JP2001033069A - Thermal storage system and melting method in the thermal storage system - Google Patents

Thermal storage system and melting method in the thermal storage system

Info

Publication number
JP2001033069A
JP2001033069A JP11207435A JP20743599A JP2001033069A JP 2001033069 A JP2001033069 A JP 2001033069A JP 11207435 A JP11207435 A JP 11207435A JP 20743599 A JP20743599 A JP 20743599A JP 2001033069 A JP2001033069 A JP 2001033069A
Authority
JP
Japan
Prior art keywords
heat transfer
heat
refrigerant
liquid
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11207435A
Other languages
Japanese (ja)
Inventor
Hiroari Shiba
広有 柴
Seiji Inoue
誠司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11207435A priority Critical patent/JP2001033069A/en
Publication of JP2001033069A publication Critical patent/JP2001033069A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To circulate bubbles upward along the outer surface of a heat transfer portion in a liquid cold storage medium while generating a forcible flow and turbulence in the surrounding liquid cold storage medium, improve heat transfer performance of the outer surface of the heat transfer portion and accelerate heat recovery from a heat storage tank, by providing a bubble blow-off portion for supplying bubbles in the liquid cold storage medium between the outer surface of the heat transfer portion and a solid cold storage medium covering the heat transfer portion. SOLUTION: A system comprises a heat storage tank 1 filled with a cold storage medium 2, a heating tube 3 which is disposed in the tank 1 for exchanging heat between refrigerant and the cold storage medium 2 in the tank 1, a bubble blow-off portion 4 which is disposed at a lower portion in the tank 1 and has air blow-off holes 5, a compressed air generating and supplying device 6 for supplying compressed air to the bubble blow-off portion 4, and a heat source unit 7 and a load side unit 8 both connected to the heating tube 3. The bubble blow-off portion 4 is provided to supply bubbles to a liquid cold storage medium between the outer surface of the heating tube 3 and a solid cold storage medium covering the heating tube 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は内融式蓄熱システ
ムに代表される伝熱管の周囲に付着した固体蓄熱冷媒を
融解させるものにおいて、その融解を効率的に行なえる
蓄熱システムおよびその融解方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage system for melting a solid heat storage refrigerant attached around a heat transfer tube typified by an internal melting type heat storage system, and to a heat storage system capable of performing the melting efficiently and a melting method thereof. Things.

【0002】[0002]

【従来の技術】蓄熱システムの融解運転において蓄熱槽
下部から気泡を吹出す方法の従来例として、例えば実開
平3−18439号公報に示された装置図を図24に示
す。
2. Description of the Related Art FIG. 24 shows an apparatus diagram disclosed in Japanese Utility Model Laid-Open No. 3-18439, for example, as a conventional example of a method of blowing bubbles from a lower part of a heat storage tank in a melting operation of a heat storage system.

【0003】図24において、1は氷蓄熱槽である蓄熱
槽、3a〜3cは伝熱管よりなる伝熱部、6は気泡発生
手段を成す加圧気体生成供給装置、4は気泡吹出し管、
14は水ポンプである循環ポンプ、15は温度検知手
段、8は負荷側との熱交換手段である負荷側ユニット、
19は水流通管、16、17は気泡量調整手段である。
In FIG. 24, 1 is a heat storage tank which is an ice heat storage tank, 3a to 3c are heat transfer sections formed of heat transfer tubes, 6 is a pressurized gas generating / supplying device forming bubble generating means, 4 is a bubble blowing pipe,
14 is a circulation pump which is a water pump, 15 is a temperature detecting means, 8 is a load side unit which is a heat exchange means with the load side,
19 is a water flow pipe, and 16 and 17 are air bubble amount adjusting means.

【0004】次に動作例について図24を用いて述べ
る。温度検知手段15を一定にするように、気泡量調整
手段16、17から加圧気体生成供給装置6へ気泡量の
制御信号が送信されて蓄熱槽下部から発生する気泡量が
調整される。蓄熱槽下部からの気泡吹出しにより、蓄熱
槽1内の冷水の上下の温度分布がなくなり、この結果、
伝熱部3まわりに付着している氷が均一に融解する。
Next, an operation example will be described with reference to FIG. In order to keep the temperature detecting means 15 constant, a bubble amount control signal is transmitted from the bubble amount adjusting means 16 and 17 to the pressurized gas generation and supply device 6, and the bubble amount generated from the lower part of the heat storage tank is adjusted. Due to the blowing of bubbles from the lower part of the heat storage tank, the upper and lower temperature distributions of the cold water in the heat storage tank 1 disappear, and as a result,
Ice adhering around the heat transfer section 3 is uniformly melted.

【0005】蓄熱システムの融解運転において蓄熱槽下
部から加圧液体を吹出す方法の従来例として、例えば特
開平5−215370号公報に示された装置図を図25
に示す。
As a conventional example of a method of blowing a pressurized liquid from a lower part of a heat storage tank in a melting operation of a heat storage system, an apparatus shown in, for example, Japanese Patent Application Laid-Open No. 5-215370 is shown in FIG.
Shown in

【0006】図25において、1は氷蓄熱槽である蓄熱
槽、2は伝熱管よりなる伝熱部、14は循環ポンプ、
4’は水流吹出し管である加圧液体噴出管、18は水流
分岐管、6’は送水ポンプである加圧液体生成供給装
置、8は負荷側冷房設備となる負荷側ユニットである。
尚、蓄冷媒体は水である。
In FIG. 25, 1 is a heat storage tank which is an ice heat storage tank, 2 is a heat transfer section comprising a heat transfer tube, 14 is a circulation pump,
Reference numeral 4 'denotes a pressurized liquid jet pipe as a water jet pipe, reference numeral 18 denotes a water flow branch pipe, reference numeral 6' denotes a pressurized liquid generation / supply device as a water pump, and reference numeral 8 denotes a load-side unit serving as load-side cooling equipment.
Incidentally, the refrigerant medium is water.

【0007】次に動作例について図25を用いて述べ
る。蓄冷運転時は、水の凝固温度より低い温度の冷媒を
伝熱部3内に流通させるとともに加圧液体生成供給装置
6’を連続的に作動して蓄熱槽1内の冷水の一部を加圧
液体噴出管4’へ送水する。そしてタイマーにより開閉
バルブF〜Aを順番に5分ずつ開放し、加圧液体噴出管
4’から加圧水を間欠的に吹出しさせる。
Next, an operation example will be described with reference to FIG. During the cold storage operation, a refrigerant having a temperature lower than the freezing temperature of water is circulated through the heat transfer unit 3 and the pressurized liquid generation and supply device 6 'is continuously operated to add a part of the cold water in the heat storage tank 1. Water is sent to the pressurized liquid jet pipe 4 '. Then, the open / close valves FA are sequentially opened for 5 minutes by the timer, and pressurized water is intermittently blown out from the pressurized liquid jet pipe 4 '.

【0008】蓄熱槽下部からの加圧水吹出しにより、蓄
熱槽1内の冷水温度が全体にわたりほぼ均一になるた
め、伝熱部3まわりに生成される氷厚さが全体にわたり
ほぼ均一になる。
[0008] Since the temperature of the cold water in the heat storage tank 1 becomes substantially uniform over the entirety by the pressurized water blowing from the lower part of the heat storage tank, the thickness of ice generated around the heat transfer section 3 becomes substantially uniform over the whole.

【0009】一方、融解運転時は、循環ポンプ14を作
動して蓄熱槽1内の冷水を負荷側へ送水した後、蓄熱槽
1へ循環させる。この時加圧液体生成供給装置6’を作
動して製氷時と同様に加圧液体噴出管4’から加圧水を
間欠的に5分間ずつ吹出しする。
On the other hand, during the melting operation, the circulating pump 14 is operated to send cold water in the heat storage tank 1 to the load side, and then circulates to the heat storage tank 1. At this time, the pressurized liquid generating / supplying device 6 'is operated to pressurized water from the pressurized liquid jet pipe 4' intermittently for 5 minutes each as in the case of ice making.

【0010】蓄熱槽下部からの加圧水吹出しにより、蓄
熱槽1内の冷水の上下の温度分布がなくなり、また伝熱
部3まわりに付着している氷が均一に融解する。
[0010] Due to the blowing of pressurized water from the lower part of the heat storage tank, the temperature distribution between the upper and lower portions of the cold water in the heat storage tank 1 disappears, and the ice adhering around the heat transfer part 3 is uniformly melted.

【0011】[0011]

【発明が解決しようとする課題】上記いずれの場合も融
解方式は外融式で、気泡及び加圧液体を吹出す目的は、
蓄熱槽内の液体蓄冷媒体の温度むらを解消し、特に固体
蓄冷媒体が存在している場合は、常時蓄冷媒体の融解温
度を保持しながら液体蓄冷媒体を負荷側へ供給すること
と、固体蓄冷媒体を外側から融解し、かつその融解度合
いを槽全で均一にすることである。
In any of the above cases, the melting method is an external melting method, and the purpose of blowing out bubbles and pressurized liquid is as follows.
Eliminates uneven temperature of the liquid refrigerant in the heat storage tank, especially when a solid refrigerant is present, supplying the liquid refrigerant to the load side while always maintaining the melting temperature of the refrigerant, The purpose is to melt the medium from the outside and make the degree of melting uniform throughout the vessel.

【0012】そのため、蓄熱槽内の特定の位置または領
域において固体畜冷媒体の融解を促進したり、或いは内
融式蓄熱システムで使用すること、伝熱部表面の伝熱性
能を上げることについては考慮していない。
[0012] For this reason, the promotion of melting of the solid storage refrigerant at a specific position or area in the heat storage tank, the use of the solid storage refrigerant in an internal melting type heat storage system, and the improvement of the heat transfer performance of the heat transfer section surface are not described. Not considered.

【0013】この発明は特定の位置または領域に気泡ま
たは加圧液体を供給して、伝熱部表面の伝熱性能を向上
させることを目的とする。
An object of the present invention is to improve the heat transfer performance of the heat transfer section surface by supplying bubbles or pressurized liquid to a specific position or area.

【0014】[0014]

【課題を解決するための手段】この発明に係る蓄熱シス
テムは、蓄冷媒体が満たされた蓄熱槽と、前記蓄熱槽内
に設置され冷媒と前記蓄熱槽内の蓄冷媒体との間で熱交
換させる伝熱部と、前記蓄熱槽内下部に設置され気体吹
出穴が形成された気泡吹出部と、前記気泡吹出部に加圧
気体を供給する加圧気体生成供給部と、前記伝熱部と接
続された熱源ユニットおよび負荷側ユニットとを備え、
前記伝熱部外面と該伝熱部を覆う固体蓄冷媒体との間の
液体蓄冷媒体中に気泡を供給するよう前記気泡吹出部を
設置したものである。
A heat storage system according to the present invention exchanges heat between a heat storage tank filled with a refrigerant storage medium and a refrigerant installed in the heat storage tank and the refrigerant storage medium in the heat storage tank. A heat transfer unit, a bubble blowing unit provided in the lower part of the heat storage tank and having a gas blowing hole, a pressurized gas generation / supply unit for supplying a pressurized gas to the bubble blowing unit, and a connection to the heat transfer unit A heat source unit and a load side unit,
The bubble blowing section is provided so as to supply bubbles into the liquid refrigerant between the heat transfer section outer surface and the solid refrigerant storing the heat transfer section.

【0015】また、前記伝熱部を伝熱フィンとしたもの
である。
Further, the heat transfer section is a heat transfer fin.

【0016】また、前記伝熱フィンを板状フィンとし、
一つの板状フィン一面に複数の気泡吹出穴を対応させた
ものである。
Further, the heat transfer fin is a plate-like fin,
A plurality of bubble blowing holes are made to correspond to one surface of one plate-like fin.

【0017】また、前記加圧気体生成供給部が前記液体
蓄冷媒体中に吹出す気泡の量を制御するものである。
Further, the pressurized gas generation / supply section controls the amount of bubbles blown into the liquid storage medium.

【0018】また、前記伝熱部と冷媒配管を介して接続
された熱源ユニットおよび負荷側ユニットを備えた内融
式蓄熱システムとしたものである。
Further, the present invention provides an internal melting type heat storage system including a heat source unit and a load side unit connected to the heat transfer unit via a refrigerant pipe.

【0019】また、蓄冷運転時には内部の冷媒流通路に
冷媒を流通させず、融解運転時にのみ蓄冷媒体の融解温
度以上の冷媒を流通する融解専用伝熱部を備えたもので
ある。
[0019] Further, in the cold storage operation, the refrigerant is not circulated through the internal refrigerant flow passage, but is provided with a heat transfer section dedicated to melting for flowing a refrigerant having a temperature equal to or higher than the melting temperature of the storage medium only during the melting operation.

【0020】また、前記融解専用伝熱部外面と該融解専
用伝熱部を覆う固体蓄冷媒体との間の液体蓄冷媒体中に
気泡を供給するよう前記気泡吹出部を設置したものであ
る。
Further, the bubble blowing section is provided so as to supply bubbles into a liquid refrigerant storage medium between the outer surface of the heat transfer section dedicated for melting and the solid refrigerant storage section covering the heat transfer section dedicated for melting.

【0021】また、前記気体吹出穴を前記伝熱部外面の
下に配置したものである。
Further, the gas outlet is disposed below the outer surface of the heat transfer section.

【0022】また、前記気体吹出穴と前記伝熱部外面下
部とを接触或いは近接させたものである。
Further, the gas blowout hole and the lower portion of the outer surface of the heat transfer section are brought into contact with or close to each other.

【0023】また、前記伝熱部を円筒管とし、前記気体
吹出穴を前記伝熱管の真下或いは真下近傍に備えたもの
である。
Further, the heat transfer portion is a cylindrical tube, and the gas blowout hole is provided immediately below or near the heat transfer tube.

【0024】また、気泡吹出部の代わりに加圧液体吹出
穴が形成された加圧液体吹出部を、加圧気体生成供給装
置の代わりに加圧液体生成供給装置を備えたものであ
る。
Also, a pressurized liquid blowout unit having a pressurized liquid blowout hole formed therein instead of the bubble blowout unit is provided with a pressurized liquid generation and supply unit instead of the pressurized gas generation and supply unit.

【0025】また、前記伝熱部下部を前記蓄熱槽内に固
定する器具を備え、この器具を前記気泡吹出部または前
記加圧液体吹出部としたものである。
[0025] An apparatus for fixing the lower portion of the heat transfer section in the heat storage tank is provided, and the apparatus is the bubble blowing section or the pressurized liquid blowing section.

【0026】また、前記蓄熱槽内の伝熱部と負荷側ユニ
ットとの間に冷媒を循環させる液ポンプを備えたもので
ある。
In addition, a liquid pump for circulating a refrigerant is provided between the heat transfer section in the heat storage tank and the load side unit.

【0027】また、前記蓄熱槽内の液体蓄冷媒体のPH
値を検知するPH検知部と、前記PH検知部の検知結果
に応じて前記液体蓄冷媒体のPH値を制御するPH制御
部とを備えたものである。
The pH of the liquid storage medium in the heat storage tank is
And a PH controller for controlling the PH value of the liquid storage medium in accordance with the detection result of the PH detector.

【0028】また、第1の所定の時間帯に蓄熱槽内に固
体蓄冷媒体を生成し、前記第1の所定の時間帯と連続し
ない第2の所定の時間帯に前記蓄熱槽内の固体蓄冷媒体
を融解して回収する冷熱だけで負荷側の冷房負荷をまか
なうピークカット手段を備えたものである。
In addition, a solid-state refrigerant is generated in the heat storage tank during a first predetermined time period, and the solid-cooled storage medium in the heat storage tank is generated during a second predetermined time period that is not continuous with the first predetermined time period. The apparatus is provided with a peak cut means that covers the cooling load on the load side only by the cooling heat that is obtained by melting and recovering the medium.

【0029】また、この発明に係る蓄熱システムの融解
方法は、伝熱部表面と固体蓄冷媒体との間の液体蓄冷媒
体中に気泡を通過させて前記液体蓄冷媒体の流動を促進
し、伝熱部表面の熱伝達性能を向上させる。
Further, in the method for melting a heat storage system according to the present invention, the flow of the liquid heat storage medium is promoted by passing bubbles through the liquid heat storage medium between the surface of the heat transfer section and the solid heat storage medium. Improve the heat transfer performance of the part surface.

【0030】また、前記液体蓄冷媒体中に吹出す気泡の
量を制御することで融解量を調整する。
Further, the amount of melting is adjusted by controlling the amount of bubbles blown into the liquid refrigerant.

【0031】また、気泡の代わりに加圧液体を通過させ
る。
In addition, a pressurized liquid is passed instead of bubbles.

【0032】また、固体蓄冷媒体生成時と連続しないピ
ークカット運転時に気泡または加圧液体の通過を行な
う。
Further, during the peak cut operation which is not continuous with the generation of the solid refrigerant, bubbles or pressurized liquid are passed.

【0033】また、この発明に係る蓄熱システムは、蓄
冷媒体が満たされた蓄熱槽と、前記蓄熱槽内に設置され
冷媒と前記蓄熱槽内の蓄冷媒体との間で熱交換させる伝
熱部と、前記蓄熱槽内下部に設置され気体吹出穴が形成
された気泡吹出部と、前記気泡吹出部に加圧気体を供給
する加圧気体生成供給部と、前記伝熱部と接続された熱
源ユニットおよび負荷側ユニットとを備え、前記伝熱部
外面に覆いを形成し、該伝熱部と覆いとの間の液体蓄冷
媒体中に気泡を供給するよう前記気泡吹出部を設置した
ものである。
Further, the heat storage system according to the present invention includes a heat storage tank filled with a refrigerant storage medium, and a heat transfer unit installed in the heat storage tank and exchanging heat between the refrigerant and the refrigerant storage medium in the heat storage tank. A bubble blowing unit provided at a lower portion in the heat storage tank and having a gas blowing hole, a pressurized gas generation / supply unit for supplying a pressurized gas to the bubble blowing unit, and a heat source unit connected to the heat transfer unit And a load-side unit, wherein a cover is formed on the outer surface of the heat transfer section, and the bubble blowing section is provided so as to supply bubbles into the liquid refrigerant between the heat transfer section and the cover.

【0034】また、前記覆いを固体畜冷媒体で形成した
ものである。
Further, the cover is formed of a solid storage refrigerant.

【0035】[0035]

【発明の実施の形態】実施の形態1.図1に実施の形態
1の蓄熱システム概略図を、図2に実施の形態1の蓄熱
槽断面図を示す。図1、2において、1は上部が完全密
閉されていない蓄熱槽、2は蓄熱槽1内に満たされた蓄
冷媒体、3は蓄熱槽1内に設けられ、蓄冷媒体に浸され
た伝熱管よりなる伝熱部、4は蓄熱槽1内下部に配置さ
れた気泡吹出部である気泡吹出管、5は気泡吹出管4に
設置された気泡吹出し穴、6は気泡吹出管4へ加圧気体
(ここでは空気)を供給する加圧気体生成供給装置、7
は熱源ユニット、8は負荷ユニットで、熱源ユニット7
と負荷ユニット8は冷凍サイクルを構成し、熱源ユニッ
ト7と負荷ユニット8とを結ぶ一方の伝熱管の途中から
伝熱部3を介して熱源ユニット7を結ぶ伝熱管が分岐さ
れ、この分岐点と伝熱部3との間の伝熱管には電子式膨
張弁が設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a schematic diagram of the heat storage system of the first embodiment, and FIG. 2 is a cross-sectional view of the heat storage tank of the first embodiment. 1 and 2, 1 is a heat storage tank whose upper part is not completely sealed, 2 is a refrigerant storage medium filled in the heat storage tank 1, and 3 is a heat storage tube provided in the heat storage tank 1 and immersed in the refrigerant storage medium. The heat transfer unit 4 is a bubble blowing tube which is a bubble blowing unit disposed in the lower part of the heat storage tank 1, 5 is a bubble blowing hole provided on the bubble blowing tube 4, and 6 is a pressurized gas ( Pressurized gas generation and supply device for supplying air)
Is a heat source unit, 8 is a load unit, and the heat source unit 7
And the load unit 8 constitute a refrigeration cycle, and a heat transfer tube connecting the heat source unit 7 via the heat transfer unit 3 branches from the middle of one of the heat transfer tubes connecting the heat source unit 7 and the load unit 8. An electronic expansion valve is provided in a heat transfer tube between the heat transfer unit 3 and the heat transfer tube.

【0036】次に融解運転の動作について図2を用いて
説明する。伝熱部3内側の冷媒流通路に、蓄冷媒体2の
融解温度より高い温度の冷媒が負荷側ユニット群8か
ら、或いは熱源ユニット7から流れ込むと、伝熱部3外
面まわりに付着生成された固体蓄冷媒体2bは内側から
順々に融解する。この時、伝熱部3内流通冷媒は凝縮作
用を行い放熱する。蓄冷媒体2の融解は伝熱部3に付着
している固体蓄冷媒体2bの最も内側から融解されて液
体になり、伝熱部3外面と固体蓄冷媒体2bの間に液体
蓄冷媒体2aが存在し始める。融解運転時に加圧気体生
成供給装置6で加圧気体を生成し、気泡吹出し管4を介
して気泡吹出し穴5から気泡を吹出すと、気泡は浮力に
よって液体蓄冷媒体2a中を不規則かつ微小振動を伴っ
て、伝熱部3外面に沿って上昇する。気泡吹出し概略図
を図3に示す。
Next, the operation of the melting operation will be described with reference to FIG. When a refrigerant having a temperature higher than the melting temperature of the refrigerant body 2 flows from the load side unit group 8 or from the heat source unit 7 into the refrigerant flow passage inside the heat transfer unit 3, solids formed around the outer surface of the heat transfer unit 3 are generated. The refrigerant body 2b melts sequentially from the inside. At this time, the refrigerant flowing through the heat transfer section 3 performs a condensing action and releases heat. The melting of the refrigerant body 2 is melted from the innermost part of the solid refrigerant body 2b attached to the heat transfer section 3 to become a liquid, and the liquid refrigerant body 2a exists between the outer surface of the heat transfer section 3 and the solid refrigerant body 2b. start. When a pressurized gas is generated by the pressurized gas generation and supply device 6 during the melting operation, and bubbles are blown out from the bubble blowing holes 5 through the bubble blowing pipe 4, the bubbles are irregularly and minutely dispersed in the liquid storage medium 2a by buoyancy. It rises along the outer surface of the heat transfer section 3 with vibration. FIG. 3 shows a schematic diagram of the bubble blowing.

【0037】伝熱部3外面と固体蓄冷媒体2bに挟まれ
た液体蓄冷媒体2a中を伝熱部3外面に沿って気泡が流
通する場合、液体蓄冷媒体2aは気泡進行方向に対して
鉛直方向では閉空間なのでその中を不規則な動きの気泡
が流通すると、伝熱部3外面上付近の液体蓄冷媒体2a
も気泡流通の影響を受けて強制流れや乱れを生じる。そ
の結果、伝熱部3外面には強制対流熱伝達など自然対流
熱伝達が支配的な場合以上の伝熱効果が生じる。このと
き、気泡は伝熱部3とこれを覆う固体蓄冷媒体の間を通
路として上昇していくので、従来外融式のもので単に蓄
熱槽内に気泡を発生させていたものに比べ、気泡を所望
の位置または領域に送ることができ、伝熱効率が向上す
る。固体蓄冷媒体は徐々に融解して伝熱管3との間隔が
広まっていくが、伝熱管3と気泡吹出し穴5との相対位
置は変わらないので、伝熱管3表面を気泡が通過する作
用は維持される。
When air bubbles flow along the outer surface of the heat transfer section 3 in the liquid storage medium 2a sandwiched between the outer surface of the heat transfer section 3 and the solid storage medium 2b, the liquid storage medium 2a moves in a direction perpendicular to the bubble traveling direction. Is a closed space, and when bubbles with irregular movements flow through it, the liquid refrigerant 2a near the outer surface of the heat transfer section 3
Also, forced flow and turbulence are generated under the influence of air bubble distribution. As a result, a heat transfer effect is generated on the outer surface of the heat transfer section 3 more than when natural convection heat transfer is dominant, such as forced convection heat transfer. At this time, the bubble rises as a passage between the heat transfer section 3 and the solid refrigerant body covering the heat transfer section 3, so that the bubble is higher than that of the conventional external melting type which simply generates bubbles in the heat storage tank. Can be sent to a desired position or area, and the heat transfer efficiency is improved. The solid storage medium gradually melts and the distance between the heat transfer tube 3 and the heat transfer tube 3 increases. However, since the relative position between the heat transfer tube 3 and the bubble blowing hole 5 does not change, the action of bubbles passing through the surface of the heat transfer tube 3 is maintained. Is done.

【0038】融解運転時の蓄熱槽1からの熱回収量は式
(1)で、また伝熱部の伝熱性能を表す伝熱部熱通過率
Kは式(2)で表すことができる。 Q=Ao・K・ΔT 式(1) Q:熱回収量[W] Ao:伝熱管外面積[m2] K:伝熱管熱通過率[W/m2K] ΔT:伝熱部内側流通冷媒と蓄熱槽内蓄冷媒体との温度
差[K] 1/K=(1/αo + Ao/Ai/αi) 式(2) αo:伝熱部外面熱伝達率[W/m2K] αi:伝熱部内面熱伝達率[W/m2K] Ai:伝熱部内冷媒流通部面積[m2] 式(1)より、Ao、ΔTが一定の場合はKの値が大き
いほど熱回収量Qが大きくなり、式(2)より、αi、
Ao、Aiが一定の場合はαoが大きいほど伝熱部3熱
通過率Kが大きくなることがわかる。
The amount of heat recovered from the heat storage tank 1 during the melting operation can be expressed by equation (1), and the heat transfer coefficient K representing the heat transfer performance of the heat transfer section can be expressed by equation (2). Q = Ao · K · ΔT Equation (1) Q: Heat recovery amount [W] Ao: Heat transfer tube outer area [m 2 ] K: Heat transfer tube heat transmittance [W / m 2 K] ΔT: Heat transfer inside the heat transfer section Temperature difference between the refrigerant and the refrigerant in the heat storage tank [K] 1 / K = (1 / αo + Ao / Ai / αi) Equation (2) αo: Heat transfer coefficient of heat transfer unit outer surface [W / m 2 K] αi : Heat transfer coefficient on the inner surface of the heat transfer section [W / m 2 K] Ai: Area of the refrigerant flow section in the heat transfer section [m 2 ] From the equation (1), when Ao and ΔT are constant, the larger the value of K is, the more the heat recovery. The quantity Q increases, and from equation (2), αi,
It can be seen that when Ao and Ai are constant, the heat transfer rate K of the heat transfer section 3 increases as αo increases.

【0039】伝熱部3外面の気泡流通により、式(3)
の伝熱部3外面熱伝達率αoが大きくなるため、伝熱部
3熱通過率Kも大きくなり、その結果、式(2)の単位
時間当たりの蓄熱槽1からの熱回収量Qを増加すること
ができる。
By the flow of bubbles on the outer surface of the heat transfer section 3, the equation (3)
Since the heat transfer coefficient αo of the outer surface of the heat transfer unit 3 increases, the heat transfer rate K of the heat transfer unit 3 also increases, and as a result, the amount of heat recovery Q from the heat storage tank 1 per unit time of the equation (2) increases. can do.

【0040】また、気泡吹出し穴5が伝熱部3外面に近
いと、伝熱部3外面と固体蓄熱媒体2bの間の気泡を流
通させたい液体蓄冷媒体2aに気泡を流通させる確率が
上がって効率よく気泡を吹出すことができるため、伝熱
部3外面の伝熱性能が向上して単位時間当たりの蓄熱槽
1からの熱回収量を増加することができる。
Further, when the bubble blowing holes 5 are close to the outer surface of the heat transfer section 3, the probability of flowing bubbles to the liquid refrigerant medium 2a where the bubbles are to flow between the outer surface of the heat transfer section 3 and the solid heat storage medium 2b is increased. Since bubbles can be efficiently blown out, the heat transfer performance of the outer surface of the heat transfer unit 3 is improved, and the amount of heat recovered from the heat storage tank 1 per unit time can be increased.

【0041】気泡吹出し穴5が伝熱部設置位置を考慮せ
ず、蓄熱槽1下部全体に均一に設置してある場合は、伝
熱部3外面と固体蓄熱媒体2bの間の液体蓄冷媒体2a
に流通しない気泡が発生して、流通する気泡の量が減
り、伝熱部3外面の伝熱性能の向上度合いが小さい。一
方、伝熱部3外面と固体蓄熱媒体2bの間の液体蓄冷媒
体2aに流通しない気泡が固体蓄冷媒体2bの外表面を
流通して、気泡そのものが所有する顕熱によって固体蓄
冷媒体2b外側が無駄に融解して潜熱を損失してしまう
現象が起こる。概略図を図4に示す。伝熱性能向上効率
を考えると、1つの伝熱部3外面と固体蓄熱媒体2bの
間の液体蓄冷媒体2aに対し、1つの気体吹出し穴5を
対応させて、吹出した気泡を確実にその液体蓄冷媒体2
aの限られた間隙に送りこむようにしたい。
In the case where the bubble blowing holes 5 are uniformly installed on the entire lower part of the heat storage tank 1 without considering the position of the heat transfer section, the liquid storage medium 2a between the outer surface of the heat transfer section 3 and the solid heat storage medium 2b is provided.
Air bubbles that do not circulate are generated, the amount of circulating air bubbles is reduced, and the degree of improvement in the heat transfer performance of the outer surface of the heat transfer unit 3 is small. On the other hand, bubbles that do not flow through the liquid refrigerant 2a between the outer surface of the heat transfer section 3 and the solid heat storage medium 2b flow through the outer surface of the solid refrigerant 2b, and the outside of the solid refrigerant 2b is owed to the sensible heat owned by the bubbles themselves. A phenomenon occurs in which the latent heat is lost due to unnecessary melting. A schematic diagram is shown in FIG. Considering the heat transfer performance improvement efficiency, one gas blowout hole 5 is made to correspond to the liquid storage medium 2a between the outer surface of one heat transfer part 3 and the solid heat storage medium 2b, so that the blown air bubbles are surely removed from the liquid. Cooling medium 2
I want to send it to the limited gap of a.

【0042】気泡吹出し管4を図5のように一度、蓄熱
槽1の側面上を介して気体加圧生成供給装置6に連結す
ると、気泡吹出し管4の着脱が簡易になり、蓄熱槽1容
器に穴を開けなくてすむので、蓄熱槽1を例えばダイナ
ミック氷蓄熱蓄熱槽などの他用途に転用することが可能
になる。また、蓄熱槽1上面カバーを溶接ではなく蓋を
かぶせる状態し、着脱可能にする。以上により加工作業
や解体作業が簡易化され、別用途への転用も可能にな
る。
When the bubble blowing pipe 4 is once connected to the gas pressurized gas generating / supplying device 6 via the side surface of the heat storage tank 1 as shown in FIG. Since it is not necessary to make a hole, the heat storage tank 1 can be diverted to another use such as a dynamic ice heat storage tank. Moreover, the upper surface cover of the heat storage tank 1 is not covered by welding but is put on a cover, and is detachable. As described above, the processing operation and the disassembly operation are simplified, and can be diverted to another use.

【0043】次に融解運転時の気泡吹出しの伝熱性能向
上効果について実を踏まえて定量的に説明する。図6は
伝熱部に鉛直方向に円筒形伝熱管を設置して、蓄冷媒体
に水を、伝熱部内流通冷媒に40%エチレングリコール
溶液を用いて、伝熱管冷媒入口温度を5℃に設定した場
合の実験結果である。管外平均熱伝達率は気泡吹出しの
ある場合は無い場合の約5倍となり、気泡吹出しにより
管外の伝熱性能は大幅に向上することを示している。
Next, the effect of improving the heat transfer performance of the blowing of bubbles during the melting operation will be quantitatively described based on actual results. Fig. 6 shows the installation of a cylindrical heat transfer tube in the vertical direction in the heat transfer section, using water as the refrigerant medium and a 40% ethylene glycol solution as the refrigerant flowing through the heat transfer section, and setting the heat transfer tube refrigerant inlet temperature to 5 ° C. It is an experimental result in the case of doing. The average heat transfer coefficient outside the tube was about five times that in the case with and without bubble blowing, indicating that the heat transfer performance outside the tube was greatly improved by the bubble blowing.

【0044】(1)融解開始直後 固体蓄冷媒体が融解して液体蓄冷媒体になるが、液体部
分の厚さが薄く、液体蓄冷媒体中に気泡がうまく入らな
いため伝熱管外面上を気泡が流通しない。この場合伝熱
は液体蓄冷媒体の熱伝導が支配的である。熱伝導支配の
熱伝達率の式を式(3)に示す。 α=λ/L 式(3) α:熱伝達率[W/m2K] λ:熱伝導率[W/mK] L:液体部厚さ[m] 熱伝導率は物性値であり、液体種類、温度などにより一
意的に決まる値である。例えば水の場合、λ=0.562[W/
mK](0℃の場合)なので、厚さL=0.5cm=5.0e-3[m]とす
ると式(3)よりα=112[W/m2K]と低い値になる。また
式(3)より、融解が進むと、液体蓄冷媒体量、液体部
厚さが増加するので伝熱管外面の熱伝達率が低下するこ
とがわかる。
(1) Immediately after the start of melting The solid refrigerant is melted to become a liquid refrigerant, but the thickness of the liquid portion is thin, and the bubbles do not enter the liquid refrigerant well, so that the bubbles flow on the outer surface of the heat transfer tube. do not do. In this case, the heat transfer is dominated by the heat conduction of the liquid storage medium. Equation (3) shows the equation of the heat transfer coefficient dominated by heat conduction. α = λ / L Equation (3) α: Heat transfer coefficient [W / m 2 K] λ: Heat conductivity [W / mK] L: Thickness of liquid part [m] Thermal conductivity is a physical property value, and It is a value uniquely determined by the type, temperature, etc. For example, in the case of water, λ = 0.562 [W /
mK] (at 0 ° C.), and if the thickness L = 0.5 cm = 5.0e−3 [m], α = 112 [W / m 2 K], which is a low value from equation (3). Further, from the equation (3), it can be seen that as the melting proceeds, the amount of the liquid storage medium and the thickness of the liquid portion increase, so that the heat transfer coefficient on the outer surface of the heat transfer tube decreases.

【0045】(2)気泡が伝熱管外面上を流通し始めた
時 液体蓄冷媒体量、液体部厚さが増加すると、伝熱は熱伝
導から自然対流熱伝達が支配的になる。この時に液体蓄
冷媒体中を伝熱管外面に沿って気泡が流通し始めると、
液体蓄冷媒体自身の温度差より発生する自然対流以上の
速さの流れや乱れが生じる。その結果、伝熱部外面は強
制対流と同等の伝熱効果が生じて単位時間当たりの蓄熱
槽からの熱回収量を増加することができる。
(2) When air bubbles start flowing on the outer surface of the heat transfer tube When the amount of liquid refrigerant and the thickness of the liquid portion increase, natural convection heat transfer becomes dominant in heat transfer due to heat conduction. At this time, when air bubbles start to flow along the outer surface of the heat transfer tube in the liquid storage medium,
Flow or turbulence occurs at a speed higher than natural convection generated by the temperature difference of the liquid storage medium itself. As a result, a heat transfer effect equivalent to forced convection occurs on the outer surface of the heat transfer section, and the amount of heat recovery from the heat storage tank per unit time can be increased.

【0046】図6(a)は気泡吹出しがない場合の融解
運転実験結果である。この場合は伝熱部外面と固体蓄冷
媒体の間の液体蓄冷媒体中の密度差により上下方向に自
然対流が生じており、図6(a)より伝熱部外面熱伝達
率αo=150[W/m2K]と推定できる。一方、図6(b)は
気泡吹出しがある場合の融解運転実験結果である。この
場合は伝熱部外面で気泡流通による流れ及び乱れ発生の
影響により伝熱性能が向上する。図6(b)より伝熱部
外面熱伝達率αo=790[W/m2K]と推定できる。
FIG. 6A shows the results of a melting operation experiment when no bubbles are blown out. In this case, natural convection occurs in the vertical direction due to the density difference in the liquid refrigerant between the outer surface of the heat transfer part and the solid refrigerant, and the heat transfer coefficient αo = 150 [W / m 2 K]. On the other hand, FIG. 6B shows the results of a melting operation experiment in the case where air bubbles are blown out. In this case, the heat transfer performance is improved by the influence of the flow and turbulence caused by the flow of bubbles on the outer surface of the heat transfer portion. From FIG. 6B, it can be estimated that the heat transfer coefficient αo = 790 [W / m 2 K].

【0047】例えば、伝熱部面積Ao=Ai=1[m2]、
伝熱管内面熱伝達率αi=2000[W/m2K]、冷媒と蓄冷媒体
温度差ΔT=5[deg]として気泡吹出しのある場合と無
い場合の蓄熱槽からの熱回収量を概算する。[気泡吹出
しが無い場合] ・K=(1/150+1/2000)-1=140[W/m2K] 式(4) ・Q=Ao・K・ΔT=1・140・5=700[W] 式(5) [気泡吹出しがある場合] ・K=(1/790+1/2000)-1=566[W/m2K] 式(6) ・Q=Ao・K・ΔT=1・566・5=2830[W] 式(7 ) となり、気泡吹出し時の蓄熱槽からの熱回収量は気泡吹
出しが無い場合の約4倍となる。
For example, heat transfer area Ao = Ai = 1 [m 2 ],
Assuming that the heat transfer coefficient on the inner surface of the heat transfer tube αi = 2000 [W / m 2 K] and the temperature difference ΔT = 5 [deg] between the refrigerant and the refrigerant, the amount of heat recovery from the heat storage tank with and without bubble blowing is estimated. [When there is no bubble blowing] K = (1/150 + 1/2000) -1 = 140 [W / m 2 K] Equation (4) Q = Ao · K · ΔT = 1 · 140 · 5 = 700 [W] Equation (5) [When there is bubble blowing] K = (1/790 + 1/2000) -1 = 566 [W / m2K] Equation (6) Q = Ao · K · ΔT = 1 · 566.5 = 2830 [W] Equation (7), and the amount of heat recovered from the heat storage tank at the time of bubble blowing is about four times that when no bubble is blown.

【0048】以上により、実施の形態1で示した内融式
蓄熱システムを使用すれば、伝熱部外面と固体蓄冷媒体
の間の液体蓄冷媒体中に気泡吹出し穴を備えて、融解運
転時に加圧気体生成装置で加圧気体を生成し、気泡吹出
し管を介して気泡吹出し穴から気泡を吹出すので、液体
蓄冷媒体中を伝熱部外面上に沿って、かつ周辺の液体に
強制流れや乱れを生じながら気泡が上方へ流通するの
で、伝熱部外面の伝熱性能が向上して、単位時間当たり
の蓄熱槽からの熱回収量の増加を実現することができ
る。
As described above, if the internal melting type heat storage system shown in the first embodiment is used, a bubble blowing hole is provided in the liquid storage medium between the outer surface of the heat transfer section and the solid state storage medium, so that the heat storage can be performed during the melting operation. The pressurized gas is generated by the pressurized gas generator, and the bubbles are blown out from the bubble blowing holes through the bubble blowing pipe. Since the bubbles flow upward while generating turbulence, the heat transfer performance of the outer surface of the heat transfer unit is improved, and the amount of heat recovery from the heat storage tank per unit time can be increased.

【0049】実施の形態2.図7は実施の形態2の蓄熱
システム概略図であり、図8は蓄熱槽図である。図にお
いて、1は蓄熱槽、2は蓄冷媒体、3は平板形の伝熱
部、4は気泡吹出し管、5は気泡吹出し穴、6は加圧気
体生成供給装置、7は熱源ユニット、8は負荷ユニット
で、これらは実施の形態1の同一符号のものに相当す
る。
Embodiment 2 FIG. 7 is a schematic diagram of a heat storage system according to Embodiment 2, and FIG. 8 is a diagram of a heat storage tank. In the figure, 1 is a heat storage tank, 2 is a refrigerant storage body, 3 is a flat heat transfer section, 4 is a bubble blowing tube, 5 is a bubble blowing hole, 6 is a pressurized gas generation and supply device, 7 is a heat source unit, 8 is In the load units, these correspond to the same reference numerals in the first embodiment.

【0050】融解運転の動作について図7、8を用いて
説明する。伝熱部3内側の冷媒流通路に、蓄冷媒体2の
融解温度より高い温度の冷媒が負荷側ユニット群8か
ら、或いは熱源ユニット7から流れ込むと、伝熱部3外
面に付着生成された固体蓄冷媒体2bは内側から順々に
融解する。この時、伝熱部3内流通冷媒は凝縮作用を行
い放熱する。蓄冷媒体2の融解は伝熱部3外面に付着し
ている固体蓄冷媒体2bの最も内側から融解されて液体
になり、伝熱部3外面と固体蓄冷媒体2bの間に液体蓄
冷媒体2aが存在し始める。融解運転時に加圧気体生成
装置6で加圧気体を生成し、気泡吹出し管4を介して気
泡吹出し穴5から気泡を吹出すと、気泡は浮力によって
液体蓄冷媒体中2aを不規則かつ微小振動を伴って、伝
熱部3外面に沿って上昇する。気泡吹出し概略図を図9
に示す。
The operation of the melting operation will be described with reference to FIGS. When a refrigerant having a temperature higher than the melting temperature of the refrigerant body 2 flows from the load side unit group 8 or from the heat source unit 7 into the refrigerant flow passage inside the heat transfer unit 3, the solid cold storage generated and attached to the outer surface of the heat transfer unit 3. The medium 2b melts sequentially from the inside. At this time, the refrigerant flowing through the heat transfer section 3 performs a condensing action and releases heat. The refrigerant 2 is melted from the innermost part of the solid refrigerant 2b adhering to the outer surface of the heat transfer unit 3 to become liquid, and the liquid refrigerant 2a exists between the outer surface of the heat exchanger 3 and the solid refrigerant 2b. Begin to. When the pressurized gas is generated by the pressurized gas generator 6 during the melting operation and the bubbles are blown out from the bubble blowing hole 5 through the bubble blowing pipe 4, the bubbles randomly and minutely vibrate in the liquid storage medium 2a by buoyancy. With this, it rises along the outer surface of the heat transfer section 3. FIG. 9 is a schematic diagram of the bubble blowing.
Shown in

【0051】伝熱部3外面と固体蓄冷媒体2bに挟まれ
た液体蓄冷媒体2a中を伝熱部3外面に沿って気泡が流
通する場合、液体蓄冷媒体2aは気泡進行方向に対して
鉛直方向では閉空間なのでその中を不規則な動きの気泡
が流通すると、伝熱部3外面上付近の液体蓄冷媒体2a
も気泡流通の影響を受け、強制流れや乱れを生じる。そ
の結果、伝熱部3外面には強制対流熱伝達など、自然対
流熱伝達が支配的な場合以上の伝熱効果が生じる。尚、
伝熱部3が平板形の場合、伝熱部3外面と固体蓄冷媒体
2bの間の液体蓄冷媒体2aが横に広くなり、この液体
蓄冷媒体2b間隙1つに対し、複数の気泡吹出し穴5を
対応させることになるので、気泡吹出し穴5のうち1つ
で詰まりが生じても、他の穴から吹出した気泡が液体蓄
冷媒体2a中を流通するので、システムとして性能向上
の信頼性が向上する。
When air bubbles flow along the outer surface of the heat transfer section 3 in the liquid storage medium 2a sandwiched between the outer surface of the heat transfer section 3 and the solid refrigerant medium 2b, the liquid refrigerant 2a moves in a direction perpendicular to the bubble traveling direction. Is a closed space, and when bubbles with irregular movements flow through it, the liquid refrigerant 2a near the outer surface of the heat transfer section 3
Is also affected by the flow of air bubbles, causing forced flow and turbulence. As a result, a heat transfer effect, such as forced convection heat transfer, is exerted on the outer surface of the heat transfer section 3 more than when natural convection heat transfer is dominant. still,
When the heat transfer section 3 is a flat plate, the liquid storage medium 2a between the outer surface of the heat transfer section 3 and the solid storage medium 2b becomes wider horizontally, and a plurality of bubble blowing holes 5 are formed in one gap of the liquid storage medium 2b. Therefore, even if clogging occurs in one of the bubble blowing holes 5, bubbles blown from the other holes flow through the liquid storage medium 2a, so that the reliability of performance improvement as a system is improved. I do.

【0052】また気泡吹出し穴5が伝熱部3外面に近い
と、伝熱部3外面と固体蓄熱媒体2bの間の気泡を流通
させたい液体蓄冷媒体2aに気泡を流通させる確率が上
がって効率よく気泡を吹出すことができるため、伝熱部
3外面の伝熱性能が向上して単位時間当たりの蓄熱槽1
からの熱回収量を増加することができる。
When the bubble blowing hole 5 is close to the outer surface of the heat transfer section 3, the probability of flowing bubbles to the liquid refrigerant 2a where the bubbles are desired to flow between the outer surface of the heat transfer section 3 and the solid heat storage medium 2b is increased. Since air bubbles can be well blown out, the heat transfer performance of the outer surface of the heat transfer unit 3 is improved, and the heat storage tank 1 per unit time is improved.
The amount of heat recovered from the fuel can be increased.

【0053】以上により、実施の形態2で示した内融式
蓄熱システムを使用すれば、伝熱部外面と固体蓄冷媒体
の間の液体蓄冷媒体中に気泡吹出し穴を備えて、融解運
転時に加圧気体生成装置で加圧気体を生成し、気泡吹出
し管を介して気泡吹出し穴から気泡を吹出すので、液体
蓄冷媒体中を伝熱部外面上に沿って、かつ周辺の液体に
強制流れや乱れを生じながら気泡が上方へ流通するの
で、伝熱部外面の伝熱性能が向上して、単位時間当たり
の蓄熱槽からの熱回収量の増加を実現することができ
る。また伝熱部が平板形なので、伝熱部外面と固体蓄冷
媒体の間の液体蓄冷媒体1つに対し複数の気泡吹出し穴
を対応させることになるので、気泡吹出し穴のうち1つ
で詰まりが生じても、伝熱性能を大きく低下させること
はないという長所がある。
As described above, if the internal fusion type heat storage system described in the second embodiment is used, a bubble blowing hole is provided in the liquid storage medium between the outer surface of the heat transfer section and the solid storage medium, so that the heat storage can be performed during the melting operation. The pressurized gas is generated by the pressurized gas generator, and the bubbles are blown out from the bubble blowing holes through the bubble blowing pipe. Since the bubbles flow upward while generating turbulence, the heat transfer performance of the outer surface of the heat transfer unit is improved, and the amount of heat recovery from the heat storage tank per unit time can be increased. In addition, since the heat transfer section has a flat plate shape, a plurality of bubble outlets are made to correspond to one liquid refrigerant between the outer surface of the heat transfer section and the solid refrigerant, so that clogging is caused by one of the bubble outlets. Even if it occurs, there is an advantage that the heat transfer performance is not significantly reduced.

【0054】実施の形態3.図10は実施の形態3の蓄
熱槽図である。図において、1は蓄熱槽、2は蓄冷媒
体、3は鉛直方向円筒伝熱管、4は気泡吹出し管、5は
気泡吹出し穴、6は加圧気体生成供給装置、7は熱源ユ
ニット、8は負荷ユニットで、これらは実施の形態1の
同一符号のものに相当する。
Embodiment 3 FIG. FIG. 10 is a diagram of a heat storage tank according to the third embodiment. In the figure, 1 is a heat storage tank, 2 is a refrigerant storage body, 3 is a vertical cylindrical heat transfer tube, 4 is a bubble blowing tube, 5 is a bubble blowing hole, 6 is a pressurized gas generation and supply device, 7 is a heat source unit, and 8 is a load. In the unit, these correspond to the same reference numerals in the first embodiment.

【0055】伝熱部3下部に断熱材を付けているなど固
体蓄冷媒体2bが生成されないようにしている場合で、
気泡吹出し穴5と伝熱部3下部との間に距離がある場合
の動作を図10を用いて説明する。伝熱部3内側の冷媒
流通路に、蓄冷媒体2の融解温度より高い温度の冷媒が
負荷側ユニット群8から、或いは熱源ユニット7から流
れ込むと、伝熱部3外面まわりに付着生成された固体蓄
冷媒体2bは内側から順々に融解する。この時、伝熱部
3内流通冷媒は凝縮作用を行い放熱する。蓄冷媒体2の
融解は伝熱管に付着している固体蓄冷媒体2bの最も内
側から融解されて液体になり、伝熱部3外面と固体蓄冷
媒体2bの間に液体蓄冷媒体2aが存在し始める。融解
運転時に加圧気体生成装置6で加圧気体を生成し、気泡
吹出し管4を介して気泡吹出し穴5から気泡を吹出す
と、気泡は浮力によって液体蓄冷媒体中2aを不規則か
つ微小振動を伴って、伝熱部3外面に沿って上昇する。
気泡吹出し概略図を図11に示す。
In the case where the solid refrigerant body 2b is prevented from being generated, for example, a heat insulating material is provided below the heat transfer section 3,
The operation when there is a distance between the bubble blowing hole 5 and the lower part of the heat transfer section 3 will be described with reference to FIG. When a refrigerant having a temperature higher than the melting temperature of the refrigerant body 2 flows from the load side unit group 8 or from the heat source unit 7 into the refrigerant flow passage inside the heat transfer unit 3, solids formed around the outer surface of the heat transfer unit 3 are generated. The refrigerant body 2b melts sequentially from the inside. At this time, the refrigerant flowing through the heat transfer section 3 performs a condensing action and releases heat. The melting of the cooling medium 2 is melted from the innermost part of the solid cooling medium 2b attached to the heat transfer tube to become a liquid, and the liquid cooling medium 2a starts to exist between the outer surface of the heat transfer unit 3 and the solid cooling medium 2b. When the pressurized gas is generated by the pressurized gas generator 6 during the melting operation and the bubbles are blown out from the bubble blowing hole 5 through the bubble blowing pipe 4, the bubbles randomly and minutely vibrate in the liquid storage medium 2a by buoyancy. With this, it rises along the outer surface of the heat transfer section 3.
FIG. 11 shows a schematic diagram of the bubble blowing.

【0056】気泡吹出し穴5と伝熱部3下部との間に距
離がある場合は、吹出した気泡をできるだけ多く伝熱部
3外面と固体蓄冷媒体2bに挟まれた液体蓄冷媒体2a
中に送り込むために、気泡吹出し穴5を伝熱部3の真下
或いは真下近傍に設置する。気泡が先の液体蓄冷媒体中
2aを流通する場合、液体蓄冷媒体2aは限られた間隙
なのでその中を不規則な動きの気泡が流通すると、液体
蓄冷媒体2aも気泡流通の影響を受け、強制流れや乱れ
が生じる。その結果、伝熱部3外面には強制対流と同等
の伝熱効果が生じ、単位時間当たりの蓄熱槽1からの熱
回収量を増加することができる。
When there is a distance between the bubble blowing hole 5 and the lower portion of the heat transfer section 3, as much as possible of the blown out bubbles, the liquid refrigerant 2a sandwiched between the outer surface of the heat transfer section 3 and the solid refrigerant 2b.
In order to feed the air into the inside, the bubble blowing hole 5 is provided directly below the heat transfer section 3 or in the vicinity thereof. When the bubbles flow through the liquid storage medium 2a, the liquid storage medium 2a is affected by the flow of the bubbles, because the liquid storage medium 2a has a limited gap, and the bubbles having irregular movements flow through the space. Flow and turbulence occur. As a result, a heat transfer effect equivalent to forced convection occurs on the outer surface of the heat transfer unit 3, and the amount of heat recovered from the heat storage tank 1 per unit time can be increased.

【0057】気泡吹出し穴5が伝熱部3外面に近いと、
伝熱部3外面と固体蓄熱媒体2bの間の気泡を流通させ
たい液体蓄冷媒体2aに気泡を流通させる確率が上がっ
て効率よく気泡を吹出すことができるため、伝熱部3外
面の伝熱性能が向上して単位時間当たりの蓄熱槽1から
の熱回収量を増加することができる。
When the bubble blowing hole 5 is close to the outer surface of the heat transfer section 3,
Since the probability that air bubbles flow through the liquid refrigerant 2a where the air bubbles between the outer surface of the heat transfer unit 3 and the solid heat storage medium 2b are desired to flow can be increased and the air bubbles can be efficiently blown out, the heat transfer on the outer surface of the heat transfer unit 3 can be performed. The performance is improved, and the amount of heat recovered from the heat storage tank 1 per unit time can be increased.

【0058】以上により、実施の形態3で示した内融式
蓄熱システムを使用すれば、伝熱部外面と固体蓄冷媒体
の間の液体蓄冷媒体中に気泡吹出し穴を備えて、融解運
転時に加圧気体生成装置で加圧気体を生成し、気泡吹出
し管を介して気泡吹出し穴から気泡を吹出すので、液体
蓄冷媒体中を伝熱部外面上に沿って、かつ周辺の液体に
強制流れや乱れを生じながら気泡が上方へ流通するの
で、伝熱部外面の伝熱性能が向上して、単位時間当たり
の蓄熱槽からの熱回収量の増加を実現することができ
る。また、気泡吹出し穴と伝熱部下部との間に距離があ
る場合は、吹出した気泡をできるだけ多く伝熱管外面と
固体蓄冷媒体に挟まれた液体蓄冷媒体中に送り込むため
に、気泡吹出し穴を伝熱管の真下或いは真下近傍に設置
すると、気泡は浮力によって上方向へ上昇するため、先
の液体蓄冷媒体中を流通する確率が最も大きくなる。
As described above, if the internal fusion type heat storage system shown in the third embodiment is used, a bubble blowing hole is provided in the liquid storage medium between the outer surface of the heat transfer section and the solid storage medium, so that the heat storage can be performed during the melting operation. The pressurized gas is generated by the pressurized gas generator, and the bubbles are blown out from the bubble blowing holes through the bubble blowing pipe. Since the bubbles flow upward while generating turbulence, the heat transfer performance of the outer surface of the heat transfer unit is improved, and the amount of heat recovery from the heat storage tank per unit time can be increased. In addition, if there is a distance between the bubble outlet and the lower part of the heat transfer section, the bubble outlet is required to send as many blown bubbles as possible into the liquid refrigerant between the outer surface of the heat transfer tube and the solid refrigerant. When installed immediately below or near the bottom of the heat transfer tube, the bubbles rise upward due to buoyancy, and therefore have the highest probability of flowing through the liquid refrigerant.

【0059】実施の形態4.図12は実施の形態4の蓄
熱槽図である。図において、1は蓄熱槽、2は蓄冷媒
体、3aは蓄冷運転、融解運転ともに内部冷媒流通部に
冷媒を流通し、氷生成、氷融解を行う伝熱部、3bは融
解運転時にだけ内部冷媒流通部に冷媒を流通する融解専
用伝熱部、4は気泡吹出し管、5は気泡吹出し穴、6は
加圧気体生成供給装置、7は熱源ユニット、8は負荷ユ
ニットで、これらは実施の形態1の同一符号のものに相
当する。
Embodiment 4 FIG. FIG. 12 is a diagram of a heat storage tank according to the fourth embodiment. In the figure, 1 is a heat storage tank, 2 is a refrigerant storage medium, 3a is a heat transfer section that circulates a refrigerant through an internal refrigerant circulation section in both the cold storage operation and the melting operation and performs ice generation and ice melting, and 3b is an internal refrigerant only during the melting operation. A heat transfer section dedicated to melting for flowing the refrigerant through the flow section, 4 is a bubble blowing pipe, 5 is a bubble blowing hole, 6 is a pressurized gas generation and supply device, 7 is a heat source unit, and 8 is a load unit. 1 corresponds to the same reference numeral.

【0060】融解運転の動作について図12上で説明す
る。伝熱部3a内側の冷媒流通路に蓄冷媒体2の融解温
度より高い温度の冷媒を流通すると、伝熱部3外面まわ
りに存在する固体蓄冷媒体2bは内側から順々に融解す
る。この時、伝熱部3内流通冷媒は凝縮作用を行い放熱
する。一方、伝熱部3bは蓄冷運転時は使用しないの
で、蓄冷運転終了時に伝熱部3b表面に固体蓄冷媒体2
bは付着せずまわりに液体蓄冷媒体2aが存在する。融
解運転時に伝熱部3a内側の冷媒流通路に蓄冷媒体2の
融解温度より高い温度の冷媒を流通すると、蓄冷媒体2
と熱交換を行い、蓄冷媒体2の顕熱を使用して放熱す
る。
The operation of the melting operation will be described with reference to FIG. When a refrigerant having a temperature higher than the melting temperature of the refrigerant body 2 flows through the refrigerant flow passage inside the heat transfer part 3a, the solid refrigerant body 2b present around the outer surface of the heat transfer part 3 is melted sequentially from the inside. At this time, the refrigerant flowing through the heat transfer section 3 performs a condensing action and releases heat. On the other hand, since the heat transfer section 3b is not used during the cold storage operation, the solid coolant 2
b does not adhere and the liquid storage medium 2a is present around it. When a refrigerant having a temperature higher than the melting temperature of the refrigerant storage medium 2 flows through the refrigerant flow passage inside the heat transfer unit 3a during the melting operation, the refrigerant storage medium 2
And heat exchange using the sensible heat of the refrigerant storage medium 2.

【0061】融解運転時の蓄熱槽1からの熱回収量は式
(8)、式(9)で表すことができる。融解専用伝熱部
3bを加えると、伝熱部3面積はAob[m2]分増加する
ので、その分熱回収量も増加する。 ・融解専用伝熱部が無い場合 Qa=Aoa・Ka・ΔT式(8) ・融解専用伝熱部がある場合 Qb=(Aoa・Ka+Aob・Kb)・ΔT 式(9) Aoa:伝熱部3a外面面積[m2] Aob:伝熱部3b外面面積[m2] Ka: 伝熱部3aの熱通過率[W/m2K] Kb: 伝熱部3bの熱通過率[W/m2K] ΔT: 伝熱部内側を流通する冷媒と蓄冷媒体との温度
差[K] 式(8)と式(9)を比較するとAob・Kbの分だけ
熱回収量が増加することになる。
The amount of heat recovered from the heat storage tank 1 during the melting operation can be expressed by equations (8) and (9). When the heat transfer unit 3b dedicated for melting is added, the area of the heat transfer unit 3 increases by Aob [m2], and the heat recovery amount increases accordingly. -When there is no heat transfer section dedicated to melting Qa = Aoa · Ka · ΔT equation (8)-When there is a heat transfer section dedicated to melting Qb = (Aoa · Ka + Aob · Kb) · ΔT equation (9) Aoa: Heat transfer section 3a Outer surface area [m 2 ] Aob: Heat transfer part 3b Outer surface area [m 2 ] Ka: Heat transfer rate of heat transfer part 3a [W / m 2 K] Kb: Heat transfer rate of heat transfer part 3b [W / m 2] K] ΔT: Temperature difference between the refrigerant flowing inside the heat transfer section and the refrigerant storage medium [K] Comparing Equations (8) and (9), the amount of heat recovery increases by Aob · Kb.

【0062】図12に示すように蓄熱槽1内部に気泡吹
出し管4や気泡吹出し穴5、及び蓄熱システムに気体加
圧供給装置6が無い場合、伝熱部3aと伝熱部3bの外
面の伝熱はともに自然対流が支配的となり同様の性能に
なる。式(4)のKaとKbは同等となる。
As shown in FIG. 12, when there is no bubble blowing tube 4 and bubble blowing hole 5 inside the heat storage tank 1 and no gas pressurizing and supplying device 6 in the heat storage system, the outer surfaces of the heat transfer sections 3a and 3b are formed. In the heat transfer, natural convection is dominant and both have the same performance. Ka and Kb in equation (4) are equivalent.

【0063】図13に示すように伝熱部3a外面と固体
蓄冷媒体2bの間の液体蓄冷媒体2a中に気泡吹出し穴
5を備え、蓄熱槽1内に気泡吹出し管4、および蓄熱シ
ステムに気体加圧供給装置6を備えて、融解運転時に気
泡を吹出す一方、伝熱部3b側には気泡吹出し管4や気
泡吹出し穴5、及び蓄熱システムに気体加圧供給装置6
を備えない場合、伝熱部3a側の伝熱部3外面と固体蓄
冷媒体2bの間の液体蓄冷媒体2aでは液体蓄冷媒体2
a中を気泡が流通し、その影響を受けて強制流れや乱れ
が生じ、その結果、伝熱部3外面には強制対流と同等の
伝熱効果が生じ、単位時間当たりの蓄熱槽1からの熱回
収量を増加することができる。一方、伝熱部3b側の伝
熱部3外面と固体蓄冷媒体2bの間の液体蓄冷媒体2a
では気泡が流通しないので自然対流が生じており、伝熱
性能は自然対流熱伝達が支配的である。式(4)のKa
とKbは、実施の形態1の実験結果値を踏まえると、K
a=4・Kbとなり、図12より図13の方が単位時間
あたりの蓄熱槽1からの熱回収量が多いことがわかる。
As shown in FIG. 13, a bubble blowing hole 5 is provided in the liquid storage medium 2a between the outer surface of the heat transfer section 3a and the solid storage medium 2b, a bubble blowing pipe 4 is provided in the heat storage tank 1, and a gas is provided in the heat storage system. A pressurizing / supplying device 6 is provided to blow air bubbles during the melting operation, while a bubble blowing tube 4 and a bubble blowing hole 5 are provided on the heat transfer section 3b side, and a gas pressurizing and supplying device 6 is provided to the heat storage system.
Is not provided, the liquid refrigerant 2a in the liquid refrigerant 2a between the outer surface of the heat transfer section 3 on the heat transfer section 3a side and the solid refrigerant 2b.
Air bubbles circulate in a, and forced flow or turbulence occurs under the influence of the air bubbles. As a result, a heat transfer effect equivalent to forced convection occurs on the outer surface of the heat transfer section 3, and the heat transfer from the heat storage tank 1 per unit time occurs. The amount of heat recovery can be increased. On the other hand, the liquid storage medium 2a between the outer surface of the heat transfer section 3 on the heat transfer section 3b side and the solid storage medium 2b
In this case, natural convection is generated because bubbles do not flow, and natural convection heat transfer is dominant in heat transfer performance. Ka in equation (4)
And Kb are, based on the experimental result values of the first embodiment,
a = 4 · Kb, and FIG. 13 shows that the amount of heat recovered from the heat storage tank 1 per unit time is larger in FIG. 13 than in FIG.

【0064】以上により、実施の形態4で示した内融式
蓄熱システムを使用すれば、一部の伝熱部を、蓄冷運転
時は伝熱部内側の冷媒流通路に冷媒を流通させず、融解
運転時にのみ、蓄冷媒体の融解温度以上の冷媒を流通す
る融解専用伝熱部とすることで、融解運転時に、伝熱部
の伝熱性能を表す熱通過率K[W/m2K]及び冷媒と蓄冷媒
体の温度差ΔT[K]を同一とした場合、同一蓄熱槽容
積、同一蓄冷量において融解運転時の有効な融解伝熱面
積を増加することができるので、単位時間当たりの蓄熱
槽からの熱回収量を増加することができる。また、蓄冷
運転も行う伝熱部外面と固体蓄冷媒体の間の液体蓄冷媒
体に気泡を吹出した場合はその伝熱部外面上の伝熱性能
が向上し、その分単位時間当たりの蓄熱槽からの熱回収
量を増加する。
As described above, if the internal melting type heat storage system shown in the fourth embodiment is used, a part of the heat transfer part does not flow through the refrigerant flow passage inside the heat transfer part during the cold storage operation. The heat transfer rate K [W / m 2 K] representing the heat transfer performance of the heat transfer section during the melting operation by using a heat transfer section dedicated to melting in which a refrigerant having a temperature equal to or higher than the melting temperature of the refrigerant storage medium flows only during the melting operation. If the temperature difference ΔT [K] between the refrigerant and the refrigerant is the same, the effective heat transfer area during the melting operation can be increased in the same heat storage tank volume and the same cold storage amount. The amount of heat recovered from the tank can be increased. In addition, when air bubbles are blown out to the liquid storage medium between the outer surface of the heat transfer unit and the solid storage medium that also performs the cold storage operation, the heat transfer performance on the outer surface of the heat transfer unit improves, and the heat storage tank per unit time Increase the amount of heat recovered.

【0065】実施の形態5.図14は実施の形態5の蓄
熱システム図である。図において、1は蓄熱槽、2は蓄
冷媒体、3aは蓄冷運転、融解運転ともに内部冷媒流通
部に冷媒を流通し、氷生成、氷融解を行う伝熱部、3b
は融解運転時にだけ内部冷媒流通部に冷媒を流通する融
解専用伝熱部、4は気泡吹出し管、5は気泡吹出し穴、
6は加圧気体生成供給装置、7は熱源ユニット、8は負
荷ユニットで、これらは実施の形態1の同一符号のもの
に相当する。
Embodiment 5 FIG. 14 is a diagram of a heat storage system according to the fifth embodiment. In the figure, 1 is a heat storage tank, 2 is a refrigerant storage medium, and 3a is a heat transfer section that circulates a refrigerant through an internal refrigerant circulation section in both the cold storage operation and the melting operation to generate and melt ice and 3b.
Is a heat transfer section dedicated to melting, which circulates the refrigerant to the internal refrigerant flow section only during the melting operation, 4 is a bubble blowing pipe, 5 is a bubble blowing hole,
Reference numeral 6 denotes a pressurized gas generation / supply device, 7 denotes a heat source unit, and 8 denotes a load unit, which correspond to those having the same reference numerals in the first embodiment.

【0066】融解運転の動作について図14を用いて説
明する。伝熱部3a内側の冷媒流通路に蓄冷媒体2の融
解温度より高い温度の冷媒を流通すると、伝熱部3外面
まわりに存在する固体蓄冷媒体2bは内側から順々に融
解する。この時、伝熱部3内流通冷媒は蓄冷媒体2の融
解潜熱を使用して放熱する。一方、伝熱部3bは蓄冷運
転時は使用しないので、蓄冷運転終了時に伝熱部3b表
面に固体蓄冷媒体2bは付着せず、まわりに液体蓄冷媒
体2aが存在する。融解運転時に伝熱部3a内側の冷媒
流通路に蓄冷媒体2の融解温度より高い温度の冷媒を流
通すると、蓄冷媒体2と熱交換を行い、蓄冷媒体2の顕
熱を使用して放熱する。
The operation of the melting operation will be described with reference to FIG. When a refrigerant having a temperature higher than the melting temperature of the refrigerant body 2 flows through the refrigerant flow passage inside the heat transfer part 3a, the solid refrigerant body 2b present around the outer surface of the heat transfer part 3 is melted sequentially from the inside. At this time, the refrigerant flowing through the heat transfer unit 3 radiates heat using the latent heat of fusion of the refrigerant body 2. On the other hand, since the heat transfer section 3b is not used during the cool storage operation, the solid coolant 2b does not adhere to the surface of the heat transfer section 3b at the end of the cool storage operation, and the liquid coolant 2a exists around the heat transfer section 3b. When a refrigerant having a temperature higher than the melting temperature of the storage medium 2 flows through the refrigerant flow passage inside the heat transfer section 3a during the melting operation, heat exchange is performed with the storage medium 2, and heat is released using the sensible heat of the storage medium 2.

【0067】図14に示すように伝熱部3a側は伝熱部
3a外面と固体蓄冷媒体2bの間の液体蓄冷媒体2a中
に気泡吹出し穴5を、伝熱部3b側は吹出した気泡が伝
熱部3b外面を流通するように気泡吹出し穴5を設置す
ることで、伝熱部3a側の伝熱部3外面と固体蓄冷媒体
2bの間の液体蓄冷媒体2aでは液体蓄冷媒体中2aを
気泡が流通し、その影響を受けて強制流れや乱れが生
じ、その結果、伝熱部3外面には強制対流と同等の伝熱
効果が生じ、単位時間当たりの蓄熱槽1からの熱回収量
を増加することができる。一方、伝熱部3b側の伝熱部
3外面にも気泡が流通し、伝熱部3b外面周辺の液体蓄
冷媒体2aが乱れるので、伝熱性能は自然対流熱伝達が
支配的である場合よりも大きくなる。
As shown in FIG. 14, the heat transfer section 3a has a bubble blowing hole 5 in the liquid refrigerant 2a between the outer surface of the heat transfer section 3a and the solid refrigerant 2b, and the blown air bubbles have a heat transfer section 3b side. By providing the bubble blowing holes 5 so as to circulate on the outer surface of the heat transfer unit 3b, the liquid refrigerant 2a in the liquid refrigerant storage unit 2a between the outer surface of the heat transfer unit 3 on the side of the heat transfer unit 3a and the solid refrigerant storage unit 2b is used. Bubbles circulate, and forced flow or turbulence occurs under the influence of the air bubbles. As a result, a heat transfer effect equivalent to forced convection occurs on the outer surface of the heat transfer unit 3, and the amount of heat recovered from the heat storage tank 1 per unit time Can be increased. On the other hand, bubbles also flow on the outer surface of the heat transfer section 3 on the side of the heat transfer section 3b, and the liquid refrigerant 2a around the outer surface of the heat transfer section 3b is disturbed, so that the heat transfer performance is higher than when natural convection heat transfer is dominant. Also increases.

【0068】図12、図13、図14の場合のそれぞれ
の伝熱性能を表す伝熱部全熱通過率K[W/m2K]、及び単
位時間当たりの蓄熱槽からの熱回収量Q[W]の大きさは
以下の不等号式(10)で表すことができる。 図12のK、Q<図13のK、Q<図の14K、Q 式(10)
12, 13, and 14, the total heat transfer coefficient K [W / m 2 K] representing the heat transfer performance and the amount of heat recovery Q from the heat storage tank per unit time. The magnitude of [W] can be represented by the following inequality expression (10). K, Q in FIG. 12 <K, Q in FIG. 13 <14K, Q in FIG.

【0069】以上により、実施の形態5で示した内融式
蓄熱システムを使用すれば、一部の伝熱部を、蓄冷運転
時は伝熱部内側の冷媒流通路に冷媒を流通させず、融解
運転時にのみ、蓄冷媒体の融解温度以上の冷媒を流通す
る融解専用伝熱部とすることで、融解運転時に、伝熱部
の伝熱性能を表す熱通過率K[W/m2K]及び冷媒と蓄冷媒
体の温度差ΔT[K]を同一とした場合、同一蓄熱槽容
積、同一蓄冷量において融解運転時の有効な融解伝熱面
積を増加することができるので、単位時間当たりの蓄熱
槽からの熱回収量を増加することができ、さらに蓄冷運
転を行う伝熱部側の伝熱部外面と固体蓄冷媒体の間の液
体蓄冷媒体に気泡を吹出し、融解専用伝熱部外面にも気
泡を流通させた場合は、ともに伝熱部外面上の伝熱性能
が向上し、その分単位時間当たりの蓄熱槽からの熱回収
量が増加する。熱回収量は実施の形態4の場合よりも多
くなる。
As described above, when the internal melting type heat storage system shown in the fifth embodiment is used, a part of the heat transfer part does not flow through the refrigerant flow passage inside the heat transfer part during the cold storage operation. The heat transfer rate K [W / m 2 K] representing the heat transfer performance of the heat transfer section during the melting operation by using a heat transfer section dedicated to melting in which a refrigerant having a temperature equal to or higher than the melting temperature of the refrigerant storage medium flows only during the melting operation. If the temperature difference ΔT [K] between the refrigerant and the refrigerant is the same, the effective heat transfer area during the melting operation can be increased in the same heat storage tank volume and the same cold storage amount. The amount of heat recovered from the tank can be increased, and air bubbles are blown out to the liquid storage medium between the solid-state heat storage unit and the outer surface of the heat transfer unit on the side of the heat transfer unit that performs the cold storage operation. When air bubbles are passed, the heat transfer performance on the outer surface of the heat transfer section is improved, and Heat recovery from the heat storage tank per increases. The heat recovery amount is larger than in the case of the fourth embodiment.

【0070】実施の形態6.図15は実施の形態6の蓄
熱システム図である。実施の形態1〜5で示した気泡吹
出し管4、気泡吹出し穴5、加圧気体生成供給装置6
を、加圧液体吹出し管4’、加圧液体吹出し穴5’、加
圧液体生成供給装置6’に置きかえている。その他の構
成は実施の形態1〜5と同様である。
Embodiment 6 FIG. FIG. 15 is a diagram of a heat storage system according to the sixth embodiment. Bubble blowing tube 4, bubble blowing hole 5, pressurized gas generation and supply device 6 described in Embodiments 1 to 5
Is replaced by a pressurized liquid blow-out pipe 4 ', a pressurized liquid blow-out hole 5', and a pressurized liquid generation and supply device 6 '. Other configurations are the same as those of the first to fifth embodiments.

【0071】融解運転の動作について図15を用いて説
明する。伝熱部3内側の冷媒流通路に、蓄冷媒体2の融
解温度より高い温度の冷媒が負荷側ユニット群8から、
或いは熱源ユニット7から流れ込むと、伝熱部3外面ま
わりに付着生成された固体蓄冷媒体2bは内側から順々
に融解する。この時、伝熱部3内流通冷媒は蓄冷媒体2
の融解潜熱を使用して蓄冷媒体2中に放熱する。蓄冷媒
体2の融解は伝熱部3に付着している固体蓄冷媒体2b
の最も内側から融解されて液体になり、伝熱部3外面と
固体蓄冷媒体2bの間に液体蓄冷媒体2aが存在し始め
る。融解運転時に加圧気体生成装置6’で加圧気体を生
成し、加圧液体吹出し管4’を介して加圧液体吹出し穴
5’から加圧液体を下方から上向きに吹出すと、伝熱部
3外面上付近の液体蓄冷媒体2aは上向き流れを生じ
る。加圧液体を上へ吹出す概略図を図16に示す。
The operation of the melting operation will be described with reference to FIG. A refrigerant having a temperature higher than the melting temperature of the refrigerant storage medium 2 is supplied from the load-side unit group 8 to the refrigerant flow passage inside the heat transfer section 3.
Alternatively, when flowing from the heat source unit 7, the solid refrigerant body 2b adhered and generated around the outer surface of the heat transfer section 3 is melted sequentially from the inside. At this time, the refrigerant flowing through the heat transfer section 3 is
The heat is dissipated into the storage medium 2 using the latent heat of fusion. The melting of the coolant 2 is caused by the solid coolant 2b attached to the heat transfer section 3.
Is melted from the innermost portion to become a liquid, and the liquid refrigerant 2a starts to exist between the outer surface of the heat transfer section 3 and the solid refrigerant 2b. When a pressurized gas is generated by the pressurized gas generator 6 ′ during the melting operation and the pressurized liquid is blown upward from below from the pressurized liquid blowout hole 5 ′ through the pressurized liquid blowout pipe 4 ′, heat transfer is performed. The liquid refrigerant body 2a near the upper surface of the portion 3 generates an upward flow. FIG. 16 is a schematic diagram of blowing the pressurized liquid upward.

【0072】伝熱部3外面と固体蓄冷媒体2bに挟まれ
た液体蓄冷媒体2aに上向き流れが生じると、伝熱部3
外面上の伝熱は自然対流熱伝達から強制対流熱伝達が支
配的になり、伝熱性能が向上し、単位時間あたりの蓄熱
槽1からの熱回収量が増加する。
When an upward flow occurs in the liquid storage medium 2a sandwiched between the outer surface of the heat transfer section 3 and the solid storage medium 2b, the heat transfer section 3
In the heat transfer on the outer surface, forced convection heat transfer becomes dominant from natural convection heat transfer, heat transfer performance is improved, and the amount of heat recovered from the heat storage tank 1 per unit time is increased.

【0073】また、加圧液体吹出し穴5’が伝熱部3外
面に近いと、伝熱部3外面と固体蓄熱媒体2bの間の加
圧液体を流通させたい液体蓄冷媒体2aに加圧液体を流
通させる確率が上がって効率よく加圧液体を吹出すこと
ができるため、伝熱部3外面の伝熱性能が向上して単位
時間当たりの蓄熱槽1からの熱回収量を増加することが
できる。
When the pressurized liquid blow-out hole 5 ′ is close to the outer surface of the heat transfer section 3, the pressurized liquid is supplied to the liquid refrigerant storage body 2 a where the pressurized liquid between the outer surface of the heat transfer section 3 and the solid heat storage medium 2 b is desired to flow. Is increased and the pressurized liquid can be blown out efficiently, so that the heat transfer performance of the outer surface of the heat transfer section 3 is improved, and the amount of heat recovered from the heat storage tank 1 per unit time can be increased. it can.

【0074】加圧液体吹出し穴5’が蓄熱槽1下部全体
に均一に設置してある場合は、伝熱部3外面と固体蓄熱
媒体2bの間の液体蓄冷媒体2aに流通しない加圧液体
が発生して、流通する加圧液体の量が減り、伝熱部3外
面の伝熱性能の向上度合いが小さい。一方、伝熱部3外
面と固体蓄熱媒体2bの間の液体蓄冷媒体2aに流通し
ない加圧液体が固体蓄冷媒体2bの外表面を流通して、
固体蓄冷媒体2bが無駄に融解して潜熱を損失してしま
う現象が起こる。伝熱性能向上効率を考えると、1つの
伝熱部3外面と固体蓄熱媒体2bの間の液体蓄冷媒体2
aに対し、1つの加圧液体吹出し穴5’を対応させて、
吹出した加圧液体を確実にその液体蓄冷媒体2aに送り
こむようにしたい。
When the pressurized liquid blow-out hole 5 ′ is uniformly installed in the entire lower part of the heat storage tank 1, the pressurized liquid that does not flow through the liquid refrigerant medium 2 a between the outer surface of the heat transfer unit 3 and the solid heat storage medium 2 b is removed. The amount of generated and circulated pressurized liquid is reduced, and the degree of improvement in the heat transfer performance of the outer surface of the heat transfer unit 3 is small. On the other hand, the pressurized liquid that does not flow through the liquid refrigerant 2a between the outer surface of the heat transfer unit 3 and the solid heat storage medium 2b flows through the outer surface of the solid refrigerant 2b,
A phenomenon occurs in which the solid storage medium 2b is melted wastefully and loses latent heat. In consideration of the heat transfer performance improvement efficiency, the liquid storage medium 2 between the outer surface of one heat transfer unit 3 and the solid heat storage medium 2b
a corresponding to one pressurized liquid blowing hole 5 ′
We want to ensure that the blown out pressurized liquid is sent to the liquid refrigerant 2a.

【0075】加圧液体吹出し管4’を図17のように一
度、蓄熱槽1の側面上を介して気体加圧生成供給装置
6’に連結すると、加圧液体吹出し管4’の着脱が簡易
になり、蓄熱槽1容器に穴を開けなくてすむので、蓄熱
槽1を例えばダイナミック氷蓄熱蓄熱槽などの他用途に
転用することが可能になる。また蓄熱槽1上面カバーを
溶接ではなく蓋をかぶせ、着脱可能な状態にする。以上
により加工作業や解体作業が簡易化され、別用途への転
用も可能になる。
When the pressurized liquid blow-out pipe 4 'is once connected to the gas pressurized gas generating and supplying device 6' via the side surface of the heat storage tank 1 as shown in FIG. Therefore, since it is not necessary to make a hole in the heat storage tank 1 container, the heat storage tank 1 can be diverted to another use such as a dynamic ice heat storage heat storage tank. The upper cover of the heat storage tank 1 is not covered by welding but is covered with a lid so as to be detachable. As described above, the processing operation and the disassembly operation are simplified, and can be diverted to another use.

【0076】以上により、実施の形態6で示した蓄熱シ
ステムを使用すれば、伝熱部外面と固体蓄冷媒体の間の
液体蓄冷媒体中に加圧液体吹出し穴を備えて、融解運転
時に加圧液体生成装置で加圧液体を生成し、加圧液体吹
出し管を介して加圧液体吹出し穴から加圧液体を吹出す
ので、液体蓄冷媒体中を伝熱部外面上に沿って、かつ周
辺の液体に強制流れや乱れを生じながら加圧液体が上方
へ流通するので、伝熱部外面の伝熱性能が向上して、単
位時間当たりの蓄熱槽からの熱回収量の増加を実現する
ことができる。また、上昇速度を調整できない気泡と異
なり、加圧量を調節することで、加圧液体吹出し穴から
吹出す加圧液体の流速を制御することができるので、液
体蓄冷媒体の流速制御が容易になる。さらに、気泡に比
べ不規則な動きが少ないので、目標位置又は領域により
確実に加圧液体を送り込める。
As described above, when the heat storage system shown in Embodiment 6 is used, a pressurized liquid blowing hole is provided in the liquid refrigerant between the outer surface of the heat transfer section and the solid refrigerant, and the pressure is increased during the melting operation. The pressurized liquid is generated by the liquid generating device, and the pressurized liquid is blown out from the pressurized liquid blowout hole through the pressurized liquid blowout pipe. Since the pressurized liquid flows upward while forcibly flowing and disturbing the liquid, the heat transfer performance of the outer surface of the heat transfer section is improved, and the amount of heat recovery from the heat storage tank per unit time can be increased. it can. Also, unlike air bubbles whose rising speed cannot be adjusted, by adjusting the amount of pressurization, the flow rate of the pressurized liquid blown out from the pressurized liquid outlet can be controlled, so that the flow rate control of the liquid refrigerant storage medium can be easily performed. Become. Further, since the irregular movement is less than that of the bubble, the pressurized liquid can be more reliably sent to the target position or area.

【0077】実施の形態7.実施の形態1〜6で示した
気泡吹出し管4、気泡吹出し穴5、加圧気体生成供給装
置6及び加圧液体吹出し管4’、加圧液体吹出し穴
5’、加圧液体生成供給装置6’の設置例図を図18に
示す。図において、3は伝熱部、4は気泡吹出し管、5
は気泡吹出し穴、6は加圧気体生成供給装置、4’は加
圧液体吹出し管、5’は加圧液体吹出し穴、6’は加圧
液体生成供給装置、9は伝熱部下部固定器具、10は伝
熱部上部固定器具で、これらは実施の形態1の同一符号
のものに相当する。
Embodiment 7 Bubble blowing tube 4, bubble blowing hole 5, pressurized gas generating and supplying device 6 and pressurized liquid blowing tube 4 ', pressurized liquid blowing hole 5', and pressurized liquid generating and supplying device 6 described in the first to sixth embodiments. FIG. 18 shows an installation example diagram of '. In the figure, 3 is a heat transfer section, 4 is a bubble blowing pipe, 5
Is a bubble blowing hole, 6 is a pressurized gas generating and supplying device, 4 'is a pressurized liquid discharging tube, 5' is a pressurized liquid discharging hole, 6 'is a pressurized liquid generating and supplying device, and 9 is a fixing device at the lower part of the heat transfer section. Reference numeral 10 denotes a heat transfer unit upper fixing device, which corresponds to the same reference numeral in the first embodiment.

【0078】伝熱部下部固定器具9内を空洞にしてその
中を気体或いは加圧液体が流通するような構造にして、
加圧液体吹出し管4’を兼ねている。伝熱部下部固定器
具9には固定箇所に気泡吹出し穴或いは加圧液体吹出し
穴を設置すると、実施の形態1〜6で説明した効果を得
ながら、伝熱部株固定器具内と気泡吹出し管4、加圧液
体吹出し管4’を兼ねることができるので蓄熱槽コスト
が低下する。
The lower part 9 of the heat transfer part is made hollow so that gas or pressurized liquid can flow through it.
Also serves as a pressurized liquid blowing pipe 4 '. When a bubble blowout hole or a pressurized liquid blowout hole is installed at the fixing portion of the heat transfer portion lower fixing device 9, while the effects described in the first to sixth embodiments are obtained, the inside of the heat transfer portion stock fixing device and the bubble blowout tube are provided. 4. The cost of the heat storage tank can be reduced because it can also serve as the pressurized liquid blowing pipe 4 '.

【0079】以上により、実施の形態7で示した内融式
蓄熱システムを使用すれば、伝熱部下部固定器具内と気
泡吹出し管4及び加圧液体吹出し管4’を兼ねることが
できるので蓄熱槽内の部品点数が減少し、蓄熱槽コスト
が低下するとともに、槽内の障害物が減少するので、障
害物の熱容量分の熱損失が低減する。
As described above, when the internal fusion type heat storage system shown in the seventh embodiment is used, the inside of the fixing device at the lower part of the heat transfer section can be used as the bubble blowing pipe 4 and the pressurized liquid blowing pipe 4 ′. Since the number of components in the tank is reduced, the cost of the heat storage tank is reduced, and the number of obstacles in the tank is reduced, so that the heat loss corresponding to the heat capacity of the obstacles is reduced.

【0080】実施の形態8.図19に実施の形態8の蓄
熱システム概略図を示す。図において、1は蓄熱槽、2
は蓄冷媒体、3は銅製伝熱部、4は気泡吹出し管、5は
気泡吹出し穴、6は加圧気体生成供給装置、7は熱源ユ
ニット、8は負荷ユニット、11はPH検知装置、12
はPH制御装置で、実施の形態1と同一符号のものに相
当するものは同一符号を付してある。
Embodiment 8 FIG. FIG. 19 shows a schematic diagram of a heat storage system according to the eighth embodiment. In the figure, 1 is a heat storage tank, 2
Is a refrigerant storage unit, 3 is a copper heat transfer unit, 4 is a bubble blowing tube, 5 is a bubble blowing hole, 6 is a pressurized gas generation and supply device, 7 is a heat source unit, 8 is a load unit, 11 is a PH detector, 12
Denotes a PH control device, and the same reference numerals as those in the first embodiment denote the same components.

【0081】ここに銅と水内溶存酸素量と水PHの関係
を図20に示す。溶存酸素は水道水を蓄熱槽入れた段階
ですでに飽和状態であり、コントロールは難しい。また
飽和状態でもPHをうまく管理すれば銅イオンが析出す
ることはない。一方、水PHが低くなり酸性になると、
銅製伝熱部から銅イオンが析出し、銅管に穴が開く恐れ
がある。
FIG. 20 shows the relationship between the amount of dissolved oxygen in copper and water and the water PH. Dissolved oxygen is already saturated when tap water is put in the thermal storage tank, and it is difficult to control it. Even in the saturated state, if the pH is properly controlled, no copper ion is deposited. On the other hand, when the water PH becomes low and becomes acidic,
Copper ions may precipitate from the copper heat transfer section, causing a hole in the copper tube.

【0082】そこで常時蓄熱槽内の水のPHを検出し
て、もしPHが7より低くなる場合は、PH制御装置か
ら銅イオンよりイオン化しやすいマグネシウムを蓄熱槽
内に放出して、銅製伝熱部からの銅イオン析出現象が起
きないようにする。
Then, the pH of the water in the heat storage tank is constantly detected, and if the pH becomes lower than 7, magnesium which is more easily ionized than copper ions is released from the PH controller into the heat storage tank, and the copper heat transfer medium is discharged. Prevent the phenomenon of copper ion precipitation from the part.

【0083】以上により、実施の形態8で示した蓄熱シ
ステムを使用すれば、蓄熱槽内のPHを常時検出して、
PHが酸性に転じそうな場合はPH制御装置から銅より
イオン化しやすい金属を蓄熱槽内に放出して銅製伝熱部
の銅イオン化現象が起きないようにすることで、銅製伝
熱部の寿命を長く保つことができる。
As described above, if the heat storage system described in the eighth embodiment is used, the PH in the heat storage tank is always detected,
When the pH is likely to turn acidic, the PH controller releases the metal that is easier to ionize than copper into the heat storage tank to prevent the copper ionization phenomenon from occurring in the copper heat transfer section, thereby extending the life of the copper heat transfer section. Can be kept long.

【0084】実施の形態9.図21に実施の形態9の蓄
熱システム概略図を示す。1は蓄熱槽、2は蓄冷媒体、
3は伝熱部、4は気泡吹出し管、5は気泡吹出し穴、6
は加圧気体生成供給装置、7は熱源ユニット、8は負荷
ユニット、13は冷媒液ポンプで、その他も含め実施の
形態1と同一符号、名称のものに相当するものは同一符
号、名称を付してある。
Embodiment 9 FIG. FIG. 21 shows a schematic diagram of a heat storage system according to the ninth embodiment. 1 is a heat storage tank, 2 is a refrigerant storage body,
3 is a heat transfer part, 4 is a bubble blowing tube, 5 is a bubble blowing hole, 6
Is a pressurized gas generation and supply device, 7 is a heat source unit, 8 is a load unit, 13 is a refrigerant liquid pump, and the same reference numerals and names as those in Embodiment 1 including the others have the same reference numerals and names. I have.

【0085】冷媒液ポンプ13は圧縮仕事がほとんどな
いので、圧縮機やガスポンプに比べて消費電力量が少な
い。
Since the refrigerant liquid pump 13 has little compression work, it consumes less power than a compressor or a gas pump.

【0086】冷媒液ポンプ13を使用して、冷媒にフロ
ンR22を用いて冷媒循環をする動作例を示す。まず、
蓄熱槽1内の固体蓄冷媒体2bの潜熱だけで負荷側ユニ
ット8群の冷房負荷をまかなうピークカット運転時につ
いて説明する。冷媒液ポンプ13を流出した冷媒は7℃
液状態で負荷側ユニット群に流入し、ここで吸熱して蒸
発作用によってガス化する。ガス化した冷媒は途中、液
管上の負荷側の弁、及び膨張作用を行わない膨張装置を
介して蓄熱槽伝熱部3に流入する。この時、負荷側ユニ
ットから蓄熱槽伝熱部3入口までの圧力損失が0.05
MPaあるとすると、蓄熱槽伝熱部3入口の冷媒温度は
5℃くらいになる。蓄熱槽伝熱部3で冷媒は放熱して凝
縮作用により液化した後、冷媒液ポンプ13入口に流入
する。
An operation example in which the refrigerant liquid pump 13 is used to circulate the refrigerant using Freon R22 as the refrigerant will be described. First,
The peak cut operation in which the cooling load of the group of load-side units 8 is covered only by the latent heat of the solid-state storage medium 2b in the heat storage tank 1 will be described. The refrigerant flowing out of the refrigerant liquid pump 13 is at 7 ° C.
It flows into the load-side unit group in a liquid state, where it absorbs heat and is gasified by an evaporating action. The gasified refrigerant flows into the heat storage tank heat transfer unit 3 via a valve on the load side on the liquid pipe and an expansion device that does not perform expansion. At this time, the pressure loss from the load side unit to the inlet of the heat storage tank heat transfer section 3 was 0.05
If there is MPa, the refrigerant temperature at the inlet of the heat storage tank heat transfer section 3 becomes about 5 ° C. The refrigerant radiates heat in the heat storage tank heat transfer unit 3 and is liquefied by the condensation action, and then flows into the inlet of the refrigerant liquid pump 13.

【0087】従来の氷蓄熱システムにおける融解運転で
は、蓄熱槽伝熱部3に流入する冷媒は圧縮機やガスポン
プで圧縮された高圧ガス状態であった。それが冷媒液ポ
ンプ13を用いて循環する場合は負荷側ユニット群8の
蒸発温度とほとんど変わらない温度になる。蓄熱槽1内
の伝熱部3の有効外側面積A[m2]、伝熱部3の伝熱性能
を表す熱通過率K[W/m2K]を一定とした場合、式(1)
より蓄熱槽1からの回収熱量は伝熱部3内側流通冷媒と
蓄冷媒体2の温度差によって決まる。 Q=A・K・ΔT 式(1)
In the melting operation in the conventional ice heat storage system, the refrigerant flowing into the heat storage tank heat transfer section 3 was in a high-pressure gas state compressed by a compressor or a gas pump. When it circulates using the refrigerant liquid pump 13, the temperature becomes almost the same as the evaporation temperature of the load side unit group 8. Assuming that the effective outside area A [m 2 ] of the heat transfer section 3 in the heat storage tank 1 and the heat transfer rate K [W / m 2 K] representing the heat transfer performance of the heat transfer section 3 are constant, Equation (1)
The amount of heat recovered from the heat storage tank 1 is determined by the temperature difference between the refrigerant flowing inside the heat transfer section 3 and the refrigerant storage medium 2. Q = A · K · ΔT Equation (1)

【0088】例えば、蓄熱槽伝熱部3入口の冷媒温度を
従来は20℃、冷媒液ポンプ13を使用した場合は5
℃、蓄冷媒体2の温度を0℃とすると、回収熱量比は Q従来:Q冷媒液ポンプ =A・K・(20℃−0℃):A・K・(5℃−0℃) =4:1 式(11) となり、従来の融解方式をそのまま用いると単位時間あ
たりの蓄熱槽1からの熱回収量は4分の1になる。
For example, the temperature of the refrigerant at the inlet of the heat storage tank heat transfer section 3 is conventionally 20 ° C., and when the refrigerant liquid pump 13 is used, it is 5 ° C.
Assuming that the temperature of the refrigerant storage medium 2 is 0 ° C., the recovered heat ratio is Q Conventional: Q refrigerant liquid pump = AK · (20 ° C.-0 ° C.): AK · (5 ° C.-0 ° C.) = 4 : Equation (11), and if the conventional melting method is used as it is, the amount of heat recovered from the heat storage tank 1 per unit time is reduced to 4.

【0089】そこで、伝熱部3外面と固体蓄冷媒体2b
の間の液体蓄冷媒体2aに気泡を吹出して、伝熱性能を
向上させることで、従来システムに対して伝熱部3内側
流通冷媒と蓄冷媒体2の温度差が小さくなっても、従来
と同様の熱回収量を獲得する。実施の形態1の実験結果
によると、 ・気泡吹出し時の平均熱通過率=566[W/m2K] ・気泡吹出しが無い場合の平均熱通過率=140[W/m
2K] なので、伝熱部3が同一伝熱面積A[m2]の場合、 ・Q従来= A・140・(20℃−0℃)=2800・A[W] ・Q冷媒液ポンプ=A・566・(5℃−0℃)=2830・A[W] となり、気泡吹出しにより内融式蓄熱システムに冷媒液
ポンプを備えても重来と同等の熱回収量を得ることがで
きる。
Therefore, the outer surface of the heat transfer section 3 and the solid refrigerant
By blowing air bubbles into the liquid storage medium 2a during the heat transfer and improving the heat transfer performance, even if the temperature difference between the refrigerant circulating inside the heat transfer unit 3 and the storage medium 2 becomes smaller than in the conventional system, it is the same as before. Of heat recovery. According to the experimental results of Embodiment 1, the average heat transmittance at the time of blowing bubbles = 566 [W / m 2 K] The average heat transmittance at the time of no blowing bubbles = 140 [W / m]
2 K], so if the heat transfer section 3 has the same heat transfer area A [m 2 ], Q conventional = A · 140 · (20 ° C-0 ° C) = 2800 · A [W] · Q refrigerant liquid pump = A · 566 · (5 ° C.−0 ° C.) = 2830 · A [W], and even if a refrigerant liquid pump is provided in the internal melting type heat storage system by blowing bubbles, the same amount of heat recovery as that of a heavier can be obtained.

【0090】以上により、実施の形態9で示した蓄熱シ
ステムを使用すれば、融解運転中に伝熱部3外面と固体
蓄冷媒体2bの間の液体蓄冷媒体2aに気泡を吹出せ
ば、冷媒液ポンプによる冷媒循環を行っても従来と同等
の蓄熱槽からの熱回収量を得ることができる。
As described above, if the heat storage system shown in the ninth embodiment is used, if bubbles are blown out to the liquid refrigerant 2a between the outer surface of the heat transfer section 3 and the solid refrigerant 2b during the melting operation, the refrigerant Even if the refrigerant is circulated by the pump, the same amount of heat recovered from the heat storage tank as that of the related art can be obtained.

【0091】実施の形態10.図21に実施の形態10
の蓄熱システム概略図を示す。システム構成は実施の形
態9と同様であり、その説明を省略する。またピークシ
フト、ピークカット運転を行う場合の1日の冷房運転負
荷の例を図22に示す。次に融解運転における気泡吹出
し或いは液体吹出しタイミングについて説明する。
Embodiment 10 FIG. FIG. 21 shows Embodiment 10
1 shows a schematic diagram of a heat storage system. The system configuration is the same as that of the ninth embodiment, and a description thereof will be omitted. FIG. 22 shows an example of the cooling operation load per day when the peak shift and peak cut operations are performed. Next, the bubble blowing or liquid blowing timing in the melting operation will be described.

【0092】蓄熱槽を設けて蓄熱を行なう主目的は電力
消費量の昼間と夜間の負荷平準化である。夜間電力を使
用して電力を冷熱エネルギーに変換して蓄えて、昼間に
蓄えた冷熱エネルギーを使用することで昼間の電力消費
量を削減する。蓄熱槽に蓄えた冷熱エネルギーの使用方
法において、熱源ユニットを運転しないで負荷側ユニッ
ト群の冷房負荷をすべて蓄熱槽内の冷熱エネルギーだけ
で賄う運転をピークカット運転と呼び、熱源側ユニット
内の圧縮機或いはガスポンプなどによる冷房運転と並行
して賄う運転をピークシフト運転と呼ぶ。最近の電力需
要急増による電力供給量のひっ迫状態を緩和する上で、
昼間の特に電力需要が大きい時間帯に行なうピークカッ
ト運転は効果が大きい。
The main purpose of providing heat storage by providing a heat storage tank is to level the power consumption during the day and night. Power is converted to cold energy using nighttime power and stored, and daytime power consumption is reduced by using the cold energy stored during the day. In the method of using the cold energy stored in the heat storage tank, the operation in which the cooling load of the load side unit group is entirely covered by only the cold energy in the heat storage tank without operating the heat source unit is called peak cut operation, and the compression in the heat source side unit is performed. The operation covered in parallel with the cooling operation by the heat pump or the gas pump is called a peak shift operation. In alleviating the tightness of power supply due to the recent surge in power demand,
The peak cut operation performed during the daytime, especially during a time when the power demand is large, has a great effect.

【0093】夜間20時から早朝6時までは蓄熱運転を
行なう。この場合の冷媒の流れを図21について説明す
る。液配管途中の負荷側ユニット側の弁は閉状態であ
り、熱源側ユニット側の弁は開状態であり、液配管と蓄
熱槽1を介する配管途中にある膨張装置はある開度にな
っている。熱源ユニット7に備えられている圧縮機やガ
スポンプ等の圧縮手段で圧縮された高圧ガス冷媒は、同
じく熱源ユニット7に備えられている熱交換器に流通し
て凝縮作用により冷媒は高圧液状態になった後、液配管
上の熱源側ユニットよりの弁を介し、蓄熱槽1手前の膨
張装置を介して低圧二相状態となり蓄熱槽内伝熱部3へ
と流通する。伝熱部3では蒸発作用により冷媒は低圧ガ
ス状態となり、熱源側ユニット7に備えられた圧縮機や
ガスポンプの吸入側へと戻る。蓄熱槽1では冷媒の蒸発
作用により液体蓄冷媒体の温度が低下し、やがて凝固に
より固体蓄冷媒体が出現する。
The heat storage operation is performed from 20:00 at night to 6:00 in the early morning. The flow of the refrigerant in this case will be described with reference to FIG. The valve on the load side unit side in the middle of the liquid pipe is closed, the valve on the heat source side unit is open, and the expansion device in the middle of the pipe through the liquid pipe and the heat storage tank 1 has an opening degree. . The high-pressure gas refrigerant compressed by compression means such as a compressor and a gas pump provided in the heat source unit 7 also flows through a heat exchanger provided in the heat source unit 7 to convert the refrigerant into a high-pressure liquid state by a condensation action. After that, the liquid enters a low-pressure two-phase state through a valve from the heat source side unit on the liquid pipe and an expansion device in front of the heat storage tank, and flows to the heat transfer unit 3 in the heat storage tank. In the heat transfer unit 3, the refrigerant becomes a low-pressure gas state by the evaporating action, and returns to the suction side of the compressor or the gas pump provided in the heat source unit 7. In the heat storage tank 1, the temperature of the liquid refrigerant decreases due to the evaporating effect of the refrigerant, and a solid refrigerant appears by solidification.

【0094】このとき、負荷側ユニット8で冷房負荷が
ある場合は、冷媒の一部を負荷側ユニット8に流通させ
る。蓄熱槽1の伝熱部3へ流通させる冷媒量と負荷側ユ
ニット8へ流通させる冷媒量の比は、蓄熱槽1手前の膨
張装置と負荷側ユニット8に備えられている液ラインに
備えられている膨張装置の各開度によって一意的に決ま
る。
At this time, when there is a cooling load in the load side unit 8, a part of the refrigerant is circulated to the load side unit 8. The ratio of the amount of the refrigerant circulated to the heat transfer section 3 of the heat storage tank 1 to the amount of the refrigerant circulated to the load-side unit 8 is determined by the expansion device in front of the heat storage tank 1 and the liquid line provided in the load-side unit 8. Is uniquely determined by the degree of opening of the expansion device.

【0095】次に朝8時から昼13時まで、及び夕方1
6時から夕方18時まではピークシフト冷房運転を行な
う。この場合の流れを図21について説明する。液配管
途中の負荷側ユニット側の弁は開状態であり、熱源側ユ
ニット側の弁は開状態であり、液配管と蓄熱槽1を介す
る配管途中にある膨張装置は膨張作用を行わない。熱源
ユニット7に備えられている圧縮機やガスポンプ等の圧
縮手段で圧縮された高圧ガス冷媒の一部は、蓄熱槽1内
の伝熱部3へと流通する。伝熱部3では凝縮作用により
冷媒は中圧液状態となり、膨張装置を介して、冷媒合流
点へと流れ込む。
Next, from 8:00 in the morning to 13:00 in the afternoon, and 1 in the evening
Peak shift cooling operation is performed from 6:00 to 18:00 in the evening. The flow in this case will be described with reference to FIG. The valve on the load side unit side in the middle of the liquid pipe is open, the valve on the heat source side unit is open, and the expansion device located in the middle of the pipe between the liquid pipe and the heat storage tank 1 does not perform the expansion action. Part of the high-pressure gas refrigerant compressed by compression means such as a compressor or a gas pump provided in the heat source unit 7 flows to the heat transfer unit 3 in the heat storage tank 1. In the heat transfer section 3, the refrigerant becomes a medium-pressure liquid state due to the condensation action, and flows into the refrigerant junction via the expansion device.

【0096】一方、圧縮機やガスポンプで圧縮された高
圧ガス冷媒の残りは熱源ユニット7に備えれられている
熱交換器に流通して凝縮作用により冷媒は高圧液状態に
なった後、熱源ユニット7に備えられている膨張装置で
少し減圧して先の合流点へと流れ込む。合流点で合流し
た中圧液状態の冷媒は負荷側ユニット8へ流通して、膨
張、蒸発作用により低圧ガス状態となって流出し、熱源
側ユニット7の圧縮機やガスポンプの吸入口へと戻る。
このとき蓄熱槽1では冷媒の熱放出により固体蓄冷媒体
の融解、及び液体蓄冷媒体の温度上昇が起きる。
On the other hand, the remainder of the high-pressure gas refrigerant compressed by the compressor or the gas pump flows through the heat exchanger provided in the heat source unit 7 and the refrigerant is turned into a high-pressure liquid state by the condensation action. The pressure is reduced a little by the expansion device provided in 7 and flows into the junction. The medium-pressure liquid refrigerant that has joined at the junction flows into the load-side unit 8, flows out in a low-pressure gas state by expansion and evaporation, and returns to the suction port of the compressor or gas pump of the heat-source-side unit 7. .
At this time, in the heat storage tank 1, the heat release of the refrigerant causes the solid refrigerant storage medium to melt, and the temperature of the liquid refrigerant storage medium to rise.

【0097】次に昼13時から夕方16時まではピーク
カット冷房運転を行なう。この場合の冷媒の流れを図2
1について説明する。液配管途中の負荷側ユニット側の
弁は開状態であり、熱源側ユニット側の弁は閉状態であ
り、液配管と蓄熱槽1を介する配管途中にある膨張装置
は膨張作用を行わない。液ポンプ13吐出側の液冷媒
は、負荷側ユニット群8に流入する。この時、運転負荷
側ユニット群8の膨張装置は膨張作用を行なわない状態
に設定しておく。運転負荷側ユニット群8では蒸発作用
により冷媒はガス状態となり、蓄熱槽1の伝熱部3に流
入する。伝熱部3では凝縮作用により冷媒は液状態とな
り、液ポンプ13吸入口へと戻る。
Next, a peak cut cooling operation is performed from 13:00 in the day to 16:00 in the evening. The flow of the refrigerant in this case is shown in FIG.
1 will be described. The valve on the load side unit side in the middle of the liquid pipe is open, the valve on the heat source side unit is closed, and the expansion device in the middle of the pipe through the liquid pipe and the heat storage tank 1 does not perform an expansion action. The liquid refrigerant on the discharge side of the liquid pump 13 flows into the load side unit group 8. At this time, the expansion device of the operating load side unit group 8 is set to a state in which the expansion operation is not performed. In the operation load side unit group 8, the refrigerant becomes a gas state by the evaporating action, and flows into the heat transfer unit 3 of the heat storage tank 1. In the heat transfer section 3, the refrigerant is in a liquid state by the condensation action and returns to the liquid pump 13 suction port.

【0098】ピークカット運転では熱源側の圧縮機やガ
スポンプなどの圧縮作用の大きい機器の運転を行なわ
ず、液冷媒を送り出すための圧縮作用だけを行なう圧縮
作用の小さい液ポンプ13を運転する。それ故、ピーク
カット運転の電力消費量はピークシフト運転に比べて小
さい。
In the peak cut operation, a device having a large compression action such as a compressor and a gas pump on the heat source side is not operated, and the liquid pump 13 having a small compression action for performing only the compression action for sending out the liquid refrigerant is operated. Therefore, the power consumption of the peak cut operation is smaller than that of the peak shift operation.

【0099】気泡吹出しや液体吹出しはピークカット運
転の時に行なう。その場合、朝8時から昼13時までの
ピークシフト運転により、固体蓄冷媒体の融解が行なわ
れ、ピークシフト運転開始の昼13時の時点で、伝熱部
3表面と固体蓄冷媒体の間には液体蓄冷媒体十分に存在
し、液体蓄冷媒体内に気泡吹出しや液体吹出しによる伝
熱性能向上効果が確実に得られることになる。
Bubble blowing and liquid blowing are performed during the peak cut operation. In this case, the solid storage medium is melted by the peak shift operation from 8:00 to 13:00 in the morning, and between the surface of the heat transfer unit 3 and the solid storage medium at 13:00 of the start of the peak shift operation. Is sufficiently present in the liquid storage medium, and the effect of improving the heat transfer performance by blowing bubbles or blowing liquid into the liquid storage medium can be reliably obtained.

【0100】また、液ポンプ13は圧縮作用が小さいた
め、吐出側と吸入側の圧力差がほとんどない。そのた
め、蓄熱槽1の伝熱部3に流入する冷媒温度も低く、蓄
熱槽1内の蓄冷媒体との温度差がとれないため、圧縮機
やガスポンプから吐出される冷媒による蓄熱槽1凝縮作
用時と比べて熱回収量が小さい。それを補うために気泡
吹出しや液体吹出しを行なう。
Further, since the liquid pump 13 has a small compression action, there is almost no pressure difference between the discharge side and the suction side. Therefore, the temperature of the refrigerant flowing into the heat transfer section 3 of the heat storage tank 1 is also low, and the temperature difference between the refrigerant and the heat storage medium in the heat storage tank 1 cannot be obtained, so that the refrigerant discharged from the compressor or the gas pump causes the heat storage tank 1 to condense. The amount of heat recovery is smaller than that of. Bubble blowing and liquid blowing are performed to compensate for this.

【0101】以下に具体例を示す。冷媒はR22とす
る。 [A]圧縮機やガスポンプ等の圧縮手段から吐出される場
合:冷媒は1.1[MPa](飽和温度Tca=26℃) [B]液ポンプから吐出される場合:冷媒0.61[MP
a](飽和温度Tcb=6℃) とする。また、蓄冷媒体を水(氷)とし、温度Tw=0
℃とする。この場合、蓄熱槽で回収できる熱量Q[W]式
を以下に示す。 [A]Q=A・Ka・(Tca−Tw)=26A・Ka [B]Q=A・Kb・(Tcb−Tw)=6A・Kb A:伝熱部面積[m2] K:熱通過率[W/m2K]
A specific example will be described below. The refrigerant is R22. [A] When discharged from a compression means such as a compressor or a gas pump: refrigerant is 1.1 [MPa] (saturation temperature T ca = 26 ° C.) [B] When discharged from a liquid pump: refrigerant 0.61 [ MP
a] (saturation temperature T cb = 6 ° C.). Further, water (ice) is used as the refrigerant storage medium, and the temperature Tw = 0.
° C. In this case, the amount of heat Q [W] that can be recovered in the heat storage tank is shown below. [A] Q = A · K a · (T ca −T w ) = 26 A · K a [B] Q = A · K b · (T cb −T w ) = 6 A · K b A: Heat transfer area [m 2 ] K: Heat transmission rate [W / m 2 K]

【0102】もしKa=Kbであれば、圧縮機やガスポン
プ使用時と比べて液ポンプ使用時は熱回収量が6/26
=23%と約1/4になる。そこで、液ポンプ13使用
時には、熱通過率が4倍になる効果を持つ気泡吹出し
や、同様に熱通過率を向上させる効果を持つ液体吹出し
を行なって圧縮機やガスポンプ使用時と同等の熱回収量
を保持させる。
[0102] If If K a = K b, the compressor and the gas pump when using a liquid pump as compared to when using heat recovery amount 6/26
= 23%, which is about 1/4. Therefore, when the liquid pump 13 is used, air bubbles having the effect of quadrupling the heat transfer rate or liquid blowing having the effect of improving the heat transfer rate are performed to recover the same heat as when the compressor or gas pump is used. Hold the volume.

【0103】以上より本実施の形態によると、気体吹出
しや液体吹出しをピークカット運転時に行なうことによ
って、ピークシフト運転時と同等の冷房負荷量を提供す
る運転が可能になる。
As described above, according to the present embodiment, by performing the gas blowing and the liquid blowing during the peak cut operation, it is possible to perform the operation providing the same cooling load as that during the peak shift operation.

【0104】実施の形態11.図23は実施の形態11
の蓄熱システムのうち、伝熱管とその周辺構造を示す斜
視図である。図23において、3は伝熱管、20は伝熱
管3に固定され、伝熱管表面と所定の間隔をおいて周囲
を覆う覆いで、熱伝導材料より成り、下方に向かって径
方向に広がった円筒形状をしている。その他の構成は実
施の形態1と同様であり、その説明を省略する。
Embodiment 11 FIG. FIG. 23 shows an eleventh embodiment.
FIG. 3 is a perspective view showing a heat transfer tube and its peripheral structure in the heat storage system of FIG. In FIG. 23, 3 is a heat transfer tube, 20 is a cylinder fixed to the heat transfer tube 3 and covered with a heat transfer tube surface at a predetermined interval, made of a heat conductive material, and radially expanded downward. It has a shape. Other configurations are the same as those of the first embodiment, and a description thereof will be omitted.

【0105】融解運転の動作については図2によって説
明される実施の形態1と同様である。実施の形態1で
は、気泡の通路を伝熱管3外面と固体蓄冷媒体とによっ
て形成される液体蓄冷媒体としていたが、本実施の形態
では、伝熱管3と覆い20との間を気泡の通路としてい
る。このような構成とすることで、固体蓄冷媒体の融解
が進行し、伝熱管3と固体蓄冷媒体との間隙が広がった
り、部分的に固体蓄冷媒体が融解して穴があくようなこ
とがあっても、気泡は覆い20によって伝熱管3表面を
上昇し、伝熱管3外面付近での液体蓄冷媒体の流動が維
持される。
The operation of the melting operation is the same as that of the first embodiment described with reference to FIG. In the first embodiment, the bubble passage is a liquid refrigerant formed by the outer surface of the heat transfer tube 3 and the solid refrigerant, but in the present embodiment, the space between the heat transfer tube 3 and the cover 20 is a bubble passage. I have. With such a configuration, melting of the solid-state storage medium progresses, the gap between the heat transfer tube 3 and the solid-state storage medium may be widened, or the solid-state storage medium may be partially melted to form a hole. Even so, the bubble rises on the surface of the heat transfer tube 3 by the cover 20, and the flow of the liquid storage medium near the outer surface of the heat transfer tube 3 is maintained.

【0106】また、覆い20の下方が径方向に広がった
形状なので、不規則な動きをする気泡が一つ下の覆い2
0を通過して若干伝熱管3から離れる方向に向かっても
確実に上の覆い20内に捕捉することができる。さら
に、覆い20を熱伝導材料で作成し、伝熱管3に固定す
れば、覆い20がフィンとしての役割も果たすようにな
り、蓄冷媒体2と伝熱管内の冷媒との熱交換が促進され
る。
Further, since the lower part of the cover 20 is radially expanded, the irregularly moving air bubbles are reduced by one.
0, and can be reliably captured in the upper cover 20 even in a direction slightly away from the heat transfer tube 3. Furthermore, if the cover 20 is made of a heat conductive material and fixed to the heat transfer tube 3, the cover 20 also plays a role as a fin, and heat exchange between the refrigerant storage body 2 and the refrigerant in the heat transfer tube is promoted. .

【0107】[0107]

【発明の効果】以上説明したように、この発明によれ
ば、蓄冷媒体が満たされた蓄熱槽と、前記蓄熱槽内に設
置され冷媒と前記蓄熱槽内の蓄冷媒体との間で熱交換さ
せる伝熱部と、前記蓄熱槽内下部に設置され気体吹出穴
が形成された気泡吹出部と、前記気泡吹出部に加圧気体
を供給する加圧気体生成供給部と、前記伝熱部と接続さ
れた熱源ユニットおよび負荷側ユニットとを備え、前記
伝熱部外面と該伝熱部を覆う固体蓄冷媒体との間の液体
蓄冷媒体中に気泡を供給するよう前記気泡吹出部を設置
したので、液体蓄冷媒体中を伝熱部外面上に沿って、か
つ周辺の液体蓄冷媒体に強制流れや乱れを生じながら気
泡が上方へ流通するので、伝熱部外面の伝熱性能が向上
して、蓄熱槽からの熱回収を促進させることができる効
果が得られる。
As described above, according to the present invention, heat is exchanged between the heat storage tank filled with the refrigerant storage medium and the refrigerant installed in the heat storage tank and the refrigerant storage medium in the heat storage tank. A heat transfer unit, a bubble blowing unit provided in the lower part of the heat storage tank and having a gas blowing hole, a pressurized gas generation / supply unit for supplying a pressurized gas to the bubble blowing unit, and a connection to the heat transfer unit Since the heat source unit and the load-side unit are provided, and the bubble blowing unit is installed so as to supply air bubbles into the liquid refrigerant between the outer surface of the heat transfer unit and the solid refrigerant storage unit covering the heat transfer unit. Bubbles flow upward along the outer surface of the heat transfer unit in the liquid storage medium and generate forced flow or turbulence in the surrounding liquid storage medium, so that the heat transfer performance of the outer surface of the heat transfer unit is improved, The effect of promoting heat recovery from the tank is obtained.

【0108】また、前記伝熱部を伝熱フィンとしたの
で、不規則な動きをする気泡により生じる液体蓄冷媒体
との接触面積を広げて、確実に熱回収が行なえる効果が
得られる。
Further, since the heat transfer portion is a heat transfer fin, the effect of increasing the area of contact with the liquid storage medium generated by the irregularly moving air bubbles can be obtained, so that heat can be reliably recovered.

【0109】また、前記伝熱フィンを板状フィンとし、
一つの板状フィン一面に複数の気泡吹出穴を対応させた
ので、気泡吹出穴の一つが詰まった場合でも、他の気泡
吹出穴から吹き出される気泡によって、板状フィンの熱
交換効率を維持することができる。
Further, the heat transfer fin is a plate-like fin,
Multiple bubble outlets correspond to one plate fin surface, so even if one of the bubble outlets is clogged, the heat exchange efficiency of the plate fins is maintained by the bubbles blown out from the other bubble outlets can do.

【0110】また、前記加圧気体生成供給部が前記液体
蓄冷媒体中に吹出す気泡の量を制御するので、蓄熱槽か
らの熱回収量の調整が図れる効果が得られる。
Further, since the pressurized gas generation / supply unit controls the amount of air bubbles blown into the liquid storage medium, the effect of adjusting the amount of heat recovered from the heat storage tank is obtained.

【0111】また、前記伝熱部と冷媒配管を介して接続
された熱源ユニットおよび負荷側ユニットを備えた内融
式蓄熱システムとしたので、伝熱管周囲の液体蓄冷媒体
の流動を促して、熱交換効率を向上させられる効果が得
られる。
Further, since the heat transfer unit and the load side unit are connected to the heat transfer unit via the refrigerant pipe, the internal melting type heat storage system is provided. The effect that the exchange efficiency can be improved is obtained.

【0112】また、蓄冷運転時には内部の冷媒流通路に
冷媒を流通させず、融解運転時にのみ蓄冷媒体の融解温
度以上の冷媒を流通する融解専用伝熱部を備えたので、
同一蓄熱槽容積、同一蓄冷量において融解運転時の有効
な融解伝熱面積を増加することができて、単位時間当た
りの蓄熱槽からの熱回収量を増加することができる効果
が得られる。
Further, since the refrigerant is not circulated through the internal refrigerant flow passage during the cold storage operation, the heat transfer section dedicated to melting is provided only for the melting operation, so that the refrigerant having a temperature equal to or higher than the melting temperature of the refrigerant body is provided.
With the same heat storage tank volume and the same cold storage amount, an effective melting heat transfer area during the melting operation can be increased, and the effect of increasing the amount of heat recovered from the heat storage tank per unit time can be obtained.

【0113】また、前記融解専用伝熱部外面と該融解専
用伝熱部を覆う固体蓄冷媒体との間の液体蓄冷媒体中に
気泡を供給するよう前記気泡吹出部を設置したので、融
解専用伝熱部外面の伝熱性能が向上して、単位時間当た
りの蓄熱槽からの熱回収量の増加を実現することができ
る効果が得られる。
Further, since the bubble blowing section is provided so as to supply bubbles into the liquid refrigerant storage medium between the outer surface of the heat transfer section dedicated for melting and the solid refrigerant storage section covering the heat transfer section dedicated for melting, the melt transfer section is provided. The effect of improving the heat transfer performance of the outer surface of the heat part and realizing an increase in the amount of heat recovery from the heat storage tank per unit time is obtained.

【0114】また、前記気体吹出穴を前記伝熱部外面の
下に配置したので、気泡吹出し管を介して気泡吹出し穴
から気泡を吹出すと、気泡は浮力により液体蓄冷媒体中
を上昇するので、気泡は伝熱面外面の鉛直方向の下端か
ら上端まで伝熱部外面上に沿って、かつ周辺の液体に強
制流れや乱れを生じながら流通するので、伝熱性能を向
上する伝熱面上の割合を大きくすることができ、単位時
間当たりの蓄熱槽からの熱回収量の増加を実現すること
ができる効果が得られる。
Further, since the gas blowing holes are arranged below the outer surface of the heat transfer section, when bubbles are blown out from the bubble blowing holes through the bubble blowing pipe, the bubbles rise in the liquid refrigerant due to buoyancy. Since the air bubbles flow along the outer surface of the heat transfer section from the lower end to the upper end in the vertical direction of the outer surface of the heat transfer surface while generating forced flow or turbulence in the surrounding liquid, the heat transfer surface improves heat transfer performance. And the effect of realizing an increase in the amount of heat recovery from the heat storage tank per unit time is obtained.

【0115】また、前記気体吹出穴と前記伝熱部外面下
部とを接触或いは近接させたので、融解運転時に加圧気
体生成装置で加圧気体を生成し、気泡吹出し管を介して
気泡吹出し穴から気泡を吹出すと、気泡は浮力により液
体蓄冷媒体中を不規則で微小な振動を伴いながら上昇す
るから、気泡吹出し穴が伝熱部下部に近いほど、気泡を
流通したい経路としての液体蓄冷媒体中を気泡が流通す
る確率が高くなるため、気泡流通効率が向上する結果、
伝熱部外面の伝熱性能が向上して、単位時間当たりの蓄
熱槽からの熱回収量の増加を実現することができる効果
が得られる。
Further, since the gas outlet and the lower portion of the outer surface of the heat transfer section are brought into contact with or close to each other, a pressurized gas is generated by the pressurized gas generator during the melting operation, and the bubble outlet is provided through the bubble outlet pipe. When air bubbles are blown out of the liquid storage medium due to buoyancy, the air bubbles rise with irregular and minute vibrations. Because the probability of air bubbles flowing in the medium increases, as a result of improving the air bubble distribution efficiency,
The heat transfer performance of the outer surface of the heat transfer section is improved, and an effect of increasing the amount of heat recovered from the heat storage tank per unit time is obtained.

【0116】また、前記伝熱部を円筒管とし、前記気体
吹出穴を前記伝熱管の真下或いは真下近傍に備えたの
で、融解運転時に加圧気体生成装置で加圧気体を生成
し、気泡吹出し管を介して気泡吹出し穴から気泡を吹出
すと、気泡は浮力により液体蓄冷媒体中を不規則で微小
な振動を伴いながら上昇するので、気泡吹出し穴が伝熱
部の真下にあれば、例えば伝熱部と気泡吹出し穴の間に
距離があっても気泡を流通したい経路としての液体蓄冷
媒体中を気泡が流通する確率が高くなるため、気泡流通
効率が向上する結果、伝熱部外面の伝熱性能が向上し
て、単位時間当たりの蓄熱槽からの熱回収量の増加を実
現することができる効果が得られる。
Further, since the heat transfer section is a cylindrical tube and the gas blow-out hole is provided directly below or near the heat transfer tube, a pressurized gas is generated by the pressurized gas generator during the melting operation, and the bubble is blown out. When bubbles are blown out from the bubble blowing holes through the tube, the bubbles rise in the liquid refrigerant body with irregular and minute vibrations due to buoyancy, so if the bubble blowing holes are directly below the heat transfer portion, for example, Even if there is a distance between the heat transfer section and the bubble blowing hole, the probability that the bubbles flow through the liquid refrigerant as a path through which the bubbles are to flow is increased.As a result, the bubble flow efficiency is improved. The effect of improving the heat transfer performance and realizing an increase in the amount of heat recovery from the heat storage tank per unit time is obtained.

【0117】また、気泡吹出部の代わりに加圧液体吹出
穴が形成された加圧液体吹出部を、加圧気体生成供給装
置の代わりに加圧液体生成供給装置を備えたので、融解
運転時に加圧液体生成装置で加圧液体を生成し、加圧液
体吹出し管を介して加圧液体吹出し穴から加圧液体を上
方向に吹出すと、液体蓄冷媒体は伝熱部外面上に沿っ
て、上方向の流れを生じるので、伝熱部外面の伝熱性能
が向上して、単位時間当たりの蓄熱槽からの熱回収量の
増加を実現することができる効果が得られる。
Further, since the pressurized liquid blowout section having the pressurized liquid blowout hole formed in place of the bubble blowout section is provided with the pressurized liquid generation and supply apparatus instead of the pressurized gas generation and supply apparatus, the melted operation is performed during the melting operation. When the pressurized liquid is generated by the pressurized liquid generation device and the pressurized liquid is blown upward from the pressurized liquid blowout hole through the pressurized liquid blowout pipe, the liquid refrigerant accumulates along the outer surface of the heat transfer unit. Since the upward flow is generated, the heat transfer performance of the outer surface of the heat transfer section is improved, and an effect of realizing an increase in the amount of heat recovery from the heat storage tank per unit time is obtained.

【0118】また、前記伝熱部下部を前記蓄熱槽内に固
定する器具を備え、この器具を前記気泡吹出部または前
記加圧液体吹出部としたので、伝熱部下部固定器具と気
泡或いは加圧液体吹出し管を兼ねることができ、蓄熱シ
ステムコストを低減することができる効果が得られる。
[0118] Further, since an instrument for fixing the lower part of the heat transfer section in the heat storage tank is provided, and the instrument is the bubble blowing section or the pressurized liquid blowing section, the apparatus for fixing the lower portion of the heat transfer section can be connected to the air bubble or heat storage section. The effect can also be obtained as the pressure liquid blowing pipe can be used, and the cost of the heat storage system can be reduced.

【0119】また、前記蓄熱槽内の伝熱部と負荷側ユニ
ットとの間に冷媒を循環させる液ポンプを備えたので、
伝熱部外面上の液体蓄冷媒体に強制流れや乱れを生じて
伝熱性能を上げることができるから、従来のガスポンプ
や圧縮機と比べて、冷媒液ポンプを使用する場合は蓄熱
槽伝熱部に流入する冷媒温度が低くなっても、単位時間
当たりの蓄熱槽からの熱回収量を良好に得ることがで
き、また冷媒液ポンプは圧縮工程が小さい分、消費電力
量を低減できるので、蓄熱システムのランニングコスト
を低減することができる効果が得られる。
Further, since a liquid pump for circulating a refrigerant is provided between the heat transfer section in the heat storage tank and the load side unit,
Since the heat transfer performance can be improved by forcible flow or turbulence in the liquid storage medium on the outer surface of the heat transfer unit, compared to conventional gas pumps and compressors, when using a refrigerant liquid pump, the heat storage tank heat transfer unit Even if the temperature of the refrigerant flowing into the refrigerant becomes low, it is possible to obtain a good amount of heat recovered from the heat storage tank per unit time, and the refrigerant liquid pump can reduce the amount of power consumption because of the small compression process. The effect that the running cost of the system can be reduced can be obtained.

【0120】また、前記蓄熱槽内の液体蓄冷媒体のPH
値を検知するPH検知部と、前記PH検知部の検知結果
に応じて前記液体蓄冷媒体のPH値を制御するPH制御
部とを備えたので、蓄熱槽内での伝熱部素材がイオン化
して伝熱部が劣化することを防ぐことができる効果が得
られる。
Further, the pH of the liquid storage medium in the heat storage tank
A pH detecting unit for detecting the value of the liquid, and a PH control unit for controlling the PH value of the liquid storage medium according to the detection result of the PH detecting unit, so that the heat transfer unit material in the heat storage tank is ionized. Thus, the effect of preventing the heat transfer section from deteriorating can be obtained.

【0121】また、第1の所定の時間帯に蓄熱槽内に固
体蓄冷媒体を生成し、前記第1の所定の時間帯と連続し
ない第2の所定の時間帯に前記蓄熱槽内の固体蓄冷媒体
を融解して熱回収するピークカット手段を備えたので、
ピークカット運転時に気泡吹出しまたは液体吹出しを円
滑に行なうことができ、熱回収を効率的に行なえる効果
が得られる。
Further, a solid-state refrigerant is generated in the heat storage tank in a first predetermined time zone, and the solid cold storage medium in the heat storage tank is generated in a second predetermined time zone that is not continuous with the first predetermined time zone. With a peak cut means to melt the medium and recover heat,
Bubble blowing or liquid blowing can be performed smoothly during the peak cut operation, and the effect of efficiently recovering heat can be obtained.

【0122】また、伝熱部表面と固体蓄冷媒体との間の
液体蓄冷媒体中に気泡を通過させて前記液体蓄冷媒体の
流動を促進するので、伝熱部表面に存在する液体蓄冷媒
体に強制流れや乱れを生じさせて伝熱部外面の伝熱性能
が向上して、単位時間当たりの蓄熱槽からの熱回収量の
増加を実現することができる効果が得られる。
Further, since air bubbles are passed through the liquid refrigerant between the surface of the heat transfer part and the solid refrigerant to promote the flow of the liquid refrigerant, the liquid refrigerant present on the surface of the heat transfer part is forced to move. The flow and turbulence are generated to improve the heat transfer performance of the outer surface of the heat transfer unit, and an effect of increasing the amount of heat recovery from the heat storage tank per unit time is obtained.

【0123】また、前記液体蓄冷媒体中に吹出す気泡の
量を制御することで融解量を調整するので、蓄熱槽から
の熱回収量の調整が図れる効果が得られる。
Further, since the amount of melting is adjusted by controlling the amount of bubbles blown into the liquid storage medium, the effect of adjusting the amount of heat recovered from the heat storage tank can be obtained.

【0124】また、気泡の代わりに加圧液体を通過させ
るので、伝熱部表面に存在する液体蓄冷媒体に上方向流
れを生じさせて伝熱部外面の伝熱性能が向上して、熱回
収量の増加を実現することができる効果が得られる。
Further, since the pressurized liquid is passed instead of the air bubbles, an upward flow is generated in the liquid storage medium present on the surface of the heat transfer section, so that the heat transfer performance on the outer surface of the heat transfer section is improved, and heat recovery is performed. The effect that the quantity can be increased can be obtained.

【0125】また、固体蓄冷媒体生成時と連続しないピ
ークカット運転時に気泡または加圧液体の通過を行なう
ので、ピークカット運転開始時に気泡吹出しまたは液体
吹出しを円滑に行なうことができ、熱回収を効率的に行
なえる効果が得られる。
Further, since bubbles or pressurized liquid are passed during the peak cut operation that is not continuous with the generation of the solid refrigerant, the bubble or liquid can be blown out smoothly at the start of the peak cut operation, and the heat recovery can be efficiently performed. The effect that can be achieved is obtained.

【0126】また、蓄冷媒体が満たされた蓄熱槽と、前
記蓄熱槽内に設置され冷媒と前記蓄熱槽内の蓄冷媒体と
の間で熱交換させる伝熱部と、前記蓄熱槽内下部に設置
され気体吹出穴が形成された気泡吹出部と、前記気泡吹
出部に加圧気体を供給する加圧気体生成供給部と、前記
伝熱部と接続された熱源ユニットおよび負荷側ユニット
とを備え、前記伝熱部外面に覆いを形成し、該伝熱部と
覆いとの間の液体蓄冷媒体中に気泡を供給するよう前記
気泡吹出部を設置したので、液体蓄冷媒体中を伝熱部外
面上に沿って、かつ周辺の液体に強制流れや乱れを生じ
ながら気泡が上方へ流通するので、伝熱部外面の伝熱性
能が向上して、単位時間当たりの蓄熱槽からの熱回収量
の増加を実現することができる効果が得られる。
A heat storage tank filled with a refrigerant storage medium, a heat transfer unit installed in the heat storage tank for exchanging heat between the refrigerant and the refrigerant storage medium in the heat storage tank, and a heat transfer unit installed in the lower part of the heat storage tank A bubble blowing section having a gas blowing hole formed therein, a pressurized gas generating / supplying section supplying a pressurized gas to the bubble blowing section, and a heat source unit and a load side unit connected to the heat transfer section, A cover is formed on the outer surface of the heat transfer section, and the bubble blowing section is provided so as to supply bubbles into the liquid storage medium between the heat transfer section and the cover. Air bubbles circulate upward along with the water and generate forced flow and turbulence in the surrounding liquid, improving the heat transfer performance of the outer surface of the heat transfer section and increasing the amount of heat recovered from the heat storage tank per unit time Is obtained.

【0127】また、前記覆いを固体畜冷媒体で形成した
ので、簡単な構成で液体蓄冷媒体中を伝熱部外面上に沿
って、かつ周辺の液体に強制流れや乱れを生じながら気
泡を流通させることができる効果が得られる。
Further, since the cover is formed of a solid storage refrigerant, air bubbles can be circulated in the liquid refrigerant storage medium along the outer surface of the heat transfer section with a simple structure and with forced flow or turbulence in the surrounding liquid. The effect that can be performed is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1の蓄熱システム図で
ある。
FIG. 1 is a diagram of a heat storage system according to Embodiment 1 of the present invention.

【図2】 実施の形態1の蓄熱槽図である。FIG. 2 is a diagram of a heat storage tank according to the first embodiment.

【図3】 実施の形態1の気泡吹出し概略図である。FIG. 3 is a schematic diagram of bubble blowing according to the first embodiment.

【図4】 実施の形態1の別の気泡吹出し概略図であ
る。
FIG. 4 is another schematic diagram of bubble blowing according to the first embodiment.

【図5】 実施の形態1の気泡吹出し管の蓄熱槽への設
置例である。
FIG. 5 is an example of installation of a bubble blowing pipe according to the first embodiment in a heat storage tank.

【図6】 実施の形態1の伝熱部外側熱伝達率の実験結
果図である。
FIG. 6 is an experimental result diagram of the heat transfer coefficient outside the heat transfer section according to the first embodiment.

【図7】 実施の形態2の蓄熱システム図である。FIG. 7 is a diagram of a heat storage system according to a second embodiment.

【図8】 実施の形態2の蓄熱槽図である。FIG. 8 is a diagram of a heat storage tank according to the second embodiment.

【図9】 実施の形態2の気泡吹出し概略図である。FIG. 9 is a schematic diagram of bubble blowing according to the second embodiment.

【図10】 実施の形態3の蓄熱槽図である。FIG. 10 is a diagram of a heat storage tank according to the third embodiment.

【図11】 実施の形態3の気泡吹出し概略図である。FIG. 11 is a schematic diagram of bubble blowing according to the third embodiment.

【図12】 実施の形態4の蓄熱槽図である。FIG. 12 is a diagram of a heat storage tank according to the fourth embodiment.

【図13】 実施の形態4の別の蓄熱槽図である。FIG. 13 is another heat storage tank diagram of the fourth embodiment.

【図14】 実施の形態5の蓄熱槽図である。FIG. 14 is a diagram of a heat storage tank according to the fifth embodiment.

【図15】 実施の形態6の蓄熱システム図である。FIG. 15 is a diagram of a heat storage system according to a sixth embodiment.

【図16】 実施の形態6の加圧液体上向きの概略図で
ある。
FIG. 16 is a schematic diagram of a pressurized liquid upward according to a sixth embodiment.

【図17】 実施の形態6の加圧液体吹出し管の蓄熱槽
への設置例である。
FIG. 17 is an installation example of a pressurized liquid blowing pipe according to the sixth embodiment in a heat storage tank.

【図18】 実施の形態7の伝熱部下部と伝熱部下部固
定器具の設置例図である。
FIG. 18 is a diagram illustrating an example of installation of a lower part of a heat transfer part and a heat transfer part lower fixing device according to the seventh embodiment.

【図19】 実施の形態8の蓄熱システム図である。FIG. 19 is a diagram of a heat storage system according to an eighth embodiment.

【図20】 実施の形態8の銅と水PHと水中溶存酸素
量の関係を示す図である。
FIG. 20 is a diagram illustrating a relationship among copper, water PH, and dissolved oxygen amount in water according to the eighth embodiment.

【図21】 実施の形態9、10の蓄熱システム図であ
る。
FIG. 21 is a diagram of a heat storage system according to the ninth and tenth embodiments.

【図22】 実施の形態10の1日の冷房運転負荷例で
ある。
FIG. 22 is an example of a daily cooling operation load according to the tenth embodiment.

【図23】 実施の形態11の蓄熱システムの伝熱管周
辺図である。
FIG. 23 is a view around a heat transfer tube of the heat storage system of the eleventh embodiment.

【図24】 従来例として示した蓄熱システム図であ
る。
FIG. 24 is a diagram of a heat storage system shown as a conventional example.

【図25】 別の従来例として示した蓄熱システム図で
ある。
FIG. 25 is a diagram of a heat storage system shown as another conventional example.

【符号の説明】[Explanation of symbols]

1 蓄熱槽、 2 蓄冷媒体、 3 伝熱部、 4 気
泡吹出し管、 4’加圧液体噴出管、 5 気泡吹出し
穴、 5’ 加圧液体噴出穴、 6 加圧気体生成供給
装置、 6’ 加圧液体生成供給装置、 7 熱源ユニ
ット、 8負荷側ユニット群、 9 伝熱部下部固定器
具、 10 伝熱部上部固定器具、11 PH検知装
置、 12 PH制御装置、 13 冷媒液ポンプ、
20覆い。
Reference Signs List 1 heat storage tank, 2 refrigerant storage medium, 3 heat transfer section, 4 bubble blowing pipe, 4 'pressurized liquid blowing pipe, 5 bubble blowing hole, 5' pressurized liquid blowing hole, 6 pressurized gas generation and supply device, 6 ' Pressure liquid generation and supply device, 7 heat source unit, 8 load side unit group, 9 heat transfer unit lower fixing device, 10 heat transfer unit upper fixing device, 11 PH detection device, 12 PH control device, 13 refrigerant liquid pump,
20 covers.

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 蓄冷媒体が満たされた蓄熱槽と、前記蓄
熱槽内に設置され冷媒と前記蓄熱槽内の蓄冷媒体との間
で熱交換させる伝熱部と、前記蓄熱槽内下部に設置され
気体吹出穴が形成された気泡吹出部と、前記気泡吹出部
に加圧気体を供給する加圧気体生成供給部と、前記伝熱
部と接続された熱源ユニットおよび負荷側ユニットとを
備え、前記伝熱部外面と該伝熱部を覆う固体蓄冷媒体と
の間の液体蓄冷媒体中に気泡を供給するよう前記気泡吹
出部を設置したことを特徴とする蓄熱システム。
1. A heat storage tank filled with a refrigerant storage medium, a heat transfer unit installed in the heat storage tank and exchanging heat between a refrigerant and the refrigerant storage medium in the heat storage tank, and installed in a lower part of the heat storage tank A bubble blowing section having a gas blowing hole formed therein, a pressurized gas generating / supplying section supplying a pressurized gas to the bubble blowing section, and a heat source unit and a load side unit connected to the heat transfer section, A heat storage system, wherein the bubble blowing unit is provided so as to supply air bubbles into a liquid storage medium between the outer surface of the heat transfer unit and the solid storage medium covering the heat transfer unit.
【請求項2】 前記伝熱部を伝熱フィンとしたことを特
徴とする請求項1記載の蓄熱システム。
2. The heat storage system according to claim 1, wherein said heat transfer section is a heat transfer fin.
【請求項3】 前記伝熱フィンを板状フィンとし、一つ
の板状フィン一面に複数の気泡吹出穴を対応させたこと
を特徴とする請求項2記載の蓄熱システム。
3. The heat storage system according to claim 2, wherein the heat transfer fins are plate-like fins, and one plate-like fin is provided with a plurality of bubble blowing holes on one surface.
【請求項4】 前記加圧気体生成供給部が前記液体蓄冷
媒体中に吹出す気泡の量を制御することを特徴とする請
求項1記載の蓄熱システム。
4. The heat storage system according to claim 1, wherein the pressurized gas generation / supply unit controls an amount of bubbles blown into the liquid storage medium.
【請求項5】 前記伝熱部と冷媒配管を介して接続され
た熱源ユニットおよび負荷側ユニットを備えた内融式蓄
熱システムとしたことを特徴とする請求項1記載の蓄熱
システム。
5. The heat storage system according to claim 1, wherein the heat storage unit is an internal fusion type heat storage system including a heat source unit and a load unit connected to the heat transfer unit via a refrigerant pipe.
【請求項6】 蓄冷運転時には内部の冷媒流通路に冷媒
を流通させず、融解運転時にのみ蓄冷媒体の融解温度以
上の冷媒を流通する融解専用伝熱部を備えたことを特徴
とする請求項5記載の蓄熱システム。
6. A heat transfer unit for exclusive use of melting, wherein the refrigerant does not flow through the internal refrigerant flow passage during the cold storage operation and the refrigerant having a temperature equal to or higher than the melting temperature of the refrigerant storage medium flows only during the melting operation. 5. The heat storage system according to 5.
【請求項7】 前記融解専用伝熱部外面と該融解専用伝
熱部を覆う固体蓄冷媒体との間の液体蓄冷媒体中に気泡
を供給するよう前記気泡吹出部を設置したことを特徴と
する請求項6記載の蓄熱システム。
7. The air bubble blowing section is provided so as to supply air bubbles into a liquid refrigerant storage medium between the outer surface of the heat transfer section exclusively for melting and the solid refrigerant storage section covering the heat transfer section exclusively for melting. The heat storage system according to claim 6.
【請求項8】 前記気体吹出穴を前記伝熱部外面の下に
配置したことを特徴とする請求項1または7記載の式蓄
熱システム。
8. The thermal storage system according to claim 1, wherein the gas outlet is disposed below an outer surface of the heat transfer section.
【請求項9】 前記気体吹出穴と前記伝熱部外面下部と
を接触或いは近接させたことを特徴とする請求項1また
は5または8記載の蓄熱システム。
9. The heat storage system according to claim 1, wherein the gas outlet and the lower portion of the outer surface of the heat transfer section are in contact with or close to each other.
【請求項10】 前記伝熱部を円筒管とし、前記気体吹
出穴を前記伝熱管の真下或いは真下近傍に備えたことを
特徴とする請求項1または7記載の蓄熱システム。
10. The heat storage system according to claim 1, wherein the heat transfer section is a cylindrical tube, and the gas outlet is provided immediately below or near the heat transfer tube.
【請求項11】 気泡吹出部の代わりに加圧液体吹出穴
が形成された加圧液体吹出部を、加圧気体生成供給装置
の代わりに加圧液体生成供給装置を備えたことを特徴と
する請求項1乃至10のいずれか1項に記載の蓄熱シス
テム。
11. A pressurized liquid blowout unit having a pressurized liquid blowout hole formed therein in place of the bubble blowout unit, and a pressurized liquid generation and supply device is provided in place of the pressurized gas generation and supply device. The heat storage system according to any one of claims 1 to 10.
【請求項12】 前記伝熱部下部を前記蓄熱槽内に固定
する器具を備え、この器具を前記気泡吹出部または前記
加圧液体吹出部としたことを特徴とする請求項1乃至1
1のいずれか1項に記載の蓄熱システム。
12. An apparatus for fixing a lower portion of the heat transfer section in the heat storage tank, wherein the apparatus is the bubble blowing section or the pressurized liquid blowing section.
The heat storage system according to any one of the first to third aspects.
【請求項13】 前記蓄熱槽内の伝熱部と負荷側ユニッ
トとの間に冷媒を循環させる液ポンプを備えたことを特
徴とする請求項1乃至12のいずれか1項に記載の蓄熱
システム。
13. The heat storage system according to claim 1, further comprising a liquid pump that circulates a refrigerant between the heat transfer unit in the heat storage tank and the load-side unit. .
【請求項14】 前記蓄熱槽内の液体蓄冷媒体のPH値
を検知するPH検知部と、前記PH検知部の検知結果に
応じて前記液体蓄冷媒体のPH値を制御するPH制御部
とを備えたことを特徴とする請求項1記載の蓄熱システ
ム。
14. A fuel cell system comprising: a PH detector for detecting a PH value of a liquid refrigerant in the heat storage tank; and a PH controller for controlling a PH value of the liquid refrigerant in accordance with a detection result of the PH detector. The heat storage system according to claim 1, wherein:
【請求項15】 第1の所定の時間帯に蓄熱槽内に固体
蓄冷媒体を生成し、前記第1の所定の時間帯と連続しな
い第2の所定の時間帯に前記蓄熱槽内の固体蓄冷媒体を
融解して回収する冷熱だけで負荷側の冷房負荷をまかな
うピークカット手段を備えたことを特徴とする請求項1
乃至14のいずれか1項に記載の蓄熱システム。
15. A solid-state storage medium is generated in the heat storage tank during a first predetermined time zone, and the solid cold storage in the heat storage tank is generated during a second predetermined time zone that is not continuous with the first predetermined time zone. 2. The apparatus according to claim 1, further comprising a peak cut unit that covers the cooling load on the load side only with the cooling heat that is obtained by melting and recovering the medium.
15. The heat storage system according to any one of claims 14 to 14.
【請求項16】 伝熱部表面と固体蓄冷媒体との間の液
体蓄冷媒体中に気泡を通過させて前記液体蓄冷媒体の流
動を促進し、伝熱部表面の熱伝達性能を向上させること
を特徴とする蓄熱システムの融解方法。
16. A method for improving the heat transfer performance of a surface of a heat transfer section by promoting the flow of the liquid storage medium by causing bubbles to pass through the liquid storage medium between the surface of the heat transfer section and the solid storage medium. A method for melting a heat storage system.
【請求項17】 前記液体蓄冷媒体中に吹出す気泡の量
を制御することで融解量を調整することを特徴とする請
求項16記載の蓄熱システムの融解方法。
17. The melting method for a heat storage system according to claim 16, wherein the amount of melting is adjusted by controlling the amount of bubbles blown into the liquid storage medium.
【請求項18】 気泡の代わりに加圧液体を通過させる
ことを特徴とする請求項16または17記載の蓄熱シス
テムの融解方法。
18. The method for melting a heat storage system according to claim 16, wherein a pressurized liquid is passed instead of bubbles.
【請求項19】 固体蓄冷媒体生成時と連続しないピー
クカット運転時に気泡または加圧液体の通過を行なうこ
とを特徴とする請求項16乃至18のいずれか1項に記
載の蓄熱システムの融解方法。
19. The melting method for a heat storage system according to claim 16, wherein the passage of bubbles or pressurized liquid is performed during a peak cut operation that is not continuous with the generation of the solid refrigerant.
【請求項20】 蓄冷媒体が満たされた蓄熱槽と、前記
蓄熱槽内に設置され冷媒と前記蓄熱槽内の蓄冷媒体との
間で熱交換させる伝熱部と、前記蓄熱槽内下部に設置さ
れ気体吹出穴が形成された気泡吹出部と、前記気泡吹出
部に加圧気体を供給する加圧気体生成供給部と、前記伝
熱部と接続された熱源ユニットおよび負荷側ユニットと
を備え、前記伝熱部外面に覆いを形成し、該伝熱部と覆
いとの間の液体蓄冷媒体中に気泡を供給するよう前記気
泡吹出部を設置したことを特徴とする蓄熱システム。
20. A heat storage tank filled with a refrigerant storage medium, a heat transfer unit installed in the heat storage tank and exchanging heat between the refrigerant and the refrigerant storage body in the heat storage tank, and installed in a lower part of the heat storage tank. A bubble blowing section having a gas blowing hole formed therein, a pressurized gas generating / supplying section supplying a pressurized gas to the bubble blowing section, and a heat source unit and a load side unit connected to the heat transfer section, A heat storage system, wherein a cover is formed on an outer surface of the heat transfer unit, and the bubble blowing unit is provided so as to supply bubbles into a liquid storage medium between the heat transfer unit and the cover.
【請求項21】 前記覆いを固体畜冷媒体で形成したこ
とを特徴とする請求項20記載の蓄熱システム。
21. The heat storage system according to claim 20, wherein said cover is formed of a solid storage refrigerant.
JP11207435A 1999-07-22 1999-07-22 Thermal storage system and melting method in the thermal storage system Pending JP2001033069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11207435A JP2001033069A (en) 1999-07-22 1999-07-22 Thermal storage system and melting method in the thermal storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11207435A JP2001033069A (en) 1999-07-22 1999-07-22 Thermal storage system and melting method in the thermal storage system

Publications (1)

Publication Number Publication Date
JP2001033069A true JP2001033069A (en) 2001-02-09

Family

ID=16539730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11207435A Pending JP2001033069A (en) 1999-07-22 1999-07-22 Thermal storage system and melting method in the thermal storage system

Country Status (1)

Country Link
JP (1) JP2001033069A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063701A1 (en) 2005-12-02 2007-06-07 Sekisui Chemical Co., Ltd. Hydrophilic polymer microparticle, filler for ion exchange liquid chromatography, and method for production of filler for ion exchange liquid chromatography
WO2012049820A1 (en) * 2010-10-14 2012-04-19 三菱電機株式会社 Refrigeration cycle apparatus
JP2012159251A (en) * 2011-02-01 2012-08-23 Mitsubishi Electric Corp Refrigeration cycle apparatus, flow rate calculation method, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063701A1 (en) 2005-12-02 2007-06-07 Sekisui Chemical Co., Ltd. Hydrophilic polymer microparticle, filler for ion exchange liquid chromatography, and method for production of filler for ion exchange liquid chromatography
EP2602021A1 (en) 2005-12-02 2013-06-12 Sekisui Chemical Co., Ltd. Filler for ion exchange liquid chromatography, method for production of filler for ion exchange liquid chromatography and method for analyzing a glycosylated hemoglobin
EP3040120A1 (en) 2005-12-02 2016-07-06 Sekisui Chemical Co., Ltd. Filler for ion exchange liquid chromatography, method for production of filler for ion exchange liquid chromatography and method for analyzing a glycosylated hemoglobin
WO2012049820A1 (en) * 2010-10-14 2012-04-19 三菱電機株式会社 Refrigeration cycle apparatus
US9829231B2 (en) 2010-10-14 2017-11-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP2012159251A (en) * 2011-02-01 2012-08-23 Mitsubishi Electric Corp Refrigeration cycle apparatus, flow rate calculation method, and program

Similar Documents

Publication Publication Date Title
JP4623600B2 (en) High performance heat storage and cooling system using refrigerant
US6793007B1 (en) High flux heat removal system using liquid ice
JPH0120334B2 (en)
JP2009145017A (en) Icemaker using ammonia
JP2001033069A (en) Thermal storage system and melting method in the thermal storage system
JP4623995B2 (en) Ice making method and ice making apparatus by supercooling brine
JPH09303916A (en) Water circulation type ice making machine
JP2004361053A (en) Ice heat storage device, and ice heat storage method
KR101108029B1 (en) Heat Pump
JPH09159232A (en) Controlling method for ice storage type water chiller
JP2724201B2 (en) Direct contact ice storage method and equipment
JPS572943A (en) Snow melting, heat accumulating and cooling apparatus according to latent heat exchange system
JP2508240B2 (en) Ice heat storage device and ice heat storage type air conditioner equipped with the ice heat storage device
JPS58117937A (en) Coldness heat accumulator
JPH11351772A (en) Air conditioning facility
JP3445077B2 (en) Ice storage device
SU1449795A1 (en) Refrigerant accumulator
JPH043867A (en) Ice making device
JPH04174229A (en) Ice heat storage device
JPS6380170A (en) Ice heat-accumulating system
JPH11294983A (en) Heat-storage tank of heat-storage-type cooler
JP3099251B2 (en) Ice storage system
JP2853439B2 (en) Absorption type ice machine
KR960015826B1 (en) Natural circuit device of fluid ice
JP3639422B2 (en) Air conditioner with ice heat storage unit

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040624