JP2509667B2 - Thermal storage refrigeration system - Google Patents

Thermal storage refrigeration system

Info

Publication number
JP2509667B2
JP2509667B2 JP7814188A JP7814188A JP2509667B2 JP 2509667 B2 JP2509667 B2 JP 2509667B2 JP 7814188 A JP7814188 A JP 7814188A JP 7814188 A JP7814188 A JP 7814188A JP 2509667 B2 JP2509667 B2 JP 2509667B2
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
heat storage
pipe
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7814188A
Other languages
Japanese (ja)
Other versions
JPH01252839A (en
Inventor
美智雄 梁取
利介 小野田
一 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7814188A priority Critical patent/JP2509667B2/en
Publication of JPH01252839A publication Critical patent/JPH01252839A/en
Application granted granted Critical
Publication of JP2509667B2 publication Critical patent/JP2509667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、蓄熱式冷凍装置に係り、特に、冷凍装置と
蓄熱槽とを可動部を持たない熱流制御性熱伝達装置によ
って熱的に結合し、蓄熱の信頼性を向上するのに好適な
蓄熱式冷凍装置に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage refrigeration system, and more particularly to a heat storage refrigeration system and a heat storage tank which are thermally coupled by a heat flow controllable heat transfer device having no movable part. However, the present invention relates to a heat storage type refrigerating apparatus suitable for improving the reliability of heat storage.

[従来の技術] 近年、空気調和装置においても、省エネルギ、経済性
の面から、夜間電力を利用して蓄冷し、昼間この冷熱を
冷房に利用することが行われており、例えば、特開昭51
−7747号公報、特開昭58−2541号公報、特開昭53−1481
45号公報記載のものなどが知られている。
[Prior Art] In recent years, even in an air conditioner, from the viewpoint of energy saving and economical efficiency, cold electricity is used to store cold energy, and this cold energy is used for cooling during the daytime. Sho 51
-7747, JP58-2541, JP53-1481
Those described in Japanese Patent No. 45 are known.

特に、特開昭53−148145号公報には、一般的な冷凍サ
イクルの空気調和装置と、蓄熱材を満たした蓄熱槽とを
備え、蓄熱槽中に設けてある蒸発器と室外側熱交換器に
設けてある凝縮器とを、蒸気上昇管と液体下降管とによ
って密閉循環路を構成するように連結し、バブルポンプ
方式、タンク加熱方式、あるいはベーパーロック方式等
によって、蓄熱槽から空気調和装置の室外側熱交換器
へ、あるいは室外側熱交換器から蓄熱槽へ熱を伝えたり
切ったりする技術が開示されていた。
In particular, JP-A-53-148145 discloses an air conditioner for a general refrigeration cycle, a heat storage tank filled with a heat storage material, and an evaporator and an outdoor heat exchanger provided in the heat storage tank. The condenser provided in the above is connected to form a closed circulation path by the vapor rising pipe and the liquid descending pipe, and the air conditioner is operated from the heat storage tank by a bubble pump system, a tank heating system, or a vapor lock system. The technology for transferring heat to and from the outdoor heat exchanger in and out of the outdoor heat exchanger to the heat storage tank has been disclosed.

[発明が解決しようとする課題] 上記特開昭51−7747号公報記載の技術は、冷凍装置を
屋内、蓄熱槽を屋外に配設して、これを熱的に結合する
場合、複雑なサイクル構成になっている冷凍装置に、現
地で冷媒を封入して調整しなければならず、施工性およ
び保守性について配慮されていなかった。
[Problems to be Solved by the Invention] In the technique described in JP-A-51-7747, a refrigerating apparatus is provided indoors and a heat storage tank is provided outdoors, and when these are thermally coupled, a complicated cycle is required. Refrigerating equipment configured as such had to be filled with a refrigerant on site for adjustment, and workability and maintainability were not considered.

また、上記特開昭58−2541号公報記載の技術は、熱媒
体を入れた配管によって冷凍装置と蓄熱槽を結合し、ポ
ンプによって熱媒体を循環するという間接熱交換方式に
よって、上記問題を解決しているが、反面機械的可動部
を有するポンプの信頼性とポンプ動力が大きいという点
について配慮されていなかった。
Further, the technique described in JP-A-58-2541 solves the above problem by an indirect heat exchange system in which a refrigerating device and a heat storage tank are connected by a pipe containing a heat medium, and the heat medium is circulated by a pump. However, on the other hand, no consideration was given to the reliability and pump power of a pump having a mechanically movable part.

さらに、上記の特開昭53−148145号公報記載の技術
は、本発明にもっとも近い技術で、可動部分のない熱伝
達装置によって空気調和装置の室外側熱交換器から蓄熱
槽へ、あるいは蓄熱槽から室外側熱交換器へ熱を伝えた
り切ったりして、蓄熱槽内の蓄冷熱を有効に冷暖房に利
用できるものであるが、蓄熱槽内熱交換器(蒸発器)ま
わりに付着する蓄熱材結晶(例えば氷など)を適宜離脱
させて熱交換器の熱抵抗を低減することについては配慮
されていなかった。また、前記熱伝達装置部のサイクル
構成、運転方法の面で、本発明とは異なるものであっ
た。
Further, the technique described in Japanese Patent Laid-Open No. 53-148145 described above is the technique closest to the present invention, in which a heat transfer device having no moving parts is used to transfer heat from the outdoor heat exchanger of the air conditioner to the heat storage tank, or The heat stored in the heat storage tank can be effectively used for cooling and heating by transferring heat from the outdoor heat exchanger to the outdoor heat exchanger, but the heat storage material attached around the heat exchanger in the heat storage tank (evaporator). No consideration was given to reducing the thermal resistance of the heat exchanger by appropriately removing crystals (such as ice). Further, the heat transfer device section is different from the present invention in terms of the cycle configuration and the operating method.

本発明は、上記従来技術における課題を解決するため
になされたもので、蓄熱槽内の蓄熱材を凝固させながら
熱を取り出す際に、蓄熱槽内の熱交換器まわりに付着す
る蓄熱材結晶を適宜離脱させて熱の取得を容易にすると
ともに、保守性、施工性、信頼性が高く、かつ消費電力
の少ない蓄熱式冷凍装置を提供することを、その目的と
するものである。
The present invention was made in order to solve the above problems in the prior art, when taking out heat while solidifying the heat storage material in the heat storage tank, heat storage material crystals that adhere to the periphery of the heat exchanger in the heat storage tank. It is an object of the present invention to provide a heat storage type refrigerating apparatus which has high maintainability, workability, high reliability, and low power consumption, as well as facilitates heat acquisition by appropriately separating.

[課題を解決するための手段] 上記目的を達成するために、本発明に係る蓄熱式冷凍
装置の構成は、圧縮機、凝縮器、減圧機構、および蒸発
器を配管接続して冷凍サイクルを構成する冷凍装置と、
蓄熱材を満たした蓄熱槽と、第1熱交換器、第2熱交換
器、これら第1,第2熱交換器を結ぶ液戻り管、および蒸
気移動管によって蒸発性液体の密閉循環路を構成する熱
流制御性熱伝達装置とを備えた蓄熱式冷凍装置におい
て、上記熱流制御性熱伝達装置の第1熱交換器を上記蒸
発器に、第2熱交換器を上記蓄熱槽に配設し、前記第1,
第2熱交換器を結ぶ液戻り管の中間部を、少なくとも逆
U字状部を有する立上げ管とし、この立上げ管の、第1
熱交換器側根元部に第1のヒータ、第2熱交換器側根元
部に第2のヒータを設けるとともに、上記冷凍装置の冷
凍サイクル管路に、減圧機構と並列に開閉弁を具備する
分岐管路を設けたものである。
[Means for Solving the Problems] In order to achieve the above object, the structure of the heat storage type refrigerating apparatus according to the present invention is configured by connecting a compressor, a condenser, a pressure reducing mechanism, and an evaporator to a refrigerating cycle. Refrigeration equipment to
A heat storage tank filled with a heat storage material, a first heat exchanger, a second heat exchanger, a liquid return pipe connecting these first and second heat exchangers, and a vapor transfer pipe constitute a closed circulation path for an evaporative liquid. A heat storage controllable heat transfer device, wherein a first heat exchanger of the heat flow controllable heat transfer device is arranged in the evaporator, and a second heat exchanger is arranged in the heat storage tank. The first
The middle part of the liquid return pipe connecting the second heat exchanger is a start-up pipe having at least an inverted U-shaped part, and the first part of the start-up pipe is
A branch provided with a first heater at the heat exchanger side root part and a second heater at the second heat exchanger side root part, and also provided with an opening / closing valve in parallel with the pressure reducing mechanism in the refrigeration cycle line of the refrigerating apparatus. It has a pipeline.

また、蓄熱槽内に設けた第2熱交換器は、蛇行状の伝
熱管に接合して、垂直フイン付き皿部を形成したもので
あるか、あるいは、液戻り管および蒸気移動管にそれぞ
れ連通するマニホルドと、これらマニホルド間に連設し
て配置された垂直フイン付き伝熱管とからなるものであ
る。
Further, the second heat exchanger provided in the heat storage tank is connected to the meandering heat transfer tube to form the dish portion with the vertical fins, or is communicated with the liquid return tube and the vapor transfer tube, respectively. And manifolds and heat transfer tubes with vertical fins arranged in series between the manifolds.

なお付記すると、上記目的は、第1熱交換器、第2熱
交換器、液戻り管、立上げ管、立上げ管根元部に設けた
第1,第2のヒータ、および蒸気移動管で構成されている
熱流制御性熱伝達装置によって、冷凍装置と蓄熱槽とを
互に熱的に結合することによって、達成される。
In addition, the above-mentioned purpose is composed of a first heat exchanger, a second heat exchanger, a liquid return pipe, a start-up pipe, first and second heaters provided at the base of the start-up pipe, and a steam transfer pipe. This is achieved by thermally coupling the refrigeration system and the heat storage tank to each other by means of a heat transfer controllable heat transfer device.

[作用] 上記の技術的手段による働きは、次のとおりである。[Operation] The operation of the above technical means is as follows.

熱流制御性熱伝達装置は、従来のポンプのような可動
部を有しない熱伝達装置であるため、信頼性が著しく高
いものとなる。また、熱流制御性熱伝達装置内には蒸発
性液体を封入して動作させるため、保守点検時にその液
体が漏れても蒸発してしまい、取扱いが容易である。す
なわち、従来の非蒸発性不凍液が漏れ出したとき、それ
を集めて収納していたようなわずらわしさが無い。
The heat flow controllable heat transfer device is a heat transfer device that does not have a moving part like a conventional pump, and therefore has extremely high reliability. Further, since the evaporative liquid is enclosed and operated in the heat flow controllable heat transfer device, even if the liquid leaks at the time of maintenance and inspection, the liquid evaporates and the handling is easy. That is, when the conventional non-evaporable antifreeze liquid leaks out, there is no troublesomeness of collecting and storing it.

冷凍装置の開閉弁を閉弁して通常の冷凍サイクルの運
転を行うと、熱流制御性熱伝達装置の第1熱交換器が冷
却され、第1のヒータに入力することによって蒸発性液
体は第1熱交換器から液戻り管を経て第2熱交換器で蓄
熱槽内の蓄熱材を凝固させ、蒸発性液体は蒸発移動管を
経て第1熱交換器に戻るサイクルを構成する。
When the on-off valve of the refrigerating device is closed to perform a normal refrigerating cycle operation, the first heat exchanger of the heat flow controllable heat transfer device is cooled and the evaporative liquid is supplied to the first heater by the first heat exchanger. The second heat exchanger solidifies the heat storage material in the heat storage tank from the first heat exchanger through the liquid return pipe, and the evaporative liquid returns to the first heat exchanger through the evaporation transfer pipe.

前記開閉弁を開き、第2のヒータに入力すると、熱流
制御性熱伝達装置の蒸発性液体の流れは前記の逆サイク
ルとなり、第2熱交換器の垂直フイン付き皿部あるいは
伝熱管部に凝固した蓄熱材結晶を離脱させ蓄熱の信頼性
を向上する。
When the on-off valve is opened and input to the second heater, the flow of the evaporative liquid in the heat flow controllable heat transfer device is in the reverse cycle described above, and solidifies in the vertical fin plate or the heat transfer tube part of the second heat exchanger. The heat storage material crystals are released to improve the reliability of heat storage.

また、第1,第2のヒータに加える入力は、第1熱交換
器から第2熱交換器に輸送する熱量の約1/20と小さく、
消費電力の面でも小さく得策となる。
The input applied to the first and second heaters is as small as about 1/20 of the amount of heat transferred from the first heat exchanger to the second heat exchanger,
It is also a good measure in terms of power consumption.

[実施例] 以下、本発明の各実施例を第1図ないし第8図を参照
して説明する。
Embodiments Embodiments of the present invention will be described below with reference to FIGS. 1 to 8.

第1図は、本発明の一実施例に係る蓄熱式冷凍装置の
略示構成図、第2図は、第1図の第2熱交換器の断面
図、第3図は、その第2熱交換器の平面図である。
FIG. 1 is a schematic configuration diagram of a heat storage type refrigerating apparatus according to an embodiment of the present invention, FIG. 2 is a sectional view of a second heat exchanger of FIG. 1, and FIG. It is a top view of an exchanger.

第1図に示す、本発明の一実施例の蓄熱式冷凍装置
は、冷凍装置1、熱流制御性熱伝達装置2、蓄熱槽3か
ら構成されている。
The heat storage type refrigerating apparatus of one embodiment of the present invention shown in FIG. 1 comprises a refrigerating apparatus 1, a heat flow controllable heat transfer device 2 and a heat storage tank 3.

冷凍装置1は、圧縮機4、凝縮器5、減圧機構6、お
よび蒸発器7を配管9で接続して冷凍サイクルを構成す
るとともに、減圧機構6と並列に開閉弁8を具備する分
岐管路10を有している。この冷凍サイクル系にはフロン
等の蒸発性液体が入っている。
The refrigerating apparatus 1 has a branch line that includes a compressor 4, a condenser 5, a pressure reducing mechanism 6, and an evaporator 7 connected by a pipe 9 to form a refrigerating cycle, and has an opening / closing valve 8 in parallel with the pressure reducing mechanism 6. Have ten. This refrigeration cycle system contains an evaporative liquid such as CFC.

熱流制御性熱伝達装置2は、第1熱交換器21、第2熱
交換器22、第1熱交換器21に連通する液戻り管23、第2
熱交換器22に連通する液戻り管23′、これら液戻り管2
3,23′の中間部にある逆U字形の立上げ管25、この立上
げ管25の第1熱交換器側根元部に設けた第1のヒータ2
9、第2熱交換器側根元部に設けた第2のヒータ30、お
よび第1,第2熱交換器21,22に連通する蒸気移動管24を
主要構成要素として密閉循環路を形成しており、この密
閉循環路中には、フロン等の蒸発性液体が入っている。
The heat flow controllable heat transfer device 2 includes a first heat exchanger 21, a second heat exchanger 22, a liquid return pipe 23 communicating with the first heat exchanger 21, and a second heat exchanger 21.
Liquid return pipes 23 'communicating with the heat exchanger 22, these liquid return pipes 2
Inverted U-shaped start-up pipe 25 in the middle part of 3,23 ', first heater 2 provided at the root part of this start-up pipe 25 on the first heat exchanger side
9. A closed circulation path is formed with the second heater 30 provided at the base portion on the second heat exchanger side and the steam transfer pipe 24 communicating with the first and second heat exchangers 21 and 22 as main components. In this closed circulation path, an evaporative liquid such as CFC is contained.

蓄熱槽3は、槽体31内に、水,塩化カルシウム6水塩
などの蓄熱材32が満たされている。
The heat storage tank 3 has a tank body 31 filled with a heat storage material 32 such as water or calcium chloride hexahydrate.

第1図から明らかなように、第1熱交換器21は、蒸発
器7に、第2熱交換器22は蓄熱槽3に配設されている。
As is clear from FIG. 1, the first heat exchanger 21 is arranged in the evaporator 7, and the second heat exchanger 22 is arranged in the heat storage tank 3.

蓄熱槽3内に配設された第2熱交換器22の詳細構成の
一例を第2図および第3図に示す。
An example of the detailed configuration of the second heat exchanger 22 arranged in the heat storage tank 3 is shown in FIGS. 2 and 3.

第2熱交換器22は、蒸発性液体の通るパイプである蛇
行状の伝熱管51に、伝熱板52、垂直フイン53,53′,54,5
4′が接合され、垂直フイン付き皿形状に形成されてい
る。32′は、垂直フイン付き皿に凝縮した蓄熱材結晶
(例えば氷など)を示す。
The second heat exchanger 22 includes a meandering heat transfer tube 51, which is a pipe through which an evaporative liquid passes, a heat transfer plate 52, and vertical fins 53, 53 ′, 54,5.
4'is joined to form a dish shape with vertical fins. Reference numeral 32 'indicates a heat storage material crystal (for example, ice) condensed in the vertical fin plate.

次に、このような蓄熱式冷凍装置の作用を説明する。 Next, the operation of such a heat storage type refrigerating apparatus will be described.

いま、冷凍装置1、熱流制御性熱伝達装置2を運転
し、蓄熱槽3内の蓄熱材32を凝固させて蓄冷する場合に
ついて説明する。
Now, a case will be described in which the refrigerating apparatus 1 and the heat flow controllable heat transfer apparatus 2 are operated to solidify the heat storage material 32 in the heat storage tank 3 to store cold.

圧縮機4を運転すると、内部の蒸発性液体は断熱圧縮
され高温高圧のガスとなって配管9を経て凝縮器5に入
る。ここでガスは熱放散して液化し、その後減圧機構6
に流入する。減圧機構6において蒸発性液体は断熱膨張
して冷却され、その後蒸発器7に流入して圧縮機4に戻
される。このように蒸発性液体の断熱膨張によって、蒸
発器7は冷却されるので、それに熱的に結合してある第
1熱交換器21も冷却される。
When the compressor 4 is operated, the evaporative liquid inside is adiabatically compressed into high-temperature and high-pressure gas, which enters the condenser 5 via the pipe 9. Here, the gas dissipates heat and liquefies, and then the decompression mechanism 6
Flows into. In the decompression mechanism 6, the evaporative liquid is adiabatically expanded and cooled, and then flows into the evaporator 7 and is returned to the compressor 4. Since the evaporator 7 is cooled by the adiabatic expansion of the evaporative liquid, the first heat exchanger 21, which is thermally coupled to the evaporator 7, is also cooled.

冷凍装置1の運転に対応して、熱流制御性熱伝達装置
2も次のように作動させる。
Corresponding to the operation of the refrigeration system 1, the heat flow controllable heat transfer device 2 is also operated as follows.

まず、第1のヒータ29に微小な入力を加えると、逆U
字形の立上げ管25の左側内部で蒸発性液体が沸騰し、こ
れによって生じた気泡の気泡ポンプ作用によって、その
周りにある液体はくみ上げられる。くみ上げられた液体
は立上げ管25の頂部を越えて溢れ出し、液戻り管23′を
通って第2熱交換器22内に流入する。ここで蒸発性液体
は第2熱交換器22の周りにある蓄熱材32から熱を吸収し
て蒸発し、これによって発生した蒸気は、蒸気移動管24
を通って第1熱交換器21に流入し、ここで凝縮熱を放出
して液化する。
First, when a minute input is applied to the first heater 29, the reverse U
The evaporative liquid boils inside the left side of the V-shaped start-up pipe 25, and the liquid pumping the bubbles generated thereby pumps up the liquid around it. The pumped liquid overflows beyond the top of the riser pipe 25 and flows into the second heat exchanger 22 through the liquid return pipe 23 '. Here, the evaporative liquid absorbs heat from the heat storage material 32 around the second heat exchanger 22 and evaporates.
To flow into the first heat exchanger 21, where the heat of condensation is released and liquefied.

このようにして蓄熱槽3内の蓄熱材32の保有する熱
は、熱流制御性熱伝達装置2を介して冷凍装置1側に輸
送され、最終的には外部に熱放散される。このため、蓄
熱材32の温度は下って凝固点以下となり、第2熱交換器
の周りには、蓄熱材結晶32′が付着する。第2熱交換器
に結晶が厚く付着すると、その部分の熱抵抗が増大し、
蓄熱材32から第2熱交換器22へ熱が入りにくくなり、結
果として蓄熱材32の結晶成長率が小さくなる。
In this way, the heat held by the heat storage material 32 in the heat storage tank 3 is transported to the refrigerating apparatus 1 side via the heat flow controllable heat transfer device 2 and finally dissipated to the outside. For this reason, the temperature of the heat storage material 32 falls and becomes equal to or lower than the freezing point, and the heat storage material crystals 32 'are attached around the second heat exchanger. When the crystal is thickly attached to the second heat exchanger, the thermal resistance of that portion increases,
It becomes difficult for heat to enter the second heat exchanger 22 from the heat storage material 32, and as a result, the crystal growth rate of the heat storage material 32 becomes small.

そこで、本実施例では、次のようにして第2熱交換器
22に付着した結晶を離脱させ、熱抵抗の減小化を図るこ
とになる。
Therefore, in this embodiment, the second heat exchanger is performed as follows.
The crystals attached to 22 are released to reduce the thermal resistance.

すなわち、冷凍装置1の圧縮機4の運転を止めて開閉
弁8を開く。このようにすると、凝縮器5側の熱は、蒸
発性液体の蒸発作用によって、配管10と開閉弁8を介し
て蒸発器7側へ移り、蒸発器7の温度が高まる。このた
め、熱流制御性熱伝達装置2の第1熱交換器21の温度も
上昇し、その内部に入っている蒸発性液体は、今までと
は逆方向に、第1熱交換器21側から第2熱交換器22側
に、蒸気移動管24を通って移動し始める。第2熱交換器
22内で凝縮した液体は液戻り管23′を降下して立上げ管
25の右側(第2熱交換器側)根元部に到達するので、第
2のヒーター30に入力することにより、気泡ポンプ作用
を利用して立上管25の頂部を越え、液戻り管23を通して
第1熱交換器21に戻すことができる。
That is, the operation of the compressor 4 of the refrigeration system 1 is stopped and the open / close valve 8 is opened. By doing so, the heat on the condenser 5 side moves to the evaporator 7 side via the pipe 10 and the opening / closing valve 8 due to the evaporation action of the evaporative liquid, and the temperature of the evaporator 7 rises. Therefore, the temperature of the first heat exchanger 21 of the heat flow controllable heat transfer device 2 also rises, and the evaporative liquid contained in the heat transfer device 2 moves from the side of the first heat exchanger 21 in the opposite direction. The steam starts to move to the second heat exchanger 22 side through the steam transfer pipe 24. Second heat exchanger
The liquid condensed in 22 descends the liquid return pipe 23 'and rises up.
Since it reaches the root of the right side of 25 (the side of the second heat exchanger), by inputting to the second heater 30, the bubble pump action is used to cross the top of the rising pipe 25 and through the liquid return pipe 23. It can be returned to the first heat exchanger 21.

このようにして、連続的に第1熱交換器21側から第2
熱交換器22側に熱輸送が行われる。
In this way, from the first heat exchanger 21 side to the second
Heat is transferred to the heat exchanger 22 side.

第1図において、均圧管26は、第1,第2のヒータ29,3
0に通電した際、立上げ管25内で発生する気泡を分離し
て蒸気移動管24内に移し、立上げ管25内における気泡ポ
ンプ作用を円滑に行うためのものである。
In FIG. 1, the pressure equalizing pipe 26 is provided with the first and second heaters 29, 3
This is for smoothing the bubble pumping action in the riser pipe 25 by separating the bubbles generated in the riser pipe 25 and moving them into the vapor transfer pipe 24 when electricity is applied to 0.

上記の逆サイクル作動によって、第2熱交換器22の温
度が一時的に蓄熱材32の融点以上になり、第2熱交換器
22周りの蓄熱材結晶32′の一部が融解し、垂直フイン付
き皿部の蓄熱材結晶32′が離脱して熱抵抗が減少する。
Due to the above reverse cycle operation, the temperature of the second heat exchanger 22 temporarily becomes equal to or higher than the melting point of the heat storage material 32, and the second heat exchanger 22
A part of the heat storage material crystal 32 'around 22 is melted, and the heat storage material crystal 32' in the dish portion with the vertical fins is separated to reduce the thermal resistance.

その後、再び開閉弁8を閉じ、圧縮機4を運転し、さ
らに第2のヒータ30に代って第1のヒータ29に入力して
蓄熱材32を冷却して蓄冷を行う。このような操作を適宜
交互に行うと、第2熱交換器22周りの熱抵抗が減少し、
その伝熱面積の減少と冷凍装置1の効率向上を図ること
ができる。
After that, the on-off valve 8 is closed again, the compressor 4 is operated, and further, the first heater 29 is input instead of the second heater 30 to cool the heat storage material 32 and perform cold storage. When such an operation is appropriately alternately performed, the thermal resistance around the second heat exchanger 22 decreases,
The heat transfer area can be reduced and the efficiency of the refrigeration system 1 can be improved.

熱流制御性熱伝達装置2の液戻り管23,23′部に液溜
めタンク27,28を設けておくと、密閉循環路内に封入す
る蒸発性液体の量の調整が容易となり、また、気泡ポン
プ作用も円滑に行わせることができる。
If the liquid return pipes 23, 23 'of the heat flow controllable heat transfer device 2 are provided with liquid storage tanks 27, 28, it becomes easy to adjust the amount of the evaporative liquid to be sealed in the closed circulation path, and the bubbles The pump action can be smoothly performed.

以上のようにして蓄熱槽3内に蓄冷した冷熱は、下記
のようにして用いる。
The cold heat stored in the heat storage tank 3 as described above is used as follows.

蓄熱槽3の蓄熱材32中に別の熱交換器(図示せず)を
設けて、内部に熱媒体(冷媒)を流して、居室等に設け
てある熱交換器内に導入して冷房に用いる。蓄熱材32が
水である場合には、蓄熱材32中に新たに熱交換器を設け
なくても、それをそのままポンプによつて居室内の熱交
換器に導入すればよい。また冷凍装置1を逆サイクルに
運転し、第1図における5を居室内に設けた蒸発器、7
を凝縮器として用いれば、熱流制御性熱伝達装置2を介
して蓄熱槽3の冷熱を冷房に利用できる。
Another heat exchanger (not shown) is provided in the heat storage material 32 of the heat storage tank 3, a heat medium (refrigerant) is caused to flow inside, and the heat medium is introduced into the heat exchanger provided in the living room or the like for cooling. To use. When the heat storage material 32 is water, it is sufficient to introduce the heat storage material 32 into the heat exchanger in the living room as it is without providing a new heat exchanger in the heat storage material 32. Further, the refrigerating apparatus 1 is operated in the reverse cycle, and 5 in FIG.
If is used as a condenser, the cold heat of the heat storage tank 3 can be used for cooling via the heat flow controllable heat transfer device 2.

本実施例によれば次の効果がある。 According to this embodiment, there are the following effects.

(1)蓄熱材の結晶一離脱を円滑に行わせることができ
る。
(1) Crystal separation of the heat storage material can be smoothly performed.

(2)従来のポンプ動力にくらべ消費電力を著しく小さ
いものにできる。
(2) The power consumption can be significantly reduced as compared with the conventional pump power.

(3)蒸発,凝縮の熱伝達を用いることによって蓄熱槽
内熱交換器の伝熱性能を向上し、その伝熱面積を減少し
小形化できる。
(3) The heat transfer performance of the heat exchanger in the heat storage tank can be improved by using the heat transfer of evaporation and condensation, and the heat transfer area can be reduced and downsized.

(4)保守性、施工性、信頼性を向上でき実用に供して
便利である。
(4) Maintainability, workability, and reliability can be improved, which is convenient for practical use.

次に、第4図は、本発明の他の実施例に係る蓄熱式冷
凍装置の略示構成図である。図中、第1図と同一符号の
ものは、先の実施例と同等部分であるから、その説明を
省略する。
Next, FIG. 4 is a schematic configuration diagram of a heat storage type refrigerating apparatus according to another embodiment of the present invention. In the figure, those having the same reference numerals as those in FIG. 1 are the same parts as those in the previous embodiment, and therefore their explanations are omitted.

第4図の実施例では、冷凍装置1が蓄熱槽3より低位
置にある場合の実施例である。
The embodiment of FIG. 4 is an embodiment in which the refrigerating apparatus 1 is located lower than the heat storage tank 3.

この実施例では、液戻り管23,23′の中間部にある立
ち上げ管25Aが、第1熱交換器21側の立ち上がりが第2
熱交換器22側の立ち上がりより長くなって、その頂部が
逆U字状に形成されている。
In this embodiment, the riser pipe 25A located in the middle of the liquid return pipes 23, 23 'has the second riser on the first heat exchanger 21 side.
It is longer than the rising on the side of the heat exchanger 22 and its top is formed in an inverted U shape.

また、第4図では、制御の配線も示してある。 In addition, in FIG. 4, control wiring is also shown.

すなわち、40が制御器で、この制御器40から第1のヒ
ータ29、第2のヒータ30、第2熱交換器22に設けた温度
センサ44、開閉弁(電磁弁)8に、それぞれリード線4
1,42,45,43によって図示のように結線している。
That is, 40 is a controller, and from this controller 40 to the first heater 29, the second heater 30, the temperature sensor 44 provided in the second heat exchanger 22, and the open / close valve (solenoid valve) 8, the lead wires are respectively provided. Four
1, 42, 45, 43 are connected as shown.

第4図の実施例によれば、先の第1図の実施例で述べ
たものと同様の効果が期待される。
According to the embodiment of FIG. 4, the same effect as that described in the embodiment of FIG. 1 can be expected.

次に第5図は、本発明のさらに他の実施例に係る蓄熱
式冷凍装置の略示構成図である。図中、第1図と同一符
号のものは先の実施例と同等部分であるから、その説明
を省略する。
Next, FIG. 5 is a schematic configuration diagram of a heat storage type refrigerating apparatus according to still another embodiment of the present invention. In the figure, those having the same reference numerals as those in FIG. 1 are the same parts as those of the previous embodiment, and therefore their explanations are omitted.

第5図の実施例では、冷凍装置1が蓄熱槽3より高位
置にある場合の実施例である。
The embodiment shown in FIG. 5 is an embodiment in which the refrigeration system 1 is located higher than the heat storage tank 3.

この実施例では、液戻り管23,23′の中間部にある立
ち上げ管25Bが、第1熱交換器21側の立ち上りが第2熱
交換器22側の立ち上りより短くなっていて、その頂部が
逆U字状に形成されている。
In this embodiment, the riser pipe 25B located in the middle of the liquid return pipes 23, 23 'has a shorter rise on the first heat exchanger 21 side than on the second heat exchanger 22 side, and its top portion. Are formed in an inverted U shape.

第5図の実施例によれば、先の第1図の実施例で述べ
たものと同様の効果が期待される。
According to the embodiment of FIG. 5, the same effect as that described in the embodiment of FIG. 1 can be expected.

なお、第5図および第1図のいずれにおいても、第4
図で示した如き制御の配線(図示せず)が結線されてい
ることは言うまでもない。
It should be noted that in both FIG. 5 and FIG.
It goes without saying that the control wiring (not shown) as shown in the figure is connected.

次に、蓄熱槽内の第2熱交換器の構造の他の実施例を
第6図ないし第8図を参照して説明する。
Next, another embodiment of the structure of the second heat exchanger in the heat storage tank will be described with reference to FIGS. 6 to 8.

第6図は、第2熱交換器の構成の他の例を示す断面
図、第7図は、第2熱交換器の構成のさらに他の例を示
す断面図、第8図は、その第2熱交換器の平面図であ
る。
FIG. 6 is a sectional view showing another example of the configuration of the second heat exchanger, FIG. 7 is a sectional view showing yet another example of the configuration of the second heat exchanger, and FIG. It is a top view of a 2 heat exchanger.

第6図に示す第2熱交換器22Aは、蛇行状の伝熱管51
上に伝熱枝52A、垂直フイン53,53′,54等が接合されて
垂直フイン付き皿形状に形成されている。
The second heat exchanger 22A shown in FIG. 6 has a meandering heat transfer tube 51.
The heat transfer branch 52A, the vertical fins 53, 53 ', 54, etc. are joined on top to form a dish shape with vertical fins.

この形状の第2の熱交換器22Aによれば、第2,3図の例
と同様、蓄熱材結晶32′が離脱されやすい。
According to the second heat exchanger 22A having this shape, the heat storage material crystal 32 'is likely to be detached, as in the example of FIGS.

第7,8図に示す第2熱交換器22Bは、液戻り管23′およ
び蒸気移動管24にそれぞれ連通するマニホルド60a,60b
と、これらマニホルド60a,60b間に連設して配置された
垂直フイン付き伝熱管とからなるものである。
The second heat exchanger 22B shown in FIGS. 7 and 8 includes manifolds 60a and 60b which communicate with the liquid return pipe 23 'and the vapor transfer pipe 24, respectively.
And a heat transfer tube with a vertical fin arranged continuously between the manifolds 60a and 60b.

より詳しくは、蒸発性液体の通る伝熱管61が図示のよ
うに連設されていて、各伝熱管61には垂直フイン63が付
いている。また、各伝熱管61の端部は、細管61′を介し
てマニホルド60a,60bに結合されている。また、垂直フ
イン63の両端には、それに対して垂直方向に配置した垂
直フイン64が設けてある。このようにすると、垂直フイ
ン63,64の内側に存在する蓄熱材結晶32′が、加熱され
たとき分離されやすくなる。図の左,右に付いている分
離板65は、周縁部に存在する垂直フイン63,64の外の蓄
熱材結晶32″を分離しやすくするために設けたものであ
る。
More specifically, heat transfer tubes 61 through which the evaporative liquid passes are connected in series as shown, and each heat transfer tube 61 has a vertical fin 63. Further, the ends of the heat transfer tubes 61 are connected to the manifolds 60a and 60b via the thin tubes 61 '. Further, vertical fins 64 are provided at both ends of the vertical fin 63 in the direction perpendicular to the vertical fins 63. In this way, the heat storage material crystals 32 'existing inside the vertical fins 63, 64 are easily separated when heated. Separation plates 65 attached to the left and right of the figure are provided to facilitate separation of the heat storage material crystals 32 ″ outside the vertical fins 63 and 64 existing at the peripheral edge.

これら第6図ないし第7図に示した第2熱交換器は、
第2,3図に示した第2熱交換器と同様の効果をもたらす
ものであり、先の第1図、第4図、および第5図に示し
た蓄熱式冷凍装置に供せられるものである。
The second heat exchanger shown in FIGS. 6 to 7 is
It has the same effect as the second heat exchanger shown in FIGS. 2 and 3, and is used for the heat storage type refrigerating apparatus shown in FIGS. 1, 4, and 5 above. is there.

なお、上記の各実施例では、居室の冷房等に用い、夜
間電力を利用して蓄冷し、昼間この冷熱を冷房に使用す
る蓄熱式冷凍装置の例を説明したが、居室の冷房に限ら
ず、野菜や魚類の冷凍にも利用できることは言うまでも
ない。
In each of the above-mentioned embodiments, it is used for cooling the living room, etc., and stores the cold by using the nighttime electric power. Needless to say, it can also be used for freezing vegetables and fish.

[発明の効果] 以上述べたように、本発明によれば、蓄熱槽内の蓄熱
材を凝固させながら熱を取り出す際に、蓄熱槽内の熱交
換器まわりに付着する蓄熱材結晶を適宜離脱させて熱の
取得を容易にするとともに、保守性、施工性、信頼性が
高く、かつ消費電力の少ない蓄熱式冷凍装置を提供する
ことができる。
[Effects of the Invention] As described above, according to the present invention, when heat is taken out while solidifying the heat storage material in the heat storage tank, the heat storage material crystals attached around the heat exchanger in the heat storage tank are appropriately separated. Thus, it is possible to provide a heat storage type refrigerating apparatus which facilitates heat acquisition and has high maintainability, workability, reliability, and low power consumption.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例に係る蓄熱式冷凍装置の略
示構成図、第2図は、第1図の第2熱交換器の断面図、
第3図は、その第2熱交換器の平面図、第4図は、本発
明の他の実施例に係る蓄熱式冷凍装置の略示構成図、第
5図は、本発明のさらに他の実施例に係る蓄熱式冷凍装
置の略示構成図、第6図は、第2熱交換器の構成の他の
例を示す断面図、第7図は、第2熱交換器の構成のさら
に他の例を示す断面図、第8図は、その第2熱交換器の
平面図である。 1……冷凍装置、2……熱流制御性熱伝達装置、3……
蓄熱槽、4……圧縮機、5……凝縮器、6……減圧機
構、7……蒸発器、8……開閉弁、10……分岐管路、21
……第1熱交換器、22……第2熱交換器、23,23′……
液戻り管、24……蒸気移動管、25,25A,25B……立上げ
管、29……第1のヒータ、30……第2のヒータ、32……
蓄熱材、32′,32″……蓄熱材結晶、51,61……伝熱管、
52,52A……伝熱板、53,53′,54,54′,63,64……垂直フ
イン、65……分離板。
1 is a schematic configuration diagram of a heat storage type refrigerating apparatus according to an embodiment of the present invention, FIG. 2 is a sectional view of a second heat exchanger of FIG. 1,
FIG. 3 is a plan view of the second heat exchanger, FIG. 4 is a schematic configuration diagram of a heat storage type refrigerating apparatus according to another embodiment of the present invention, and FIG. 5 is still another embodiment of the present invention. FIG. 6 is a schematic configuration diagram of a heat storage type refrigerating apparatus according to an embodiment, FIG. 6 is a sectional view showing another example of the configuration of the second heat exchanger, and FIG. 7 is still another configuration of the second heat exchanger. FIG. 8 is a cross-sectional view showing an example of FIG. 8 and FIG. 8 is a plan view of the second heat exchanger. 1 ... Refrigeration device, 2 ... Heat flow controllable heat transfer device, 3 ...
Heat storage tank, 4 ... Compressor, 5 ... Condenser, 6 ... Decompression mechanism, 7 ... Evaporator, 8 ... Open / close valve, 10 ... Branch pipe line, 21
…… First heat exchanger, 22 …… Second heat exchanger, 23,23 ′ ……
Liquid return pipe, 24 ... Steam transfer pipe, 25, 25A, 25B ... Start-up pipe, 29 ... First heater, 30 ... Second heater, 32 ...
Heat storage material, 32 ′, 32 ″ …… Heat storage material crystal, 51,61 …… Heat transfer tube,
52,52A …… heat transfer plate, 53,53 ′, 54,54 ′, 63,64 …… vertical fin, 65 …… separator plate.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機、凝縮器、減圧機構、および蒸発器
を配管接続して冷凍サイクルを構成する冷凍装置と、 蓄熱材を満たした蓄熱槽と、 第1熱交換器、第2熱交換器、これら第1,第2熱交換器
を結ぶ液戻り管、および蒸気移動管によって蒸発性液体
の密閉循環路を構成する熱流制御性熱伝達装置とを備え
た蓄熱式冷凍装置において、 上記熱流制御性熱伝達装置の第1熱交換器を上記蒸発器
に、第2熱交換器を上記蓄熱槽に配設し、 前記第1,第2熱交換器を結ぶ液戻り管の中間部を、少な
くとも逆U字状部を有する立上げ管とし、 この立上げ管の、第1熱交換器側根元部に第1のヒー
タ、第2熱交換器側根元部に第2のヒータを設けるとと
もに、 上記冷凍装置の冷凍サイクル管路に、減圧機構と並列に
開閉弁を具備する分岐管路を設けたことを特徴とする蓄
熱式冷凍装置。
1. A refrigerating apparatus, in which a compressor, a condenser, a pressure reducing mechanism, and an evaporator are connected by piping to form a refrigerating cycle, a heat storage tank filled with a heat storage material, a first heat exchanger, and a second heat exchange. In the heat storage type refrigerating apparatus, the heat flow controllable heat transfer device comprising a liquid return pipe connecting the first and second heat exchangers, and a vapor transfer pipe to form a closed circulation path for the evaporative liquid. The first heat exchanger of the controllable heat transfer device is arranged in the evaporator, the second heat exchanger is arranged in the heat storage tank, and the middle part of the liquid return pipe connecting the first and second heat exchangers is A startup pipe having at least an inverted U-shaped portion is provided, and a first heater is provided at the root portion of the first heat exchanger side of the startup pipe, and a second heater is provided at the root portion of the second heat exchanger side thereof. In the refrigeration cycle line of the refrigeration system, a branch line having an opening / closing valve in parallel with the pressure reducing mechanism is provided. And a heat storage type refrigerating device.
【請求項2】特許請求の範囲第1項記載のものにおい
て、冷凍装置の開閉弁を閉弁して運転するときは、第1
のヒータを入力し、前記開閉弁を開閉するときは、第2
のヒータを入力するように制御回路を構成したことを特
徴とする蓄熱式冷凍装置。
2. The method according to claim 1, wherein when the refrigeration system is operated by closing the on-off valve, the first
When the heater is input and the on-off valve is opened and closed, the second
A heat storage type refrigerating device, characterized in that a control circuit is configured to input the heater.
【請求項3】特許請求の範囲第1項記載のものにおい
て、蓄熱槽内に設けた第2熱交換器は、蛇行状の伝熱管
に接合して、垂直フイン付き皿部を形成したことを特徴
とする蓄熱式冷凍装置。
3. The apparatus according to claim 1, wherein the second heat exchanger provided in the heat storage tank is joined to the meandering heat transfer tube to form a vertical finned dish portion. Characteristic heat storage type refrigerator.
【請求項4】特許請求の範囲第1項記載のものにおい
て、蓄熱槽内に設けた第2熱交換器は、液戻り管および
蒸気移動管にそれぞれ連通するマニホルドと、これらマ
ニホルド間に連設して配置された垂直フイン付き伝熱管
とからなることを特徴とする蓄熱式冷凍装置。
4. The second heat exchanger provided in the heat storage tank according to claim 1, wherein the second heat exchanger is connected to the liquid return pipe and the vapor transfer pipe, respectively, and is connected between the manifolds. And a heat transfer tube with a vertical fin arranged in parallel.
JP7814188A 1988-04-01 1988-04-01 Thermal storage refrigeration system Expired - Lifetime JP2509667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7814188A JP2509667B2 (en) 1988-04-01 1988-04-01 Thermal storage refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7814188A JP2509667B2 (en) 1988-04-01 1988-04-01 Thermal storage refrigeration system

Publications (2)

Publication Number Publication Date
JPH01252839A JPH01252839A (en) 1989-10-09
JP2509667B2 true JP2509667B2 (en) 1996-06-26

Family

ID=13653603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7814188A Expired - Lifetime JP2509667B2 (en) 1988-04-01 1988-04-01 Thermal storage refrigeration system

Country Status (1)

Country Link
JP (1) JP2509667B2 (en)

Also Published As

Publication number Publication date
JPH01252839A (en) 1989-10-09

Similar Documents

Publication Publication Date Title
US4756164A (en) Cold plate refrigeration method and apparatus
CN100575801C (en) Storage of calorifics energy and cooling system that heat exchange performance strengthens based on cold-producing medium
EP0134015B1 (en) Space cooling and heating and hot water supplying apparatus
US4712387A (en) Cold plate refrigeration method and apparatus
JPH0146780B2 (en)
US3766752A (en) Refrigeration machine circuit with fusion storage
JP2509667B2 (en) Thermal storage refrigeration system
JP6912673B2 (en) Defrost system
JPS6367630B2 (en)
JP2533913B2 (en) Thermal storage refrigeration system
JPH0451740B2 (en)
JPH09119723A (en) Heat accumulator and air conditioner system
CN101639310A (en) Hot-gas bypass and surface cooler supercooling defrosting device
JPH0561539B2 (en)
JPH0749301Y2 (en) Latent heat regenerator
JP2982742B2 (en) Ice making equipment
JP2980624B2 (en) Cooling method using heat storage type liquid receiver and liquid pump, and cooling and heating methods
JPS63209526A (en) Cooling and heating apparatus for culture of plant
JP2508240B2 (en) Ice heat storage device and ice heat storage type air conditioner equipped with the ice heat storage device
JPS62773A (en) Heat accumulation type refrigerator
JP3063969U (en) Circuit type heat pipe thermal battery
JPH03241251A (en) Ice reservoir for air condition
JP2005104087A (en) Heat storage type mold cooling system
JPH086945B2 (en) Supercooled water production equipment for ice heat storage equipment for air conditioning
JPS58208525A (en) Heat regenerating manner in heat regenerating type air conditioning method