JPS61258162A - Ultrasonic microscope - Google Patents

Ultrasonic microscope

Info

Publication number
JPS61258162A
JPS61258162A JP61104637A JP10463786A JPS61258162A JP S61258162 A JPS61258162 A JP S61258162A JP 61104637 A JP61104637 A JP 61104637A JP 10463786 A JP10463786 A JP 10463786A JP S61258162 A JPS61258162 A JP S61258162A
Authority
JP
Japan
Prior art keywords
sample
compressed air
bearing
sample base
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61104637A
Other languages
Japanese (ja)
Other versions
JPH0231345B2 (en
Inventor
Kiyoshi Ishikawa
潔 石川
Hiroshi Kanda
浩 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61104637A priority Critical patent/JPS61258162A/en
Publication of JPS61258162A publication Critical patent/JPS61258162A/en
Publication of JPH0231345B2 publication Critical patent/JPH0231345B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To reduce the up-and-down motion of a sample which follows a mechanical scan and also to reduce power required for a scanning system by providing a groove parallel to a scanning direction on both side parts of a sample base, inserting it into two pieces of rail-shaped bearings and also supporting the sample base in the state of non-contact to the inner surface of the bearing. CONSTITUTION:A bearing part 111 is inserted from both side faces of a groove part of an H-shaped sample base 110. As for this bearing part 111, a compressed air exhaust port is provided on the upper and the lower parts and the side face, and compressed air is supplied from the intake port 112 of the compressed air. When the compressed air adjusted to a prescribed pressure is ejected from the bearing 111, the sample base 110 is supported with non-contact by air static pressure. In this way, the motion of the time of scanning of the sample base 110 becomes smooth and also, since the sample base 110 is shaped like H, a sample placing part can be taken widely and the sample of a large shape can also be attached.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超音波顕微鏡、特に所定試料台を非接触で走
査することのできる超音波顕微鏡等に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultrasonic microscope, and particularly to an ultrasonic microscope that can scan a predetermined sample stage in a non-contact manner.

[従来の技術] 近年IGHzに及ぶ超高周波の音波の発生検品が可能と
なったので、水中で約1μmの音波長が実現できること
になり、その結果、高い分解能の音波撮像装置が得られ
るようになった。即ち、凹面レンズを用いて集束音波ビ
ームを作り、1μmに及ぶ高い分解能を実現するのであ
る。
[Prior art] In recent years, it has become possible to generate and inspect ultra-high frequency sound waves up to IGHz, making it possible to realize sound wavelengths of approximately 1 μm underwater, and as a result, it has become possible to obtain high-resolution sonic imaging devices. became. That is, a concave lens is used to create a focused sound wave beam, achieving a high resolution of 1 μm.

上記ビーム中に試料をそう人し、試料による反射超音波
を検出して試料の微細領域の弾性的性質を解明したり、
或は試料を機械的に2次元に走査しながら、この信号の
強度をブラウン管の輝度信号として表示すれば、試料の
微細構造を拡大してみることができる。
By placing a sample in the beam and detecting the ultrasonic waves reflected by the sample, we can elucidate the elastic properties of minute regions of the sample.
Alternatively, if the sample is mechanically scanned in two dimensions and the intensity of this signal is displayed as a brightness signal on a cathode ray tube, the fine structure of the sample can be enlarged.

第1図は、その超音波顕微鏡の主要構成部を示す図であ
る。超音波の集束及び送受は球面レンズ1により行って
いるが、その構造は円柱状の熔融石英等をもちいた物質
の一面を光学研磨し、その上に圧電薄膜(ZnO)2を
上下電極3によりはさむ、このようにサンドウィッチ構
造になっている圧電薄膜2に、パルス発振器4から発生
されたパルス5を印加して、超音波6を発生させる。ま
た、他端部は口径0 、1 mmφ〜1.om11φ程
度の凹面状の半球穴が形成されており、この半球穴と試
料との間には、超音波6を試料7に伝播させるための媒
質(例えば水)8が満されている。
FIG. 1 is a diagram showing the main components of the ultrasound microscope. The focusing, transmission and reception of ultrasonic waves is performed by a spherical lens 1, and its structure consists of optically polishing one side of a material made of cylindrical fused silica, etc., and placing a piezoelectric thin film (ZnO) 2 on top of it with upper and lower electrodes 3. A pulse 5 generated from a pulse oscillator 4 is applied to the piezoelectric thin film 2 having a sandwich structure, thereby generating an ultrasonic wave 6. The other end has a diameter of 0, 1 mmφ to 1. A concave hemispherical hole of about 11φ is formed, and a medium (for example, water) 8 for propagating the ultrasonic wave 6 to the sample 7 is filled between the hemispherical hole and the sample.

圧電薄膜2によって発生した超音波6は円柱の中を平面
波となって伝播する。この平面波が半球穴に達すると召
人(音速600m/s)と水(音速1500m/s)と
の音速の差により屈折作用が生じ、試料7面上に集束し
た超音波6を照射することができる。逆に試料7から反
射されてくる超音波は球面レンズにより集音整相され、
平面波となって圧電薄膜2に達し、ここでRF信号9に
変換される。このRF信号9を受信器10で受信し、こ
こでダイオード検波してビデオ信号11に変換し、CR
,Tディスプレイ12の入力信号として用いている。
Ultrasonic waves 6 generated by the piezoelectric thin film 2 propagate in the cylinder as plane waves. When this plane wave reaches the hemispherical hole, a refraction effect occurs due to the difference in sound speed between the servant (sound speed 600 m/s) and water (sound speed 1500 m/s), and the focused ultrasonic wave 6 can be irradiated onto the surface of the sample 7. can. Conversely, the ultrasonic waves reflected from the sample 7 are collected and phased by a spherical lens.
It becomes a plane wave and reaches the piezoelectric thin film 2, where it is converted into an RF signal 9. This RF signal 9 is received by a receiver 10, where it is diode-detected and converted into a video signal 11.
, is used as an input signal for the T display 12.

この様に構成された装置において、試料7が試料台駆動
電源13によりx−y平面内で2次元に走査していると
試料の走査にともなう試料面からの反射の強弱が2次元
的にCRT面12に表示される。
In the apparatus configured in this way, when the sample 7 is two-dimensionally scanned within the x-y plane by the sample stage drive power supply 13, the intensity of reflection from the sample surface as the sample scans changes two-dimensionally. displayed on surface 12.

而して、一般に超音波は物体の表面で一部分は反射する
が、かなりの部分は物体が光学的に透明かどうかに関係
なく、その中にはいってゆき、物体内部に存在する硬さ
や、密度、粘性の違いや欠陥などを反映したエコーとな
って返ってくる。この性質を利用して試料内部の様相を
検出できるのが超音波顕微鏡である。
Generally speaking, a portion of ultrasonic waves is reflected by the surface of an object, but a large portion of the ultrasound waves enters the object, regardless of whether the object is optically transparent or not. , it returns as an echo reflecting differences in viscosity and defects. Ultrasonic microscopes can utilize this property to detect aspects inside a sample.

上述の超音波顕*mにおいて、高性能を実現するために
は、下記に述べるような技術的課題を解決しなければな
らない6 その第1として、微小凹面部をもつ球面レンズの作成す
ること、これは高分解能を得るために周波数を高めると
、球面レンズと試料間の媒質中で超音波の減衰が大きく
なると云う障害がある。これを防ぐために微小口径レン
ズを作成し、超音波が媒質中を伝播する距離を短かくす
るよう努めなければならない。
In order to achieve high performance in the above-mentioned ultrasonic microscope*m, it is necessary to solve the following technical problems.6 The first is the creation of a spherical lens with a minute concave surface. This has the problem that when the frequency is increased to obtain high resolution, the attenuation of the ultrasonic waves increases in the medium between the spherical lens and the sample. To prevent this, we must create a micro-aperture lens and strive to shorten the distance that ultrasonic waves propagate through the medium.

その第2は、試料を機械走査している間における上下動
が小さいことが要求される。走査中に試料の上下動が大
きいことは焦点面がたえず移動していることであり、解
明な像が得られない。
The second requirement is that the vertical movement during mechanical scanning of the sample be small. The large vertical movement of the sample during scanning means that the focal plane is constantly moving, making it impossible to obtain clear images.

第3は、長時間安定に動作する圧電薄膜を実現すること
である。
The third goal is to realize a piezoelectric thin film that operates stably for a long time.

上記の技術課題のうち、第2の課題に関しては例えば特
開昭50−116058号公報にはスピーカーの駆動コ
イルに試料台を連結して機械走査を行なう構造が提案さ
れているが、機械走査に伴なう上下動を小さくする点で
不充分であった。また、走査系に大きな動力を要すると
の問題点もあった・ [発明が解決しようとする問題点] そこで本発明は、上記した従来技術の欠点を鑑み、機械
走査に伴なう試料の上下動を著るしく小さくし、かつ走
査系に要する動力も小さくできる超音波顕微鏡を提供す
ることを目的とする。
Regarding the second of the above technical issues, for example, Japanese Patent Application Laid-Open No. 116058/1983 proposes a structure in which a sample stage is connected to a speaker drive coil to perform mechanical scanning. This was insufficient in terms of reducing the accompanying vertical movement. In addition, there was also the problem that the scanning system required a large amount of power. [Problems to be solved by the invention] In view of the above-mentioned drawbacks of the prior art, the present invention has been developed to reduce the An object of the present invention is to provide an ultrasonic microscope that can significantly reduce the motion and the power required for the scanning system.

[問題点を解決するための手段] 本発明は、試料台の両側方に走査方向と平行な溝を設け
、該溝が互いに対向する2本のレール状の軸受に挿入さ
れる構造を有し、かっ該軸受の表面と溝の内面とが非接
触の状態で(空気を介在して)試料台が上記軸受に支持
される構成に特徴を有する。非接触で支持されるために
は溝の内壁とレールとの間に圧縮空気を供給する、もし
くは両者に磁石を投げ、その反発力を利用するなどの手
法をとる。
[Means for Solving the Problems] The present invention has a structure in which grooves are provided on both sides of the sample stage parallel to the scanning direction, and the grooves are inserted into two rail-shaped bearings facing each other. , is characterized in that the sample stage is supported by the bearing in a non-contact state (with air interposed) between the surface of the bearing and the inner surface of the groove. In order to support the rail without contact, methods such as supplying compressed air between the inner wall of the groove and the rail, or throwing a magnet between the two and utilizing the repulsion force are used.

[作用コ 上記の構成によれば、試料台と軸受とは完全に非接触で
(空気を介して)走査方向に移動可能に安定に支持され
る。しかも試料台は断面がH型となりその上面の広さに
対して全体の形状がシンプルとなるので塔載すべき試料
の大きさに対して試料台を小形軽量に作成することが可
能となる。よって試料の機械走査に伴なう上下物を著る
しく小さくすることができ、かつ走査系の駆動力も小さ
くて良い。
[Operation] According to the above configuration, the sample stage and the bearing are stably supported so as to be movable in the scanning direction (via air) in a completely non-contact manner. In addition, the sample stage has an H-shaped cross section and the overall shape is simple relative to the width of its upper surface, so it is possible to make the sample stage small and lightweight relative to the size of the sample to be mounted on the tower. Therefore, the vertical objects caused by mechanical scanning of the sample can be significantly reduced, and the driving force of the scanning system can also be small.

[実施例コ 走査中の試料の上下動をいかにして少なくするかと云う
ことに対して検討を行った結果、これに最も適した構造
の試料台として、試料台を空気静圧、または磁気力によ
って非接触で支持しながら走査する方法を考察した。
[Example 2] After considering how to reduce the vertical movement of the sample during scanning, we found that the sample stand had the most suitable structure for this purpose. We considered a method of scanning while supporting non-contact.

その概要を第2図、第3図をもちいて述べる。The outline will be explained using Figures 2 and 3.

試料台の両側面に配置された2個の軸受と試料台との間
に圧縮空気を流し、この静圧力で試料台を支持する。な
お第3図は第2図の矢印部分の拡大図である。
Compressed air is flowed between the two bearings placed on both sides of the sample stand and the sample stand, and the sample stand is supported by this static pressure. Note that FIG. 3 is an enlarged view of the arrowed portion in FIG. 2.

したがって、非接触ガイドであるために、従来一般に用
いられている軸受支持の場合のような摩、擦抵抗がほと
んどなく、各部の摩耗がないことである。さらにテーブ
ルとガイド面の静圧空気層が緩衝材として作用し、ガイ
ド面や試料台の対向面にわずかな凹凸があっても影響さ
れることなく、平滑に移動させることができる特徴があ
る。
Therefore, since it is a non-contact guide, there is almost no friction or frictional resistance, unlike in the case of conventionally commonly used bearing supports, and there is no wear on various parts. Furthermore, the static air layer between the table and the guide surface acts as a buffer, allowing smooth movement without being affected by slight irregularities on the guide surface or the facing surface of the sample stand.

図において、100はガイド部である。ガイド部には、
圧縮空気吐出口101が、所定の位置に取りつけられて
おり、この圧縮空気吐出口101から吐出される圧縮空
気により、試料台103を保持する。102は圧縮空気
取入口である。また107は試料台駆動軸である。
In the figure, 100 is a guide section. In the guide part,
A compressed air outlet 101 is attached at a predetermined position, and the sample stage 103 is held by the compressed air discharged from the compressed air outlet 101. 102 is a compressed air intake port. Further, 107 is a sample stage drive shaft.

上述のような構成の試料台を使用することにより、試料
の上下を0.03μm以下が実測され。
By using the sample stand configured as described above, a measurement of 0.03 μm or less above and below the sample was actually made.

干渉法による超音波顕微鏡像を極めて安定に動作させる
ことができる。
Ultrasonic microscope images obtained by interferometry can be operated extremely stably.

以上の説明では、ガイ1−面と試料台のガイド対向面を
非接触にするため、圧縮空気を用いる場合を述べたが、
磁気の反発力を用いることもできる。
In the above explanation, we have described the case where compressed air is used in order to make non-contact between the guide 1 surface and the guide facing surface of the sample stage.
Magnetic repulsion can also be used.

第4図及び第5図は磁気力を利用しての非接触型試料台
の構成を示している。なお、第5図は、第4図の矢印部
分を拡大した断面図である。図においてガイド105の
両端部には磁石のN極105NとS極105Sとが設け
てあり、このガイド105内に試料台106が挿入され
る。この試料台106の端部、すなわちガイド105と
対向する部分には磁石106Nと106sとが取りつけ
られており、その極性はガイド105の磁力と反発し合
うように各々のN極およびS極が互いにむき合うように
配置されている。このため、試料台106は、ガイド1
05内で非接触で保持される。
FIGS. 4 and 5 show the structure of a non-contact type sample stage using magnetic force. Note that FIG. 5 is an enlarged cross-sectional view of the arrowed portion in FIG. 4. In the figure, a north pole 105N and a south pole 105S of a magnet are provided at both ends of a guide 105, and a sample stage 106 is inserted into this guide 105. Magnets 106N and 106s are attached to the end of the sample stage 106, that is, the part facing the guide 105, and their polarities are such that their N and S poles repel the magnetic force of the guide 105. They are arranged so that they face each other. For this reason, the sample stage 106 is
05 without contact.

この様子は、丁度、第2図で記述した圧縮空気を利用し
て、試料台を非接触で保持していることとまったく同様
であり、この状態にある試料台を周期的に往復運動を繰
り返している試料台駆動軸107と連結することにより
、試料台を走査することができる。
This situation is exactly the same as using compressed air to hold the sample stand in a non-contact manner as described in Figure 2, and the sample stand in this state is repeatedly moved back and forth periodically. By connecting with the sample stage drive shaft 107, the sample stage can be scanned.

上述の如く、空気静圧、磁気力を利用した試料台は走査
中の上下動の極めて小さい試料台を提供できた。
As mentioned above, a sample stage using aerostatic pressure and magnetic force can provide a sample stage with extremely small vertical movement during scanning.

しかしながら、上述のような構造の試料台であると、試
料を載置する場合、試料の大きさが制限される場合があ
る。すなわち、第6図に示すように、載置できる試料7
の大きさは少なくとも軸受部100によって支持されて
いる部分より小さくなくてはならない、どうしても、そ
れより大きい試料7を載置しようとするならば、第7図
に示すように試料台103の中央部に取付台108を設
け、この上面に試料7を載置しなければならない。
However, with the sample stage having the above-described structure, the size of the sample may be limited when placing the sample. That is, as shown in FIG.
The size of the sample 7 must be at least smaller than the part supported by the bearing part 100. If a larger sample 7 is to be placed, it is necessary to place the sample 7 in the center part of the sample stage 103 as shown in FIG. A mounting table 108 must be provided on the top surface of the mounting table 108, and the sample 7 must be placed on the top surface of the mounting table 108.

このように試料台103上をさらに取付台108を取り
つけることは、試料台103の重量が増加することであ
り、走査を行うための走査系に大きな動力が要求されて
くる。
In this way, attaching the mounting stand 108 on the sample stand 103 increases the weight of the sample stand 103, and a large amount of power is required for the scanning system for scanning.

本発明は、この点を鑑みてなされたものであり、試料台
上に載置できる試料の大きさが軸受部によって制限され
ないようにしたものである。
The present invention has been made in view of this point, and is designed so that the size of a sample that can be placed on a sample stage is not limited by the bearing section.

以下1本発明の実施例の詳細を図をもちいて述べる。The details of one embodiment of the present invention will be described below with reference to the drawings.

第8図に主要構成部概略構造を、また第9図に試料台の
断面構造を示す。第9図において、H字型の試料台11
0の溝部の両側面より軸受部111が挿入されている。
FIG. 8 shows a schematic structure of the main components, and FIG. 9 shows a cross-sectional structure of the sample stage. In FIG. 9, an H-shaped sample stage 11
The bearing portion 111 is inserted from both sides of the groove portion 0.

この軸受部111は詳細構造を第9図に示すように圧縮
空気吐出口が上下および試料台110の側面に設けであ
る。
The detailed structure of this bearing portion 111 is shown in FIG. 9, and compressed air discharge ports are provided on the upper and lower sides and on the side surface of the sample stage 110.

112は圧縮空気の取入口である。112 is a compressed air intake port.

このような構造の試料台において、軸受部111より所
定の圧力に調整された圧縮空気を吐出すると、試料11
0は空気静圧によって非接触に支持される結果、試料台
110の走査時の動きの滑らかさについては第2図、第
4図で述べた装置の試料台と何等異なるところはない。
In a sample stage having such a structure, when compressed air adjusted to a predetermined pressure is discharged from the bearing part 111, the sample 11
As a result of the sample table 110 being supported in a non-contact manner by aerostatic pressure, there is no difference in the smoothness of the movement of the sample table 110 during scanning from that of the sample table of the apparatus described in FIGS. 2 and 4.

その上、試料台110の形状をH字形にしたことにより
Moreover, the shape of the sample stage 110 is made into an H-shape.

試料載置部を広く取ることができるために、形状の大き
い試料も取りつけることができる。
Since the sample mounting section can be made wide, large-sized samples can also be mounted.

以上のように本発明によれば、機械走査型超音波顕微鏡
における試料の機械走査に伴なう上下動を著るしく小さ
くすることができ、焦点面と試料の相対位置を安定に保
つことができるとともに走査系に要する駆動力も小さく
て良いとの効果を達成できる。
As described above, according to the present invention, it is possible to significantly reduce the vertical movement associated with mechanical scanning of a sample in a mechanical scanning ultrasound microscope, and it is possible to maintain a stable relative position between the focal plane and the sample. At the same time, it is possible to achieve the effect that the driving force required for the scanning system can be small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超音波顕微鏡の概略構成図、第2図。 第3図、第4図及び第5図は本発明の試料台の構造の説
明図、第6図及び第7図は第4図、第5図の試料台の問
題点を示す説明図、第8図及び第9図は本発明の実施例
の一実施例の構造図である。 110・・試料台、111・・・軸受部、112・・・
圧縮空気の取入口。 第 1 目 第 2 目 ′VJ 3 圀 /θθ 冗 6 図 /′I5 茅 7 図 (ti5 ¥ 8 図 tJ q 図
FIG. 1 is a schematic configuration diagram of an ultrasonic microscope, and FIG. 3, 4, and 5 are explanatory diagrams of the structure of the sample stage of the present invention, and FIGS. 6 and 7 are explanatory diagrams showing problems with the sample stage of FIGS. 4 and 5. 8 and 9 are structural diagrams of an embodiment of the present invention. 110... Sample stage, 111... Bearing section, 112...
Compressed air intake. 1st item 2nd item'VJ 3 圀/θθ red 6 figure/'I5 Kaya 7 figure (ti5 ¥ 8 figure tJ q figure

Claims (1)

【特許請求の範囲】[Claims] 1、音波伝搬体と、この伝搬体の端部に形成され、かつ
所定焦点を有する音波レンズとからなり、上記焦点近傍
に設けられた所定試料からのじよう乱音波により、上記
試料を撮影する超音波顕微鏡において、上記試料を非接
触で走査する手段を具備したことを特徴とした超音波顕
微鏡。
1. Consisting of a sound wave propagation body and a sound wave lens formed at the end of this propagation body and having a predetermined focal point, the sample is photographed by the turbulent sound waves coming from the predetermined sample provided near the focal point. An ultrasonic microscope characterized in that the ultrasonic microscope is equipped with means for scanning the sample in a non-contact manner.
JP61104637A 1986-05-09 1986-05-09 Ultrasonic microscope Granted JPS61258162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61104637A JPS61258162A (en) 1986-05-09 1986-05-09 Ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61104637A JPS61258162A (en) 1986-05-09 1986-05-09 Ultrasonic microscope

Publications (2)

Publication Number Publication Date
JPS61258162A true JPS61258162A (en) 1986-11-15
JPH0231345B2 JPH0231345B2 (en) 1990-07-12

Family

ID=14385962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61104637A Granted JPS61258162A (en) 1986-05-09 1986-05-09 Ultrasonic microscope

Country Status (1)

Country Link
JP (1) JPS61258162A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989454A (en) * 1988-06-20 1991-02-05 Olympus Optical Co., Ltd. Scanning apparatus for a scanning microscope
JPH048824U (en) * 1990-05-14 1992-01-27
JP2008170000A (en) * 2006-11-22 2008-07-24 Samsung Techwin Co Ltd Sliding structure for portable electronic equipment
CN111894978A (en) * 2020-07-22 2020-11-06 南通理工学院 Plane support active magnetic suspension device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989454A (en) * 1988-06-20 1991-02-05 Olympus Optical Co., Ltd. Scanning apparatus for a scanning microscope
JPH048824U (en) * 1990-05-14 1992-01-27
JP2008170000A (en) * 2006-11-22 2008-07-24 Samsung Techwin Co Ltd Sliding structure for portable electronic equipment
CN111894978A (en) * 2020-07-22 2020-11-06 南通理工学院 Plane support active magnetic suspension device
CN111894978B (en) * 2020-07-22 2022-04-26 南通理工学院 Plane support active magnetic suspension device

Also Published As

Publication number Publication date
JPH0231345B2 (en) 1990-07-12

Similar Documents

Publication Publication Date Title
US3886490A (en) Apparatus for coupling an array of ultrasonic transducers to an ultrasonic compressional image field and scanning the image field
JPH0136584B2 (en)
JPS6035254A (en) Acoustic microscope
JPS61258162A (en) Ultrasonic microscope
JPH09229911A (en) Penetration type ultrasonic inspection device
US4614410A (en) Ultrasonic microscope with optical microscope incorporated therein
JPH0330105B2 (en)
US4446738A (en) Acoustic scanning microscope
JPH0470562A (en) Transmission type ultrasonic microscope
JPS6255099B2 (en)
JPS5928363Y2 (en) Ultrasonic microscope scanning device
JPS6222838Y2 (en)
JPH0158456B2 (en)
JPS5928361Y2 (en) Sample holder for ultrasonic microscope
JPH0627389A (en) Optical observation device
JPS5926283Y2 (en) Ultrasonic microscope scanning device
JPH0228446Y2 (en)
JPS5815153A (en) Ultrasonic microscope
JPS58118960A (en) Ultrasonic microscope
JPS5815152A (en) Ultrasonic microscope
JPS6293656A (en) Ultrasonic microscope
JPH0213850A (en) Ultrasonic microscope
JPS61165657A (en) Ultrasonic microscope
JPS59104549A (en) Ultrasonic microscope
JPS60169708A (en) Surface irregularity detector of ultrasonic wave microscope