JPS58118960A - Ultrasonic microscope - Google Patents

Ultrasonic microscope

Info

Publication number
JPS58118960A
JPS58118960A JP57000346A JP34682A JPS58118960A JP S58118960 A JPS58118960 A JP S58118960A JP 57000346 A JP57000346 A JP 57000346A JP 34682 A JP34682 A JP 34682A JP S58118960 A JPS58118960 A JP S58118960A
Authority
JP
Japan
Prior art keywords
sample
ultrasonic
liquid
holding part
piezoelectric thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57000346A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ishikawa
潔 石川
Hiroshi Kanda
浩 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57000346A priority Critical patent/JPS58118960A/en
Publication of JPS58118960A publication Critical patent/JPS58118960A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To improve the reliability, by incorporating an ultrasonic microscope in a production line for supporting a sample without contact, introducing a liquid or gas from both sides of a running sample so that it is useful for an intermediate inspection of the material production. CONSTITUTION:A sample 14 is led into a sample holding part 16 through a guide rolls 15. Into the sample holding part 16, a liquid 17 which is an ultrasonic propagating medium is adjusted to some pressure and is discharged from a discharge port 18, therefore, the sample 14 is supported stably without contact in the holding part 16 by its static pressure, and moves smoothly. When an ultrasonic beam is irradiated from a spherical lens 1 provided on its upper part, to the sample 14 supported in this way, the liquid 17 between the spherical lens 1 and the sample 14 executes the same operation as the ultrasonic propagating medium, therefore, ultrasonic waves are propagated to the sample 14 surface without a trouble, and high resolution is obtained.

Description

【発明の詳細な説明】 不発明け、超音波顕微鏡、特に所定試料を研磨すること
のできる超音波顕微鏡等に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic microscope, and particularly to an ultrasonic microscope that can polish a predetermined sample.

近年IGHzに及ぶ超高周波の音波の発生検出が可能と
なつ念ので、水中で約1μmの音波長が実現できること
になり、その結果、高い分解能の音波撮像装電が得られ
るようになった。即ち、凹面レンズを用いて集束音波ビ
ームを作り、1μmに及ぶ高い分解能を実現するのであ
る。
In recent years, it has become possible to generate and detect ultrahigh-frequency sound waves up to IGHz, so it has become possible to realize sound wavelengths of about 1 μm underwater, and as a result, it has become possible to obtain high-resolution sound wave imaging devices. That is, a concave lens is used to create a focused sound wave beam, achieving a high resolution of 1 μm.

上記ビーム中に試料をそう人し、試料による反射超音波
を検出して試料の微細領域の弾性的性質を解明し九つ、
家は試料を機械的に2次元に走査しながら、この信号の
強實をブラウン管の輝度信号として表示すれば、試料の
微細構造を拡大してみることができる。
Place the sample in the above beam, detect the reflected ultrasonic waves from the sample, and elucidate the elastic properties of the minute region of the sample.
By mechanically scanning a sample in two dimensions and displaying the intensity of this signal as a brightness signal on a cathode ray tube, it is possible to magnify the fine structure of the sample.

第1図は、その超音波顕微鏡の主要構成部を示す図であ
る。超音波の集束及び送受は球面し/ズ1により行って
いるが、その構造は円柱状の熔融石英等をもちいた物質
の一面を光学研磨し、その上に圧電薄膜(ZnO)2を
上下電極3によりはさむ、このようにサンドウィッチ構
造になっている圧電薄1112に、パルス発振器4から
発生されたパルス5を印加して、超音波6t−発生させ
る。また、他端部は口径0.1 wφ〜1. Owφ程
度の凹面状の半球穴が形成されており、この半球穴と試
料との間には、超音波6を試料7に伝播させるための媒
質(例えば水)8が満されている。
FIG. 1 is a diagram showing the main components of the ultrasound microscope. The focusing, transmission and reception of ultrasonic waves is performed by a spherical lens 1, whose structure consists of optically polishing one side of a material made of cylindrical fused silica, etc., and piezoelectric thin films (ZnO) 2 placed on top and bottom electrodes. A pulse 5 generated from a pulse oscillator 4 is applied to the piezoelectric thin film 1112 sandwiched between the piezoelectric thin film 1112 sandwiched by the piezoelectric thin film 1112 sandwiched between the piezoelectric thin film 1112 sandwiched by the piezoelectric thin film 1112 sandwiched between the piezoelectric thin film 1112 sandwiched by the piezoelectric thin film 1112 sandwiched between the piezoelectric thin film 1112 sandwiched between the piezoelectric thin film 1112 sandwiched by the piezoelectric thin film 1112 sandwiched between the piezoelectric thin film 1112 sandwiched by the piezoelectric thin film 1112 sandwiched by the piezoelectric thin film 1112 that has a sandwich structure in this way. The other end has a diameter of 0.1 wφ to 1. A concave hemispherical hole of approximately Owφ is formed, and a medium (for example, water) 8 for propagating the ultrasonic wave 6 to the sample 7 is filled between the hemispherical hole and the sample.

圧電薄膜2によって発生した超音波6は円柱の中を平面
波となって伝播する。この平面波が半球穴に運すると石
英(音速6000m/’1)と水(音速1500m/s
)との音速の差により屈折作用が生じ、試料7面上に集
束した超音波6を照射することができる。逆に試料7か
ら反射されてくる超音波は球面レンズにより集音整相さ
れ、平面波となって圧電薄膜2に達し、ここでRF信号
9に変換される。このRF信号9を受信器10で受信し
、ここでダイオード検波してビデオ信号11に変換し、
CR′rディスプレイ12の入力信号として用いている
Ultrasonic waves 6 generated by the piezoelectric thin film 2 propagate in the cylinder as plane waves. When this plane wave is carried to the hemispherical hole, it will cause quartz (sound speed 6000m/'1) and water (sound speed 1500m/s
), a refraction effect occurs due to the difference in sound speed between the sample 7 and the sample 7, and the focused ultrasonic waves 6 can be irradiated onto the sample 7 surface. Conversely, the ultrasonic waves reflected from the sample 7 are collected and phased by a spherical lens, become plane waves, reach the piezoelectric thin film 2, and are converted into an RF signal 9 here. This RF signal 9 is received by a receiver 10, where it is diode-detected and converted into a video signal 11.
It is used as an input signal for the CR'r display 12.

このように構成された装置において、試料7が試料台駆
動電源13によりx−y平面内で2次元に走査している
と試料の走査にともなう試料面からの反射の強弱が2次
元的にCR,T面12に表示される。
In the apparatus configured in this way, when the sample 7 is two-dimensionally scanned within the x-y plane by the sample stage drive power supply 13, the intensity of reflection from the sample surface as the sample scans changes two-dimensionally as CR. , is displayed on the T-plane 12.

しかして、一般に超音波は物体の表面で一部分は反射す
るが、がなりの部分は物体が光学的に透明かどうかに関
係なく、その中にはいってゆき、物体内部に存在する硬
さや、密度、粘性の違いや欠陥などを反映したエコーと
なって返ってくる。
Generally speaking, a portion of ultrasound waves is reflected by the surface of an object, but the other part of the ultrasound wave goes into the object, regardless of whether the object is optically transparent or not. , it returns as an echo reflecting differences in viscosity and defects.

この性質を利用した試料内部の様相を検出できるのが超
音波ビームである。
Ultrasonic beams can utilize this property to detect aspects inside a sample.

上述のような特徴をもつ念超音波顕微鐘の応用分野とし
て、鉄鋼、高分子材料、金属表面処理、などの部門で利
用されており、材料中の欠陥検出や、構造1寸法、検査
などに大きな利点がある。
The field of application of the ultrasonic microscope with the above-mentioned characteristics is in sectors such as steel, polymer materials, and metal surface treatment. There are big advantages.

鉄鋼の圧延工程や高分子材料のシートが連続して生産さ
れている工程において、これを連続して検査し、欠陥の
有無や厚さのバラツク、金mff面層処理膜の厚さや欠
陥の有無をみいだす検査は、検査装置に大量の処理能力
を必要とするが、従来の検査法であると、抜取り検査法
が主としたものであり、特定のサンプルの検査結果から
全体tFF価する方法であるために、その結果の信頼性
は充分ではないうえに、試料検査量にも限界があった。
In the steel rolling process or the process where sheets of polymeric materials are continuously produced, they are continuously inspected to check for defects and variations in thickness, as well as the thickness of the gold MFF surface layer treatment film and the presence or absence of defects. Testing to detect tFF requires a large amount of processing power in testing equipment, but conventional testing methods mainly involve sampling tests, and methods that calculate the overall tFF value from the test results of a specific sample. Therefore, the reliability of the results was not sufficient, and there was also a limit to the amount of samples that could be tested.

本発明は、このような点を鑑みてなされたもので超音波
顕微鐘金生産ライン中に組み込み、材料生産の中間検査
に対して有効な装置全提供するものである。
The present invention has been made in view of these points, and is intended to provide an entire device that can be incorporated into an ultrasonic microscope production line and is effective for intermediate inspection of material production.

以下図にもとづいて、本発明の詳細について述べる。The details of the present invention will be described below based on the figures.

一般に、第2図の如く試料14が矢印の方向に一定速度
で移動しているとき、その面上において、A点にある球
面レンズが試料の動きと直角な方向に走査をくりかえす
と、これはちょうど第1図で述べた、X−Y面上で所定
の速度で走査している試料面に超音波ビームを照射して
いるのと同−結、束となり試料面の情報をCRT画面に
映すことができる。
Generally, when the sample 14 is moving at a constant speed in the direction of the arrow as shown in Figure 2, if the spherical lens at point A on the surface repeats scanning in the direction perpendicular to the sample movement, this Just as described in Figure 1, where an ultrasonic beam is irradiated onto a sample surface that is scanning at a predetermined speed on the X-Y plane, information about the sample surface is projected onto a CRT screen in a bundle. be able to.

第3図は本発明の主要構成部を示したものである。試料
14は、左側より、ガイドローラ15を経て、試料保持
部16内に導入される。この試料保持部16には試料の
上下面に垂直な方向より、所定の個所に設けられた吐出
口18から、超音波伝播1M質となる液体17がある圧
力に調整されて吐出すると、試料14はその静圧により
、試料保持部16内で非接触で安定に支持される。さら
に試料14と試料保持部16のガイド面の間では吐出す
る液体17が緩衝材として作用し、試料面上にわずかな
凹凸があっても影響されることなく平滑に移動させるこ
とができる。
FIG. 3 shows the main components of the present invention. The sample 14 is introduced into the sample holder 16 from the left side via the guide roller 15. When a liquid 17 that provides 1M ultrasonic propagation quality is adjusted to a certain pressure and is discharged from a discharge port 18 provided at a predetermined location in the direction perpendicular to the upper and lower surfaces of the sample, the sample 14 is stably supported within the sample holder 16 without contact due to its static pressure. Further, the discharged liquid 17 acts as a buffer between the sample 14 and the guide surface of the sample holder 16, and the sample can be moved smoothly without being affected by slight irregularities on the sample surface.

上述のごとく、静圧により支持さt″L之試料14に対
し、その上部から球面レンズより超音波ビームを照射す
ると、球面レンズ1と試料14との間は液体17が超音
波伝播用媒質7と同一作用するために、超音波を支障な
く試料面伝播できる。
As mentioned above, when the sample 14 supported by static pressure is irradiated with an ultrasonic beam from the spherical lens from above, the liquid 17 forms the ultrasonic propagation medium 7 between the spherical lens 1 and the sample 14. Because it has the same effect as the ultrasonic wave, ultrasonic waves can be propagated on the sample surface without any problems.

以上は、試料保持部16の吐出口18から、液体17を
吐出させて試料14t−保持する方法について述べたが
、液体170代りに高圧ガスを吐出しても、同一効果が
得られる。
Although the method for holding the sample 14t by discharging the liquid 17 from the discharge port 18 of the sample holder 16 has been described above, the same effect can be obtained by discharging high-pressure gas instead of the liquid 170.

音波の気体中での伝播は、その圧力が高くなるほど音波
の減衰が、減少し、高い周波数をもつ音波も伝播するこ
とができる。
When sound waves propagate in gas, as the pressure increases, the attenuation of the sound waves decreases, and even sound waves with high frequencies can propagate.

一例トして、アルゴンガス400Kp/σ1における音
波の減衰は、水中の場合とほぼ同じくなる。
As an example, the attenuation of sound waves in argon gas of 400 Kp/σ1 is approximately the same as in water.

しかし、伝播速度は、水中では約1500m/Sに対し
て、アルゴンガス中では約300m/sであるために同
一周波数に対して気体中では波長は115となるために
液体1r:媒質として使用する場合よりもより高分解能
が実現される。
However, the propagation speed is about 1500 m/s in water and about 300 m/s in argon gas, so the wavelength in gas is 115 for the same frequency, so liquid 1r is used as a medium. Higher resolution than would otherwise be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超音波顕微鐘の構成図、第2図は本発明
を説明するための図、第3図は本発明の■ 1 図 り WZ   図 3 3  図
Fig. 1 is a configuration diagram of a conventional ultrasonic microscope, Fig. 2 is a diagram for explaining the present invention, and Fig. 3 is a diagram for explaining the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、f波伝搬体と、この伝搬体の端部に形やされ、かつ
所定焦点を有する音波レンズとからなり、上記焦点近傍
に設けられた所定試料からのしよう乱音波により、上記
試料を撮影する音波顕微鏡において、走行試料の両側面
から液体あるいは気体の静圧によって支持する試料保持
手段を有することを特徴とする超音波顕微鏡。
1. It consists of an f-wave propagation body and a sound wave lens shaped at the end of this propagation body and having a predetermined focal point, and the sample is photographed by the disturbing sound waves emitted from the predetermined sample provided near the focal point. 1. An ultrasonic microscope characterized by having sample holding means for supporting a moving sample from both sides by static pressure of liquid or gas.
JP57000346A 1982-01-06 1982-01-06 Ultrasonic microscope Pending JPS58118960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57000346A JPS58118960A (en) 1982-01-06 1982-01-06 Ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57000346A JPS58118960A (en) 1982-01-06 1982-01-06 Ultrasonic microscope

Publications (1)

Publication Number Publication Date
JPS58118960A true JPS58118960A (en) 1983-07-15

Family

ID=11471289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57000346A Pending JPS58118960A (en) 1982-01-06 1982-01-06 Ultrasonic microscope

Country Status (1)

Country Link
JP (1) JPS58118960A (en)

Similar Documents

Publication Publication Date Title
JPH0136584B2 (en)
US4730494A (en) Method for examining a surface of a sample by means of ultrasound
JPS59160755A (en) Acoustic microscope
JPS5816672B2 (en) Onpaketsuzohou Oyobi Onpaketsuzoouchi
US5406849A (en) Method and apparatus for detecting guided leaky waves in acoustic microscopy
US4614410A (en) Ultrasonic microscope with optical microscope incorporated therein
JPS58118960A (en) Ultrasonic microscope
JPS60146152A (en) Ultrasonic microscope
JPS6145772B2 (en)
JPS5952751A (en) Ultrasonic microscope
JPH0376419B2 (en)
JPS6255099B2 (en)
JPS61111458A (en) Ultrasonic microscope
JPH0365495B2 (en)
JPS61258162A (en) Ultrasonic microscope
JPH0344263B2 (en)
JPH0210379B2 (en)
JPS5831200Y2 (en) ultrasonic focusing lens
JP2545974B2 (en) Spectrum ultrasound microscope
JPS585646A (en) Ultrasonic microscope
JPS60171456A (en) Treatment of specimen for ultrasonic microscope
JPH01109258A (en) Ultrasonic flaw detecting device
JPS58118958A (en) Ultrasonic microscope
JPH0338543B2 (en)
JPS60111152A (en) Ultrasonic microscope