JPS58117937A - Coldness heat accumulator - Google Patents

Coldness heat accumulator

Info

Publication number
JPS58117937A
JPS58117937A JP21092581A JP21092581A JPS58117937A JP S58117937 A JPS58117937 A JP S58117937A JP 21092581 A JP21092581 A JP 21092581A JP 21092581 A JP21092581 A JP 21092581A JP S58117937 A JPS58117937 A JP S58117937A
Authority
JP
Japan
Prior art keywords
cooler
ice
temperature
temperature refrigerant
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21092581A
Other languages
Japanese (ja)
Other versions
JPH0147696B2 (en
Inventor
Takeo Saito
斉藤 武雄
Kunio Miura
邦夫 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP21092581A priority Critical patent/JPS58117937A/en
Publication of JPS58117937A publication Critical patent/JPS58117937A/en
Publication of JPH0147696B2 publication Critical patent/JPH0147696B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To enhance coldness heat-accumulating efficiency, by a method wherein a cooler is provided in a coldness heat-accumulating water tank, and the temperature of a refrigerant supplied is repeatedly changed over between an ice- making temperature and a defreezing temperature, in a coldness heat-accumulating water tank for heat-pump air conditioning with water used as a heat source. CONSTITUTION:When supplying a refrigerant to the cooler 2 by a pump 11, three-way valves 7, 8 are changed over to cyclically provide a low-temperature refrigerant circuit and a high-temperature refrigerant circuit with a predetermined period, wherein the low-temperature refrigerant circuit is comprised of a low- temperature refrigerant tank 3 pipes (a), (b) the cooler 2 pipes (c), (d) a high-temperature refrigerant tank 4, while the high-temperature refrigerant circuit is comprised of the tank 4 pipes (e), (b) the cooler 2 pipes (c), (f) the tank 3. With this constitution, freezing and defreezing take place repeatedly on the surface of the cooler 2, so that ice is released from the cooler 2 and is floated in cooling water. Accordingly, the cold heat-accumulating efficiency can be enhanced.

Description

【発明の詳細な説明】 本発明は、水熱源ヒートポンプによる空気調和設備など
vc使用する、蓄熱水槽に係り、特に冷房用などの冷熱
を蓄熱するのに有益な冷熱蓄熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat storage water tank used in air conditioning equipment using a water heat source heat pump, and more particularly to a cold heat storage device useful for storing cold heat for use in air conditioning.

蓄熱水槽において冷熱を蓄熱する場合、冷水の1部を氷
にし、水と氷を共存させることによって顕熱と潜熱の形
で蓄冷すれば小さな水槽容量で多量の冷熱が蓄熱できる
。この場合、蓄熱水槽内に冷却管または冷却器などの冷
却器を設置し、この冷却器内に氷点以下の冷媒ヲ流して
冷却器表面部Ic製氷させる処決を採るのが簡便である
When storing cold heat in a heat storage water tank, a large amount of cold heat can be stored in a small water tank by converting a portion of the cold water into ice and storing the cold in the form of sensible heat and latent heat by making water and ice coexist. In this case, it is convenient to install a cooler such as a cooling pipe or a cooler in the heat storage water tank, and to flow a refrigerant below the freezing point into the cooler to make ice on the surface of the cooler Ic.

しかし、冷却器の表面部VC製氷させる場合、その氷の
生長速度は冷却開始の初期では速いが、氷の生長に伴っ
て漸次遅くなり、冷却器表面部に形成される氷の厚みが
厚くなればなるt立と、伝熱抵抗が太きくなって製氷効
率がわるくなる。その結果、蓄熱効率および冷凍機効率
とも惇端Vこ低下するようになる。
However, when making VC ice on the surface of the cooler, the growth rate of the ice is fast at the beginning of cooling, but gradually slows down as the ice grows, and the ice formed on the surface of the cooler becomes thicker. As the temperature increases, heat transfer resistance increases and ice making efficiency decreases. As a result, both the heat storage efficiency and the refrigerator efficiency are reduced by V.

本発明はこの問題を解決することを目的としてなされた
もので、極めて効率よく冷熱を蓄熱できる冷熱蓄熱装置
tを開発したものである。
The present invention was made with the aim of solving this problem, and has developed a cold heat storage device t that can store cold heat extremely efficiently.

図面に従って本発明装置llを説明すると、第1図は、
蓄熱水槽1内に冷却器2を設置し、この冷却器10表向
部に冷水の1部を製氷化するようにした装置であ−りで
、この冷却器11L供給する冷媒の温度が製氷温度と解
氷温度を交互にくり返すようにした本発明に従う冷熱蓄
熱装置のf俸情器配置を系統的に示したものである。
The device of the present invention will be explained according to the drawings. FIG.
This is a device in which a cooler 2 is installed in a heat storage water tank 1, and a part of the cold water is made into ice on the surface of the cooler 10, and the temperature of the refrigerant supplied to this cooler 11L is the ice-making temperature. This figure systematically shows the arrangement of the cold heat storage device according to the present invention in which the temperature and the melting temperature are alternately repeated.

第1図において、3は低温冷媒タンク、4は^温冷媒タ
ンク、5は冷凍機、6は冷却器、7と8ほ6万弁を示し
ている。低温冷媒タンク5と高温冷媒タンク4の中には
同一冷媒、例えば40チエチレングリコール水溶液が入
っており、低温冷媒タンク3Vcは冷凍機ブラインl’
(よる熱交換器9が設置してありこれによって冷媒温度
途約−20〜−5ar:vc維持され、他方の高温冷媒
タンク4には冷凍機冷却水(高温側)が通液する熱交換
器10が設置してあり冷媒温度が約3ocvc維持され
るようにしである。以後、前者の低温の冷媒を低温冷媒
、後者の高温の冷媒を高温冷媒と呼ぶことにする。
In FIG. 1, 3 is a low temperature refrigerant tank, 4 is a high temperature refrigerant tank, 5 is a refrigerator, 6 is a cooler, and 7 and 8 are 60,000 valves. The low-temperature refrigerant tank 5 and the high-temperature refrigerant tank 4 contain the same refrigerant, for example, a 40-thiethylene glycol aqueous solution, and the low-temperature refrigerant tank 3Vc contains the refrigerator brine l'
(A heat exchanger 9 is installed to maintain the refrigerant temperature at approximately -20 to -5 ar:vc, and the other high-temperature refrigerant tank 4 is a heat exchanger through which chiller cooling water (high temperature side) flows. 10 is installed so that the refrigerant temperature is maintained at about 3 ocvc.Hereinafter, the former low-temperature refrigerant will be referred to as the low-temperature refrigerant, and the latter high-temperature refrigerant will be referred to as the high-temperature refrigerant.

本発明装置はこの低温冷媒と高温冷媒を交互に冷却器2
に通液させることに特徴があり、これによって製氷効率
を著しく高めたものである。すなわち、ポ/ブ11ニ工
って冷却器2に冷媒を供給するさい、三方弁7と8の切
換えによって、低温冷媒タンク6、−管路a−管路す一
冷却器3−管路C−管路d−高温冷媒タンク4の経路を
経る低温冷媒回路と、高温冷媒タンク4−管路e−管路
す一冷却器2−管路C−管路f−低温冷媒タンク6の経
路を経る高温冷媒回路と、を所定時間サイクルのもとで
切換え、一定時間(例えば5分間)の低温冷媒回路の運
転VCよって冷却器2の表面部に所定厚みの氷が形成し
九ら、次に高温冷媒回路の運転によって冷却器2の表面
部に付着している氷の1部を融解し、これによって冷却
器2と氷との縁を切り、この縁を切られ九氷を冷水中に
浮遊させるというサイクルを繰り返すのである。冷却器
2を蓄熱水槽1の下方に設置しておけば、この解氷運転
によって氷は比重差により槽上部に浮遊することになる
。この高温冷媒回路の運転は低温冷媒回路の運転とその
運転時間を等しくすることができるが、使用する機器に
よってはこれより長くても短くてもよい。この運転時間
の設定と切替えはタイマー15VCよって行なうことが
できる。
The device of the present invention alternately supplies this low-temperature refrigerant and high-temperature refrigerant to the cooler 2.
It is characterized by the fact that it allows liquid to flow through it, which significantly increases ice-making efficiency. That is, when supplying refrigerant to the cooler 2 by opening the port 11, by switching the three-way valves 7 and 8, the low temperature refrigerant tank 6, - Pipe A - Pipe S - Cooler 3 - Pipe C - Pipe d - A low temperature refrigerant circuit that passes through the route of high temperature refrigerant tank 4, and a route of high temperature refrigerant tank 4 - Pipe e - Pipe 2 - Cooler 2 - Pipe C - Pipe f - Low temperature refrigerant tank 6. The high-temperature refrigerant circuit and the high-temperature refrigerant circuit are switched under a predetermined time cycle, and ice of a predetermined thickness is formed on the surface of the cooler 2 by operating the low-temperature refrigerant circuit for a predetermined time (for example, 5 minutes). By operating the high-temperature refrigerant circuit, part of the ice adhering to the surface of the cooler 2 is melted, thereby cutting the edge between the cooler 2 and the ice, and the edge is cut and the nine pieces of ice are suspended in the cold water. The cycle of doing so is repeated. If the cooler 2 is installed below the heat storage water tank 1, ice will float to the top of the tank due to the difference in specific gravity during this ice-melting operation. The operation time of the high-temperature refrigerant circuit can be made equal to the operation time of the low-temperature refrigerant circuit, but the operation time may be longer or shorter depending on the equipment used. The setting and switching of this operating time can be done by the timer 15VC.

第2図は、平板状冷却器を使用した場合の製氷速度全示
し、た関係図であるが、例えば冷媒温度が一20Cのと
き、製氷開始から5分程度までは急激に氷の厚みは増加
するがそれ以後は時間の経過と共に生長速度が低下(7
、約60分間製氷運転を続けても氷の厚さF′15cm
にしがならない。したがって、例えば、製氷運転と解氷
運転とを交互ic5分ずつ行なって合計60分の運転を
行なうと、各製氷運転では約0.8〜0.9 cmの厚
みの氷が得られるから、これの12倍の9.6〜10.
8 cIrL厚みの氷が積算で得られることになり、製
氷運転だけの場合に比べ、本発明装置tでに3倍以上の
量の製氷ができることが理解される。もつとも、解氷運
転の時間は製氷運転の時間より短くすることができるか
ら、実際は、さらに多量の製氷ができることになる。
Figure 2 is a relationship diagram showing all the ice making speeds when using a flat plate cooler. For example, when the refrigerant temperature is -20C, the thickness of the ice increases rapidly for about 5 minutes after the start of ice making. However, after that, the growth rate decreases with the passage of time (7
, Even after continuing ice making operation for about 60 minutes, the ice thickness remains F'15 cm.
I can't stand it. Therefore, for example, if ice-making operation and ice-melting operation are performed alternately for 5 minutes each for a total of 60 minutes, each ice-making operation will produce ice with a thickness of approximately 0.8 to 0.9 cm. 9.6 to 10.12 times.
It is understood that ice having a thickness of 8 cIrL can be obtained in total, and that the apparatus t of the present invention can make more than three times as much ice as in the case of only ice-making operation. However, since the time for the ice-melting operation can be made shorter than the time for the ice-making operation, a larger amount of ice can actually be made.

解氷運転を短くする場合に備えて、第1図の装置は、溢
流管14を設けである。すなわち、製氷運転が解氷運転
より長いサイクルを構成する場合1’nd、製氷運転時
の戻り冷媒量が多くなり、高温冷媒タンク4の111の
冷媒量の方が多くなるので、溢i管14によってそのオ
ーバーフローw低温冷媒タンク6の側に流すようにしで
ある。また、本発明装置は低温冷媒と高温冷媒の両者を
冷凍機の運転で作れるようにしてあり、このため、特に
冷凍機5の冷却水回路における冷凍機出側の冷却水を高
温冷媒タンク4の熱交換器10Vc通してから冷却塔6
で冷却するようにしてあり、これによって、他の熱源な
しに解氷に必要な高温冷媒が得られると共に冷却塔負荷
も低減させることができる。
The apparatus shown in FIG. 1 is equipped with an overflow pipe 14 in case the deicing operation is to be shortened. In other words, when the ice-making operation constitutes a longer cycle than the ice-melting operation, the amount of return refrigerant during the ice-making operation increases, and the amount of refrigerant 111 in the high-temperature refrigerant tank 4 increases, so the overflow pipe 14 This allows the overflow w to flow to the low temperature refrigerant tank 6 side. In addition, the apparatus of the present invention is capable of producing both low-temperature refrigerant and high-temperature refrigerant by operating the refrigerator, and for this reason, in particular, the cooling water on the outlet side of the refrigerator in the cooling water circuit of the refrigerator 5 is transferred to the high-temperature refrigerant tank 4. Cooling tower 6 after passing through heat exchanger 10Vc
This allows the high-temperature refrigerant necessary for ice melting to be obtained without any other heat source, and also reduces the load on the cooling tower.

@3図は、本発明装置に使用する冷却器2の変形例を示
したもので、冷却器2の表面部に突起15を設けたもの
である。この突起を多数設けた冷却器2f使用すると、
小片の氷を生成させることができる。小片の氷を浮遊さ
せ7部場合は、蓄熱水槽の妨熱運転の場合に、放熱速度
を高めることができるので有益である。
Figure @3 shows a modification of the cooler 2 used in the apparatus of the present invention, in which projections 15 are provided on the surface of the cooler 2. When using a cooler 2f with many of these protrusions,
Can generate small pieces of ice. Floating small pieces of ice is advantageous because it can increase the rate of heat dissipation in the case of cooling operation of a heat storage water tank.

第4図は、平板状冷却器を使用する場合に、表面温度が
均一となるように、この冷却器2内の冷媒流れをジグザ
グ状とするための間仕切16を交互に設けた例?示す。
FIG. 4 shows an example in which partitions 16 are provided alternately to make the refrigerant flow in the cooler 2 in a zigzag shape so that the surface temperature is uniform when a flat cooler is used. show.

なお、冷却器2は図示の例に限らず管状σ)ものでもよ
く、その配置も水平配置、垂直配置、傾斜配置など槓々
の配置形態とすることができる。冷却器2の材質は熱伝
導率の大きい銅板が好適であリ、その厚みはできるだけ
薄くする。とくに本発明装置の場合は、製氷の厚みがあ
る程度となると冷却器表面から剥離する(解氷運転)の
で、製氷圧力が大きくなることが回避され、冷却器の表
面板の厚みを薄くすることができ、熱伝達効率1−膚向
上させることができる。
Note that the cooler 2 is not limited to the illustrated example, but may be a tubular type (σ), and its arrangement may be in a rammed arrangement such as horizontal arrangement, vertical arrangement, or inclined arrangement. The material of the cooler 2 is preferably a copper plate with high thermal conductivity, and its thickness is made as thin as possible. In particular, in the case of the device of the present invention, when the thickness of ice reaches a certain level, it peels off from the surface of the cooler (melting operation), which prevents the ice-making pressure from increasing and makes it possible to reduce the thickness of the surface plate of the cooler. It can improve the heat transfer efficiency.

以上のように、本発明装置は、冷水と氷を共存させて冷
熱蓄熱を行なう場合の製氷を製氷運転と解氷運転のくり
返しによって効率工く行なえるようにしたので、蓄冷効
率と冷凍機効率が共に著しく向上し、省エネルギー的に
多量の冷熱が小規模蓄熱水槽で行なうことができ、非常
に有益である。
As described above, the apparatus of the present invention can efficiently make ice by repeating the ice making operation and the ice melting operation when chilled water and ice are made to coexist to store cold heat. Both are significantly improved, and a large amount of cooling and heating can be performed in a small-scale heat storage tank in an energy-saving manner, which is very beneficial.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の実施例を示す機器配置系統図、第
2図は製氷時間と氷生長厚みとの関係図、第3図は冷却
器の例全示す側面図、第4図は平板状冷却器の例を示す
透視斜視図である。 1・・・蓄熱水槽 2・・・冷却器 6・・・低温冷媒夕/り 4・・・高温冷媒夕/り 5・・・冷凍機 6・・・冷却塔 7.8・・・三方弁 9.10・・・熱交換器 11・・・ポンプ 13・・・タイマー
Fig. 1 is an equipment layout system diagram showing an embodiment of the device of the present invention, Fig. 2 is a diagram showing the relationship between ice making time and ice growth thickness, Fig. 3 is a side view showing an example of a cooler, and Fig. 4 is a flat plate. FIG. 2 is a transparent perspective view showing an example of a shaped cooler. 1... Heat storage water tank 2... Cooler 6... Low temperature refrigerant tank 4... High temperature refrigerant tank 5... Refrigerator 6... Cooling tower 7. 8... Three-way valve 9.10...Heat exchanger 11...Pump 13...Timer

Claims (1)

【特許請求の範囲】[Claims] 蓄熱水槽内に冷却器を設置し、この冷却器の表面部に冷
水の1部を一本化するようにした冷熱蓄熱装置であって
、該冷却器に供給する冷媒の温度が製氷温度と解氷温度
を交互にくり返すようにしたことを特徴とする冷熱蓄熱
装置。
A cold heat storage device in which a cooler is installed in a heat storage water tank and a portion of the cold water is concentrated on the surface of the cooler, and the temperature of the refrigerant supplied to the cooler is equal to the ice making temperature. A cold heat storage device characterized by alternating the ice temperature.
JP21092581A 1981-12-29 1981-12-29 Coldness heat accumulator Granted JPS58117937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21092581A JPS58117937A (en) 1981-12-29 1981-12-29 Coldness heat accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21092581A JPS58117937A (en) 1981-12-29 1981-12-29 Coldness heat accumulator

Publications (2)

Publication Number Publication Date
JPS58117937A true JPS58117937A (en) 1983-07-13
JPH0147696B2 JPH0147696B2 (en) 1989-10-16

Family

ID=16597340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21092581A Granted JPS58117937A (en) 1981-12-29 1981-12-29 Coldness heat accumulator

Country Status (1)

Country Link
JP (1) JPS58117937A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096872A (en) * 1983-10-28 1985-05-30 株式会社竹中工務店 Automatic control system of quantity of ice formed in ice heat accumulator
JPS62119392A (en) * 1985-11-19 1987-05-30 Shimizu Constr Co Ltd Upright heat accumulating system using ice
JPS63129275A (en) * 1986-11-18 1988-06-01 株式会社竹中工務店 Detector for state of heat accumulation of ice heat accumulating facility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096872A (en) * 1983-10-28 1985-05-30 株式会社竹中工務店 Automatic control system of quantity of ice formed in ice heat accumulator
JPS62119392A (en) * 1985-11-19 1987-05-30 Shimizu Constr Co Ltd Upright heat accumulating system using ice
JPS63129275A (en) * 1986-11-18 1988-06-01 株式会社竹中工務店 Detector for state of heat accumulation of ice heat accumulating facility

Also Published As

Publication number Publication date
JPH0147696B2 (en) 1989-10-16

Similar Documents

Publication Publication Date Title
US2677243A (en) Method and apparatus for the storage of heat
JPH0120334B2 (en)
JPS58117937A (en) Coldness heat accumulator
JPS6229866Y2 (en)
JPS59158989A (en) Heat regenerator by frozen latent heat
JP4399309B2 (en) Ice heat storage device
JPS572943A (en) Snow melting, heat accumulating and cooling apparatus according to latent heat exchange system
JPS58117938A (en) Ice heat-accumulating method for air-conditioning heat-accumulating tank
JP2659567B2 (en) Thermal storage refrigeration system
JP2630143B2 (en) Ice making equipment
JP2577156B2 (en) Ice making method using plate type heat exchanger
JPH04174229A (en) Ice heat storage device
JPH02146437A (en) Ice heat accumulation device
JP2001033069A (en) Thermal storage system and melting method in the thermal storage system
JP2509667B2 (en) Thermal storage refrigeration system
JPH07264970A (en) Vacuum-cooling device with cold-accumulating tank
JPS6333051B2 (en)
JPS6011413Y2 (en) ice machine
JP2004003750A (en) Ice storage apparatus
JPS6358074A (en) Ice heat accumulator
JPH02197740A (en) Heat source for cold and hot water using aqueous solution of bromide produced by combination with light metal
JP2000304308A (en) Internal melting type ice storage apparatus
JPH02187546A (en) Heat source system based on in-pipe ice making unit
JP2005201546A (en) Freeze concentration system
JP2005104087A (en) Heat storage type mold cooling system