
WO2010150064A1 (en) 2009-05-18 2010-12-29 Huawei Technologies Co. Ltd. Heat spreading device and method therefore
JP2011108685A (en) * 2009-11-12 2011-06-02 Toyota Industries Corp Natural circulation type boiling cooler

Similar Documents

Publication Publication Date Title
US7369410B2 (en) Apparatuses for dissipating heat from semiconductor devices
US6525420B2 (en) Semiconductor package with lid heat spreader
US5309986A (en) Heat pipe
US20170363363A1 (en) Electronics Cooling with Multi-Phase Heat Exchange and Heat Spreader
US5213153A (en) Heat radiating device
US6609561B2 (en) Tunnel-phase change heat exchanger
JPH04233259A (en) Removal device of heat
US6749013B2 (en) Heat sink
JPH0735955B2 (en) Integrated heat pipe / heat exchanger / tightening assembly and method for obtaining same
US20210125898A1 (en) Vapor chamber
JP2010060164A (en) Heat pipe type heat sink
JP3210261B2 (en) Boiling cooling device and manufacturing method thereof
JP2005268658A (en) Boiling cooler
JP2005229102A (en) Heatsink
JPH06120382A (en) Semiconductor cooling equipment
JP2000091482A (en) Cooler for semiconductor element and manufacture thereof
CN115551301A (en) Heat dissipation system and electronic equipment
JP2550162B2 (en) Boiling cooler
JP2006234267A (en) Ebullient cooling device
JPH07112032B2 (en) Radiator with heat pipe function
US20230392873A1 (en) Remote directional vapor chamber heat sink
JP2004349652A (en) Boiling cooler
JPH08303919A (en) Electronic refrigerator
JPH07176662A (en) Boiling/cooling unit
JPS6129163A (en) Ic module unit