JPH086945B2 - Supercooled water production equipment for ice heat storage equipment for air conditioning - Google Patents

Supercooled water production equipment for ice heat storage equipment for air conditioning

Info

Publication number
JPH086945B2
JPH086945B2 JP12821091A JP12821091A JPH086945B2 JP H086945 B2 JPH086945 B2 JP H086945B2 JP 12821091 A JP12821091 A JP 12821091A JP 12821091 A JP12821091 A JP 12821091A JP H086945 B2 JPH086945 B2 JP H086945B2
Authority
JP
Japan
Prior art keywords
evaporator
liquid
heat
water
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12821091A
Other languages
Japanese (ja)
Other versions
JPH05133576A (en
Inventor
時雄 小此木
光彦 竹村
裕紀 白石
栄 菊地
一典 衛藤
充 守屋
正幸 谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP12821091A priority Critical patent/JPH086945B2/en
Publication of JPH05133576A publication Critical patent/JPH05133576A/en
Publication of JPH086945B2 publication Critical patent/JPH086945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空調用氷蓄熱設備におけ
る過冷却水製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing supercooled water in ice heat storage equipment for air conditioning.

【0002】[0002]

【従来の技術】建物内に配設したフアンコイルユニット
や水熱源ヒートポンプユニットの水側熱交換器に冷温水
を循環させて冷暖房を行なうさいに,冷房時の冷熱を蓄
熱槽内において氷の形態で蓄えるいわゆる氷蓄熱方式が
注目されており,一部稼働されるようになった。これ
は,例えば夜間電力で冷凍機を駆動して製氷し,氷の状
態で多量の冷熱を蓄熱槽で蓄えたうえ,冷房運転時にそ
の氷の冷熱を冷水として取出して二次側熱交換器に循環
するものであり,水の潜熱を利用するので小規模装置で
も多量の冷熱を蓄えることができる。
2. Description of the Related Art When cooling and heating water is circulated through a water side heat exchanger of a fan coil unit or a water heat source heat pump unit installed in a building to cool and heat the cold heat during cooling, ice forms in a heat storage tank. The so-called ice heat storage method, which stores the energy in, is drawing attention, and some have come into operation. This is because, for example, the refrigerator is driven by night-time power to make ice, and a large amount of cold heat is stored in the heat storage tank in the ice state, and during the cooling operation, the cold heat of the ice is taken out as cold water to the secondary heat exchanger. Since it circulates and uses latent heat of water, a large amount of cold heat can be stored even in a small-scale device.

【0003】この氷蓄熱方式には,製氷法の相違によっ
て蓄える氷の形態が氷塊状 (ソリッド状) のものとシャ
ーベット状 (微細氷と水とが混在したリキッド状または
スラリー状) のものとに分けられる。両者にはそれぞれ
得失があるが,氷塊方式では氷塊を蓄熱水槽で生成させ
る (熱交換器の表面で生成させる) 場合に氷層が厚くな
るとそれに伴って熱の伝導が低下するので大きな厚みに
することには限界があり,したがって,氷の充填率 (I.
P.F.) は10%前後にしかならず, 蓄熱効率が悪くなるこ
とは避けられない。I.P.F.を向上させるために添加剤を
加えた特殊溶液を使用したり,蓄熱水槽自体を圧力容器
に構成する例なども報告されているが,既設建物の蓄熱
式の水熱源冷暖房設備をそのまま氷蓄熱方式に適用する
には問題が多い。
In this ice heat storage method, there are two types of ice to be stored depending on the difference in the ice making method: ice blocks (solid) and sherbet (liquid or slurry in which fine ice and water are mixed). Be divided. Both have their advantages and disadvantages, but in the ice lump method, when the ice lump is generated in the heat storage water tank (generated on the surface of the heat exchanger), if the ice layer becomes thicker, the heat conduction will decrease accordingly, so make it a large thickness. There is a limit to this, so the ice fill factor (I.
PF) is only around 10%, and it is inevitable that the heat storage efficiency will deteriorate. Although it has been reported that a special solution containing an additive is used to improve the IPF and the heat storage water tank itself is configured as a pressure vessel, the heat storage type water heat source cooling and heating equipment of an existing building is used as it is for ice heat storage. There are many problems when applied to the method.

【0004】一方シャーベット状の氷を製造する場合に
はI.P.F.は非常に大きくすることができるが,大容量の
水をシャーベット状にするには一般には非常に大規模な
設備を必要とする。このシャーベット状の蓄熱方式につ
いては,例えば特開昭63-123968〜9号公報, 特開昭63-1
29274〜5号公報に記載のものなどが知られている。また
同一出願人に係る特開昭63-217171号公報および特開昭6
3-231157号公報に過冷却水からから微細な氷を製氷する
方法および装置を提案し,この過冷却水を伝熱管で連続
製造することを要件として,それらの改善等について,
特開昭63-271074号公報, 特開昭64-75869号公報, 特開
昭64-90973号公報, 特開平1-114682号公報, 実開昭63-1
39459号公報, 実開平1-88235号公報, 実開平1-88236号
公報,実開平1-88237号公報, 実開平1-97135号公報, 実
開平1-112345号公報, 実開平1-120022号公報, 実開平1-
125940号公報, 実開平1-136832号公報, 実開昭1-148538
号公報, 実開平1-178528号公報, 実開平2-527号公報等
に様々な提案を行った。
On the other hand, when making sherbet-like ice, the IPF can be made very large, but to make a large amount of water into sherbet-like ice generally requires a very large-scale facility. Regarding this sherbet-like heat storage method, for example, JP-A-63-123968-9 and JP-A-63-1
Those described in the publications 29274-5 are known. Further, Japanese Patent Application Laid-Open Nos. 63-217171 and 6 related to the same applicant
3-231157 proposes a method and an apparatus for making fine ice from supercooled water, and on the condition that the supercooled water is continuously manufactured by a heat transfer tube, the improvement thereof is required.
JP 63-271074, JP 64-75869, JP 64-90973, JP 1-114682, JP 63-1
No. 39459, No. 1-88235, No. 1-88236, No. 1-88237, No. 1-97135, No. 1-112345, No. 1-120022 Bulletin, Actual Kaihei 1-
No. 125940, No. 1-136832, No. 1-48538
Various proposals have been made to the official gazette, the utility model 1-178528, the utility model 2-527, etc.

【0005】いずれにしても,これらに提案した過冷却
水からシャーベット状の氷を製造する製氷システムの過
冷却器は,水がその中を通水する伝熱管を冷却容器内に
配置し,この冷却容器内に冷却媒体として冷凍機のブラ
インを通液するか,或いは冷却容器をヒートポンプ装置
の蒸発器として機能するように構成するものである。こ
れによって伝熱管の内壁温度を零度℃以下ではあるが−
5.8℃以上に維持すれば水の入口温度や流量等の変動に
拘わらず管内で凍結を起こすことなく過冷却水の連続流
れが製造できる。
In any case, the subcooler of the ice making system for producing sherbet-like ice from the supercooled water proposed in these cases has a heat transfer tube through which water is passed in a cooling container. The brine of the refrigerator is passed through as a cooling medium in the cooling container, or the cooling container is configured to function as an evaporator of the heat pump device. As a result, the inner wall temperature of the heat transfer tube is below 0 ° C,
If the temperature is maintained at 5.8 ° C or higher, a continuous flow of supercooled water can be produced without freezing in the pipe regardless of changes in the inlet temperature and flow rate of water.

【0006】[0006]

【発明が解決しようとする課題】前記の過冷却水を伝熱
管で連続製造する過冷却器では,その熱交換は管内を通
水する水と管外のブライン(ブライン冷却方式)または
気体冷媒(ヒートポンプの蒸発器方式)との管壁を通じ
ての伝熱による熱交換である。つまり,いずれの伝熱も
液相または気相流体の対流熱伝達である。したがって,
伝熱係数の面でもまた均一な熱伝達を行う面でも,その
改善には限界がある。
In the above-mentioned supercooler for continuously producing supercooled water with a heat transfer tube, the heat exchange is performed by water passing through the tube and brine outside the tube (brine cooling system) or a gas refrigerant ( This is heat exchange by heat transfer through the tube wall with the evaporator system of the heat pump). In other words, either heat transfer is convective heat transfer of liquid or gas phase fluid. Therefore,
There is a limit to improvement in terms of heat transfer coefficient and uniform heat transfer.

【0007】この限界を克服すべく,同一出願人による
特願平2-37200号において,該過冷却器を満液式蒸発器
とすることを提案した。すなわち, シエルアンドチュー
ブ型熱交換器のシエル内を蒸発器とするさいに,水がそ
の中を通水するチューブを覆うに十分な液冷媒をシエル
内に満たし, この液冷媒を伝熱管表面で沸騰蒸発させる
のである。これによると,過冷却器における熱伝達は沸
騰伝達となり,伝熱係数が改善されると共に均一な熱伝
達が行われる。
In order to overcome this limitation, Japanese Patent Application No. 2-37200 by the same applicant proposed that the subcooler be a full-liquid type evaporator. That is, when the shell of a shell-and-tube heat exchanger is used as an evaporator, the shell is filled with a liquid refrigerant sufficient to cover the tube through which water passes, and this liquid refrigerant is applied to the surface of the heat transfer tube. It is boiled and evaporated. According to this, heat transfer in the subcooler becomes boiling transfer, the heat transfer coefficient is improved, and uniform heat transfer is performed.

【0008】本発明は,この特願平2-37200号に提案し
た発明の更に一層の改善を目的としたものである。
The present invention is intended to further improve the invention proposed in Japanese Patent Application No. 2-37200.

【0009】[0009]

【課題を解決するための手段】本発明によれば,蓄熱槽
内に蓄えられた空調用熱源水をヒートポンプ装置の蒸発
器に連続供給して零度℃以下の過冷却水にまで冷却し,
この過冷却水を該蒸発器から連続流れとして吐出させ,
この吐出流をその過冷却状態を解除しつつ該蓄熱槽に供
給して該蓄熱槽に氷−水スラリーを蓄えるようにした空
調用氷蓄熱設備において,前記ヒートポンプ装置の蒸発
器が,そのチユーブ側に前記の熱源水が連続通水される
と共にシエル側にヒートポンプの冷媒が供給されるシエ
ルアンドチユーブ型の熱交換器からなり,該ヒートポン
プ装置が当該蒸発器→受液器→圧縮機→凝縮器→膨脹弁
→該受液器→該蒸発器を順に経る冷媒回路をもって構成
され,該受液器から該蒸発器に至る管路にポンプを介装
し,蒸発器内での冷媒蒸発量よりも多量の液冷媒をこの
ポンプによって受液器内から蒸発器内に送液するように
したことを特徴とする空調用氷蓄熱設備における過冷却
水製造装置を提供する。
According to the present invention, the air-conditioning heat source water stored in the heat storage tank is continuously supplied to the evaporator of the heat pump device to cool it to supercooled water of 0 ° C or lower,
Discharging this supercooled water from the evaporator as a continuous flow,
In an ice storage facility for air conditioning for supplying this discharge flow to the heat storage tank while releasing the supercooled state to store ice-water slurry in the heat storage tank, the evaporator of the heat pump device has its tube side. Is composed of a shell-and-tube type heat exchanger in which the heat source water is continuously supplied to the shell and the refrigerant of the heat pump is supplied to the shell side, and the heat pump device is the evaporator → receiver → compressor → condenser -> Expansion valve-> the receiver-> the evaporator is constituted by a refrigerant circuit in order, a pump is installed in the pipe line from the receiver to the evaporator, and the refrigerant evaporation amount in the evaporator Provided is a supercooled water producing device in an ice storage facility for air conditioning, characterized in that a large amount of liquid refrigerant is sent from the liquid receiver into the evaporator by means of this pump.

【0010】すなわち, 満液型蒸発器からの戻り冷媒を
受液器に受けて圧縮機に戻すようにすると共に, 凝縮器
出側の液冷媒を該受液器に膨張弁を介して導入し,この
受液器内で気液分離された液冷媒をポンプによって強制
的に蒸発器に送り込むようにしたものである。
That is, the return refrigerant from the full-fill type evaporator is received by the receiver and returned to the compressor, and the refrigerant on the outlet side of the condenser is introduced into the receiver through an expansion valve. The liquid refrigerant separated into gas and liquid in the receiver is forcibly sent to the evaporator by a pump.

【0011】〔作用〕この構成によって,蒸発器内には
蒸発量の数倍の液冷媒を送り込むことができるので,特
願平2-37200号の方式よりも一層伝熱係数が改善され,
また均一な熱伝達を行わせることができる。そして,該
ポンプの使用によって,冷媒液充填型の蒸発器の容量や
形式(縦型または横型)も自由に設計できると共に,複
数の蒸発器に液冷媒を分流して供給することもできる。
[Operation] With this configuration, the liquid refrigerant can be sent into the evaporator several times as much as the amount of evaporation, so that the heat transfer coefficient is further improved as compared with the system of Japanese Patent Application No. 2-37200.
In addition, uniform heat transfer can be performed. By using the pump, the capacity and type (vertical type or horizontal type) of the refrigerant liquid filling type evaporator can be freely designed, and the liquid refrigerant can be divided and supplied to a plurality of evaporators.

【0012】[0012]

【実施例】第1図は本発明装置の一実施例を示したもの
である。1は蓄熱槽,2は過冷却器,3は循環ポンプで
あり,蓄熱槽1内の水はポンプ3の駆動により水路4を
経て過冷却器2に連続供給され,この過冷却器2によっ
て零度℃以下の過冷却水5となって大気中に吐出し,こ
の過冷却水5の吐出流は,場合によっては過冷却状態解
除装置6に衝突したうえ,蓄熱槽1内に戻される。過冷
却状態が解除するさいに微細な氷となり,蓄熱槽1内に
はシヤーベット状の氷7が溜まる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the device of the present invention. Reference numeral 1 is a heat storage tank, 2 is a subcooler, and 3 is a circulation pump. The water in the heat storage tank 1 is continuously supplied to the subcooler 2 through a water channel 4 by the drive of the pump 3, and the subcooler 2 causes zero degrees. The supercooled water 5 below ℃ is discharged into the atmosphere, and the discharged flow of the supercooled water 5 collides with the supercooled state releasing device 6 and is returned to the heat storage tank 1. When the supercooled state is released, it becomes fine ice, and shear-bed-shaped ice 7 accumulates in the heat storage tank 1.

【0013】この氷7と共存する水(冷水)は,図示さ
れてはいないが,建物内に配置されるフアンコイルユニ
ットやヒートポンプユニットの水側熱交換器に循環さ
れ,空調用の熱源水(冷熱源)に供され,再びこの蓄熱
槽1内に戻される。過冷却水の製造装置の運転(熱源機
器の運転)と空調運転(負荷側の運転)を同時に行うこ
ともできるし,前者を安価な夜間電力を利用して行うこ
とにより,夜間に蓄熱しこれを昼間の冷房に利用しても
よい。また,暖房運転の場合には,過冷却水の製造装置
は休止し,図示されていない熱源機器例えばボイラーや
ヒートポンプ装置によって蓄熱槽1内に温水を蓄え,こ
の温水を負荷側に供給する。
Although not shown, the water (cold water) coexisting with the ice 7 is circulated to a water side heat exchanger of a fan coil unit or a heat pump unit arranged in the building, and heat source water for air conditioning ( It is supplied to the cold heat source) and returned to the heat storage tank 1 again. It is possible to operate the supercooled water production device (heat source device operation) and the air conditioning operation (load side operation) at the same time. By using the cheap nighttime electricity, the former accumulates heat at night. May be used for air conditioning during the day. In the heating operation, the supercooled water production device is stopped, hot water is stored in the heat storage tank 1 by a heat source device (not shown) such as a boiler or a heat pump device, and the hot water is supplied to the load side.

【0014】過冷却器2は,多数本の伝熱管 (チユー
ブ)9をシエル10内に配置したシエルアンドチユーブ型
熱交換器からなっている。各チユーブ9 (以下,伝熱管
9と言う) は, シエル10 (以下, 冷却容器10と呼ぶ) を
貫通して配置され,一方の端は入口ヘッダー部11に開口
し,他方の端は大気に開放していることから,水入口ヘ
ッダー部11に導入された水は各伝熱管9内を流れて他方
の開口端より大気中に吐出する。図示の例では各伝熱管
9が垂直方向に整列した縦型のシエルアンドチユーブ型
熱交換器が使用されているが,横型のものであってもよ
い。
The subcooler 2 comprises a shell-and-tube heat exchanger in which a large number of heat transfer tubes (tubes) 9 are arranged in a shell 10. Each tube 9 (hereinafter referred to as a heat transfer tube 9) is arranged so as to penetrate through a shell 10 (hereinafter referred to as a cooling vessel 10), one end of which is open to an inlet header portion 11 and the other end is exposed to the atmosphere. Since it is open, the water introduced into the water inlet header portion 11 flows through each heat transfer tube 9 and is discharged into the atmosphere from the other opening end. In the illustrated example, a vertical shell-and-tube heat exchanger in which the heat transfer tubes 9 are vertically aligned is used, but a horizontal heat exchanger may be used.

【0015】シエル側の冷却容器10はヒートポンプ装置
の蒸発器として機能するが,これが満液型の蒸発器に構
成される。すなわち, ヒートポンプ装置稼働中は冷却容
器10内には液冷媒が伝熱管9を浸すように存在してお
り,伝熱管9によってこの液冷媒が加熱され且つ後述の
ように圧縮機の駆動で吸引されることから液が沸騰する
状態に置かれる。
The shell-side cooling container 10 functions as an evaporator of a heat pump device, and this is a liquid-filled evaporator. That is, while the heat pump device is operating, the liquid refrigerant exists in the cooling container 10 so as to immerse the heat transfer tube 9. The liquid transfer tube 9 heats this liquid refrigerant and is sucked by the drive of the compressor as described later. As a result, the liquid is put in a state of boiling.

【0016】本発明において, このヒートポンプ装置
は, 蒸発器 (つまり冷却容器10), 受液器13, 圧縮機14,
凝縮器15, 膨脹弁16, 受液器13, 蒸発器10を順に経る
冷媒回路をもって構成され,受液器13から蒸発器10に至
る管路にポンプ17を介装し,蒸発器10内での冷媒蒸発量
よりも多量の液冷媒をこのポンプ17によって受液器13内
から蒸発器10内に送液するようにした点に特徴がある。
すなわち, 膨脹弁16から蒸発器10に至る冷媒管路と, 蒸
発器10から圧縮機14に至る冷媒管路とに跨がって気液分
離機能をもつ受液器13を配置し,この受液器13から蒸発
器10に液冷媒を送液するポンプ17を設けたものである。
In the present invention, this heat pump device includes an evaporator (that is, a cooling container 10), a liquid receiver 13, a compressor 14,
It consists of a refrigerant circuit that goes through a condenser 15, an expansion valve 16, a liquid receiver 13, and an evaporator 10 in that order. A pump 17 is installed in the conduit from the liquid receiver 13 to the evaporator 10, and inside the evaporator 10. This pump 17 is characterized in that a larger amount of liquid refrigerant than the refrigerant evaporation amount is sent from the liquid receiver 13 to the evaporator 10.
That is, a liquid receiver 13 having a gas-liquid separation function is arranged across the refrigerant pipe line from the expansion valve 16 to the evaporator 10 and the refrigerant pipe line from the evaporator 10 to the compressor 14, A pump 17 for sending a liquid refrigerant from the liquid container 13 to the evaporator 10 is provided.

【0017】受液器13は断熱材からなる筒型容器であ
り,これを縦にして設置される。その下部には液溜18を
備えており,この液溜18から蒸発器10に通ずる液管19が
施設され,この液管19にポンプ17が介装されている。ま
た受液器13の内部上部にはエリミネータ20 (液滴捕集
器) が取り付けられ,このエリミネータ20より上方の位
置から圧縮機14に通ずるガス管21が施設されている。ま
た,図例では受液器13の下方に膨脹弁16を経た冷媒の導
入口22を,そして受液器13の上方 (エリミネータ20より
下方) に蒸発器10からの冷媒の導入口23を備えている。
The liquid receiver 13 is a cylindrical container made of a heat insulating material and is installed vertically. A liquid reservoir 18 is provided in the lower part thereof, and a liquid pipe 19 leading from the liquid reservoir 18 to the evaporator 10 is installed, and a pump 17 is interposed in the liquid pipe 19. Further, an eliminator 20 (droplet collector) is attached to the upper inside of the liquid receiver 13, and a gas pipe 21 communicating with the compressor 14 from a position above the eliminator 20 is installed. Further, in the illustrated example, a refrigerant inlet 22 passing through the expansion valve 16 is provided below the liquid receiver 13, and a refrigerant inlet 23 from the evaporator 10 is provided above the liquid receiver 13 (below the eliminator 20). ing.

【0018】ヒートポンプ装置の稼働中において,この
受液器13内では冷媒液の液面24が所定の範囲に収まるよ
うに液面制御がなされる。これは,液面検出計25によっ
て検出される液面が設定範囲に収まるように,膨脹弁16
の開度を調節することによって行われる。
During operation of the heat pump device, liquid level control is performed in the liquid receiver 13 so that the liquid level 24 of the refrigerant liquid falls within a predetermined range. This is done so that the liquid level detected by the liquid level detector 25 falls within the set range.
It is performed by adjusting the opening degree of.

【0019】蒸発器10ではポンプ17から圧送される液冷
媒をその下部の導入口26から受け入れ, 蒸発器10内を上
昇中に伝熱管9から受熱して沸騰する。そして上部の排
出口27から受液器13に気液混合流体として送り出す。他
方, 凝縮器15は液対液熱交換器または液対空気熱交換器
が使用され,圧縮機14から吐出された高圧冷媒を冷水ま
たは通風に放熱してここで液化する。
In the evaporator 10, the liquid refrigerant pumped from the pump 17 is received from the inlet 26 at the lower part of the evaporator 10, and the heat is transferred from the heat transfer tube 9 to boil while the inside of the evaporator 10 is rising. Then, it is sent as a gas-liquid mixed fluid from the upper outlet 27 to the liquid receiver 13. On the other hand, as the condenser 15, a liquid-to-liquid heat exchanger or a liquid-to-air heat exchanger is used, and the high-pressure refrigerant discharged from the compressor 14 radiates heat to cold water or ventilation to be liquefied here.

【0020】以上のようにして,本発明装置によると,
膨脹弁16の開度制御によって,受液器13内に所定の液面
24を維持しつつ冷媒液が貯溜され,この冷媒液がポンプ
17によって蒸発器10内に強制送液される結果, 蒸発器10
内には液冷媒が満たされる。蒸発器10内に導入された液
冷媒は伝熱管9から受熱して沸騰するが,その気液混合
流体は受液器13で気液分離され,気化した分は圧縮機14
に吸い込まれ, 液分は液溜18に集液される。したがっ
て,圧縮機14による通常の冷媒循環量が確保されたう
え,膨脹弁16の下流側において, 冷媒液が受液器13→ポ
ンプ17→蒸発器10→受液器13の循環を繰り返し, この循
環動力がポンプ17によって付与されることになる。
As described above, according to the device of the present invention,
By controlling the opening degree of the expansion valve 16, a predetermined liquid level is set in the receiver 13.
Refrigerant liquid is stored while maintaining 24, and this refrigerant liquid is pumped.
As a result of forced liquid transfer into the evaporator 10 by the 17,
The inside is filled with the liquid refrigerant. The liquid refrigerant introduced into the evaporator 10 receives heat from the heat transfer tube 9 and boils, but the gas-liquid mixed fluid is separated into gas and liquid by the liquid receiver 13, and the vaporized portion is compressed by the compressor 14
It is sucked into and the liquid is collected in the liquid reservoir 18. Therefore, the normal refrigerant circulation amount by the compressor 14 is secured, and the refrigerant liquid is repeatedly circulated in the receiver 13 → pump 17 → evaporator 10 → receiver 13 on the downstream side of the expansion valve 16, Circulating power will be applied by the pump 17.

【0021】この受液器13→ポンプ17→蒸発器10
→受液器13の液循環は,図示の実施例のように蒸発器
10が一基である場合に限らず,複数基の蒸発器(つま
り複数台の過冷却器)に分流して循環させることもでき
る。すなわち,蒸発器10を複数台に分割し,受液器1
3→ポンプ17→複数の蒸発器10→受液器13の液循
環を行わせるように各蒸発器と一つの受液器との間に冷
媒路を形成すると,複数箇所で過冷却水の製造ができ
る。この場合ポンプ17も各蒸発器専用に複数台設置す
るのがよい。過冷却水が複数の蒸発器で製造できると,
蓄熱槽1が平面的に広い面積をもつものであっても槽全
体に平均的に氷を貯えることが可能となり,また小水槽
に分割された蓄熱水槽を有する場合には,各小水槽ごと
に氷を分配することもできる。そして,かりに何らかの
理由で或る蒸発器が凍結トラブルを起こしても,全体の
運転を休止することなく製氷運転が継続でき,この間に
凍結した蒸発器を解凍して再運転すればよく,凍結トラ
ブルによる運転効率の低下を最小に抑えることが可能と
なる。いずれにしても,伝熱管9の表面温度は零℃以下
で且つ−5.8℃以上に維持されるようにしなければな
らない。伝熱管9の内面の表面温度が零℃を越えると過
冷却水は製造できないし,−5.8℃より低い温度では
管内水が凍結を起こすことがある。伝熱管9の内面温度
が−5.8〜0℃の範囲にあれば,伝熱管9内に供給す
る水量や水温に拘わらず過冷却水を連続的に製造するこ
とができる。
This liquid receiver 13 → pump 17 → evaporator 10
→ The liquid circulation of the liquid receiver 13 is not limited to the case where the number of the evaporators 10 is one as in the illustrated embodiment, and the liquid is circulated by dividing into a plurality of evaporators (that is, a plurality of subcoolers). You can also That is, the evaporator 10 is divided into a plurality of units, and the liquid receiver 1
3-> pump 17-> multiple evaporators 10-> liquid circulation of receiver 13
Cool between each evaporator and one receiver to create a ring.
By forming a medium path, supercooled water can be produced at multiple locations.
It In this case, multiple pumps 17 are also installed for each evaporator.
It is good to If supercooled water can be produced with multiple evaporators,
Even if the heat storage tank 1 has a large plane area, the entire tank
It becomes possible to store ice in the body on average, and a small aquarium
If there is a heat storage water tank divided into
You can also distribute the ice on. And somehow
Even if one evaporator has a freezing trouble for some reason,
The ice making operation can be continued without stopping the operation.
It is sufficient to thaw the frozen evaporator and restart it.
It is possible to minimize the decrease in operating efficiency due to
Become. In any case, the surface temperature of the heat transfer tube 9 must be maintained at 0 ° C. or lower and −5.8 ° C. or higher. If the surface temperature of the inner surface of the heat transfer tube 9 exceeds 0 ° C, supercooled water cannot be produced, and at temperatures lower than -5.8 ° C, the water inside the tube may freeze. If the inner surface temperature of the heat transfer tube 9 is in the range of −5.8 to 0 ° C., supercooled water can be continuously produced regardless of the amount of water supplied to the heat transfer tube 9 and the water temperature.

【0022】[0022]

【発明の効果】本発明によると,過冷却水を製造してこ
れからシヤーベット状の氷を製造して空調用氷蓄熱を行
うさいに,その中心機器である過冷却器を沸騰熱伝達方
式の満液型蒸発器に構成したので,従来の対流熱伝達方
式に比べて, 熱伝達係数が向上すると共に伝熱管の全体
に均一な熱伝達が達成される。しかも,蒸発器内への液
冷媒の供給が圧縮機動力の他にポンプ動力によって強制
的に送られるので,蒸発器での冷媒蒸発量の数倍の液冷
媒が送液される。したがって,一層熱伝達係数が向上す
ると共に均一な熱伝達が達成できるし,伝熱管内面温度
を正確に制御することもできる。また,過冷却器の設計
自由度が高くなり,凍結トラブルなく零℃以下の過冷却
水を連続的に作るという難題に対して運転面でも設計面
でも融通がきくようになり,高い効率のもとで正確に製
氷運転ができるので氷蓄熱方式による空調設備として多
大の貢献ができる。
According to the present invention, when supercooled water is produced and then sheerbed-like ice is produced to store ice heat for air-conditioning, the subcooler, which is the central equipment thereof, is provided with the boiling heat transfer system. Since it is configured as a liquid evaporator, the heat transfer coefficient is improved and uniform heat transfer is achieved throughout the heat transfer tube compared to the conventional convection heat transfer method. Moreover, since the supply of the liquid refrigerant into the evaporator is forcibly sent by the pump power in addition to the compressor power, the liquid refrigerant is sent by several times the refrigerant evaporation amount in the evaporator. Therefore, the heat transfer coefficient is further improved, uniform heat transfer can be achieved, and the temperature inside the heat transfer tube can be controlled accurately. In addition, the degree of freedom in designing the subcooler is increased, and the problem of continuously producing subcooled water below 0 ° C without freezing trouble becomes more flexible in terms of operation and design, resulting in high efficiency. Since the ice-making operation can be performed accurately with and, it can make a great contribution as an air-conditioning system using the ice heat storage method.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に従う空調用氷蓄熱設備の過冷却水製
造装置の全体構成を示す機器配置図である。
FIG. 1 is an equipment layout diagram showing an overall configuration of a supercooled water production device for an ice heat storage facility for air conditioning according to the present invention.

【符号の説明】[Explanation of symbols]

1 蓄熱槽 2 過冷却器 5 過冷却水 6 過冷却状態解除装置 9 伝熱管 10 冷却容器(蒸発器のシエル) 13 受液器 14 圧縮器 15 凝縮器 16 膨張弁 17 液冷媒送液ポンプ 18 液留 20 エリミネータ 25 液面検出計 1 Heat Storage Tank 2 Supercooler 5 Supercooled Water 6 Supercooled State Release Device 9 Heat Transfer Tube 10 Cooling Container (Evaporator Shell) 13 Liquid Receiver 14 Compressor 15 Condenser 16 Expansion Valve 17 Liquid Refrigerant Liquid Delivery Pump 18 Liquid Distillation 20 Eliminator 25 Liquid level detector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 守屋 充 神奈川県座間市相模ケ丘3−7−25 サン ライトヒルズ203 (72)発明者 谷野 正幸 神奈川県相模原市共和2−8−21−101 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuru Moriya 3-7-25 Sagamigaoka, Zama, Kanagawa Prefecture Sunlight Hills 203 (72) Masayuki Yano 2-8-21-101, Kyowa, Sagamihara, Kanagawa

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 蓄熱槽内に蓄えられた空調用熱源水をヒ
ートポンプ装置の蒸発器に連続供給して零度℃以下の過
冷却水にまで冷却し,この過冷却水を該蒸発器から連続
流れとして吐出させ,この吐出流をその過冷却状態を解
除しつつ該蓄熱槽に供給して該蓄熱槽に氷−水スラリー
を蓄えるようにした空調用氷蓄熱設備において,前記ヒ
ートポンプ装置の蒸発器が,そのチユーブ側に前記の熱
源水が連続通水されると共にシエル側にヒートポンプの
冷媒が供給されるシエルアンドチユーブ型の熱交換器か
らなり,該ヒートポンプ装置が当該蒸発器→受液器→圧
縮機→凝縮器→膨脹弁→該受液器→該蒸発器を順に経る
冷媒回路をもって構成され,該受液器から該蒸発器に至
る管路にポンプを介装し,蒸発器内での冷媒蒸発量より
も多量の液冷媒をこのポンプによって受液器内から蒸発
器内に送液するようにしたことを特徴とする空調用氷蓄
熱設備における過冷却水製造装置。
1. A heat source water for air conditioning stored in a heat storage tank is continuously supplied to an evaporator of a heat pump device to cool it to supercooled water of 0 ° C. or less, and the supercooled water continuously flows from the evaporator. In the ice heat storage equipment for air conditioning, wherein the discharge flow is supplied to the heat storage tank while releasing the supercooled state and the ice-water slurry is stored in the heat storage tank, the evaporator of the heat pump device is , Which consists of a shell-and-tube type heat exchanger in which the heat source water is continuously passed to the tube side and the refrigerant of the heat pump is supplied to the shell side, and the heat pump device is the evaporator → receiver → compression A condenser circuit, an expansion valve, a receiver, and an evaporator, and a refrigerant circuit that passes through the evaporator. A pump is installed in a pipe line from the receiver to the evaporator, and the refrigerant in the evaporator is provided. Use a larger amount of liquid refrigerant than the amount of evaporation. The subcooling water producing apparatus in the ice heat storage facility for air conditioning, wherein the pump is used to transfer the liquid from the inside of the receiver to the inside of the evaporator.
【請求項2】 受液器は液面計を備え,受液器内の液面
が設定範囲となるように該液面計の検出値に応じて膨脹
弁の開度を制御する請求項1に記載の過冷却水製造装
置。
2. The liquid receiver is provided with a liquid level gauge, and the opening of the expansion valve is controlled according to the detection value of the liquid level gauge so that the liquid level in the liquid receiver falls within a set range. The supercooled water production apparatus described in 1.
【請求項3】 蒸発器のチユーブの内面温度が−5.8℃
以上零度℃以下に維持される請求項1または2に記載の
過冷却水製造装置。
3. The inner temperature of the tube of the evaporator is −5.8 ° C.
The supercooled water production apparatus according to claim 1 or 2, which is maintained at 0 ° C or lower.
【請求項4】 蒸発器は複数台に分割され,各蒸発器と
一つの該受液器との間に冷媒路が形成される請求項1,
2または3に記載の過冷却水製造装置。
4. The evaporator is divided into a plurality of units, and each evaporator is
A refrigerant path is formed between one of the liquid receivers.
The supercooled water production apparatus according to 2 or 3 .
JP12821091A 1991-05-02 1991-05-02 Supercooled water production equipment for ice heat storage equipment for air conditioning Expired - Fee Related JPH086945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12821091A JPH086945B2 (en) 1991-05-02 1991-05-02 Supercooled water production equipment for ice heat storage equipment for air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12821091A JPH086945B2 (en) 1991-05-02 1991-05-02 Supercooled water production equipment for ice heat storage equipment for air conditioning

Publications (2)

Publication Number Publication Date
JPH05133576A JPH05133576A (en) 1993-05-28
JPH086945B2 true JPH086945B2 (en) 1996-01-29

Family

ID=14979212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12821091A Expired - Fee Related JPH086945B2 (en) 1991-05-02 1991-05-02 Supercooled water production equipment for ice heat storage equipment for air conditioning

Country Status (1)

Country Link
JP (1) JPH086945B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101463122B1 (en) * 2013-10-29 2014-11-21 트윈에너지(주) Cooling and heating device using ice thermal storage with sealed type ice storage tank
CN108253726A (en) * 2018-03-08 2018-07-06 广州汉正能源科技有限公司 A kind of full-liquid type vapo(u)rization system and method for preparing supercooled water ice slurry

Also Published As

Publication number Publication date
JPH05133576A (en) 1993-05-28

Similar Documents

Publication Publication Date Title
US7827807B2 (en) Refrigerant-based thermal energy storage and cooling system with enhanced heat exchange capability
US8109107B2 (en) Mixed-phase regulator
US5524453A (en) Thermal energy storage apparatus for chilled water air-conditioning systems
US4756164A (en) Cold plate refrigeration method and apparatus
US3822561A (en) Self contained air cooling unit
AU2604697A (en) Multi-stage cooling system for commercial refrigeration
US3481151A (en) Refrigerant system employing liquid chilling evaporators
US4712387A (en) Cold plate refrigeration method and apparatus
US3922875A (en) Refrigeration system with auxiliary defrost heat tank
US4254635A (en) Installation for the storage of continuously generated coldness and for the intermittent emission of at least a portion of the stored cold
JP3122223B2 (en) Ice storage device
JPH086945B2 (en) Supercooled water production equipment for ice heat storage equipment for air conditioning
CN113631876B (en) Defrosting system
CA2055553A1 (en) Production and heat storage system for low temperature chilled water
Gladis et al. Ice crystal slurry TES system using the orbital rod evaporator
JP2548637B2 (en) Operating method of supercooled water production equipment
JP3197051B2 (en) Load storage water return method for ice storage system
CN219014673U (en) Refrigerating system, air conditioner and refrigeration house
JPH0359335A (en) Thermal accumulation system
JP2980624B2 (en) Cooling method using heat storage type liquid receiver and liquid pump, and cooling and heating methods
JPH0744923Y2 (en) Supercooler for ice storage device for air conditioning
WO1980001102A1 (en) A method for running a cooling-heating pump
JPH0438178Y2 (en)
JPH03271671A (en) Control method of heat pump device for manufacturing overcooled water
JPH0615243Y2 (en) Ice storage device for air conditioning

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees