JPH03241251A - Ice reservoir for air condition - Google Patents

Ice reservoir for air condition

Info

Publication number
JPH03241251A
JPH03241251A JP2037200A JP3720090A JPH03241251A JP H03241251 A JPH03241251 A JP H03241251A JP 2037200 A JP2037200 A JP 2037200A JP 3720090 A JP3720090 A JP 3720090A JP H03241251 A JPH03241251 A JP H03241251A
Authority
JP
Japan
Prior art keywords
heat
evaporator
liquid
air conditioning
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2037200A
Other languages
Japanese (ja)
Other versions
JPH0772634B2 (en
Inventor
Takao Okada
孝夫 岡田
Toshio Hayashi
利雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2037200A priority Critical patent/JPH0772634B2/en
Publication of JPH03241251A publication Critical patent/JPH03241251A/en
Publication of JPH0772634B2 publication Critical patent/JPH0772634B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To improve a heat transfer coefficient and uniform heat transfer by filling liquid refrigerant in the shell of an evaporator in a sufficient amount of covering a tube in the shell while a refrigerant circulating cycle is formed in a heat pump and operating. CONSTITUTION:A shell side cooling vessel 18 is operated as a function of an evaporator of a heat pump apparatus, and formed as a full-liquid type evaporator. That is, liquid refrigerant 21 is filled in the vessel 18 in a sufficient amount of immersing a heat transfer tube 17, i.e., its liquid level 22 is disposed above the tube 17 in the vessel during the operation of the apparatus, the upper space of the level 22 is maintained under negative pressure, and the tube 17 is heated by the refrigerant 21 to boil the liquid. Thus, when overcooled water is produced to manufacture sherbetlike ice to reserve ice cold for air conditioning, an overcooler 2 of its central device is formed in a boiling heat transfer type full-liquid evaporator, thereby improving a heat transfer coefficient and performing uniform heat transfer in the entire heat transfer tube.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は空調用氷蓄熱装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an ice heat storage device for air conditioning.

〔従来の技術] 建物内に配設したファンコイルユニソトヤ水熱源ヒート
ポンプユニットの水側熱交換藷に冷温水を循環させて冷
暖房を行なうさいに、冷房時の冷熱を蓄熱槽内において
氷の形態で蓄えるいわゆる氷蓄熱方式が注目されており
、一部稼働されるようになった。これは9例えば夜間電
力で冷凍機を駆動して製氷し、水の状態で多量の冷熱を
蓄熱槽で蓄えたうえ、冷房運転時にその水の冷熱を冷水
として取出して二次側熱交換器に循環するものであり、
水の潜熱を利用するので小規模装置でも多量の冷熱を蓄
えることができる。
[Prior technology] When performing air conditioning by circulating cold and hot water through the water side heat exchange tube of a fan coil Unisotoya water source heat pump unit installed in a building, the cold heat during cooling is stored in the form of ice in a heat storage tank. The so-called ice heat storage method, which stores heat in ice, is attracting attention and is now being used in some cases. 9. For example, ice is made by driving a refrigerator with electricity at night, storing a large amount of cold heat in the form of water in a heat storage tank, and then extracting the cold heat of that water as cold water during cooling operation and sending it to the secondary heat exchanger. It is cyclical,
Since it uses the latent heat of water, it can store a large amount of cold energy even in a small-scale device.

この氷蓄熱方式には、製氷法の相違によって蓄える氷の
形態が氷塊状(ソリ、ド状)のものとジャーヘット状(
微細氷と水とが混在したりキッド状またはスラリー状)
のものとに分けられる。両者にはそれぞれ得失があるが
、氷塊方式では氷塊を蓄熱水槽で生成させる (熱交換
器の表面で生成させる)場合に水層が厚くなるとそれに
伴って熱の伝導が低下するので大きな厚みにすることに
は限界があり、したがって、氷の充填率(1,P、F、
)は10%前後にしかならず、蓄熱効率が悪くなること
は避けられない。1.P、F、を向」ニさせるために添
加剤を加えた特殊溶液を使用したり2蓄熱水槽目体を圧
力容器に構成する例なども報告されているが、既設建物
の蓄熱式の水熱源冷暖房設備をそのまま水M熱方式に適
用するには問題が多い。一方ンヤーヘノト状の氷を製造
する場合には1.I’、F、は非常に大きくすることが
できるが、大容量の水をンヤーヘノト状にするには一般
には非常に大規模な設備を必要とする。このシャーヘッ
ト状の蓄熱方式については1例えば特開昭63−123
968〜9号公報、特開昭63−129274〜5号公
報に記載のものなどが知られている。また同一出願人に
係る特開昭63217171号公報および特開昭63−
231157号公報に。
Depending on the ice making method, the ice stored in this ice storage method can be stored in the form of ice blocks (solid or dome) and jar-head (shaped).
mixture of fine ice and water (kid-like or slurry-like)
It can be divided into Both methods have their advantages and disadvantages, but in the ice block method, when ice blocks are generated in a heat storage water tank (generated on the surface of a heat exchanger), as the water layer thickens, heat conduction decreases, so a large thickness is used. Therefore, there is a limit to the ice filling rate (1, P, F,
) is only around 10%, and it is inevitable that the heat storage efficiency will deteriorate. 1. There have also been reports of using a special solution with additives to make P and F oriented in the same direction, or of configuring the body of two heat storage water tanks as pressure vessels. There are many problems in directly applying air conditioning equipment to the water M-heat system. On the other hand, in the case of manufacturing ice cubes, 1. Although I' and F can be made very large, converting a large volume of water into a tube generally requires very large-scale equipment. Regarding this heat storage method in the form of a heat exchanger, 1, for example, JP-A No. 63-123
Those described in 968-9 and JP-A-63-129274-5 are known. Also, JP-A No. 63217171 and JP-A No. 63-1989 filed by the same applicant.
Publication No. 231157.

過冷却水からから微細な氷を製氷する方法および装置を
提案し、この過冷却水を伝熱管で連続製造することを要
件としてそれらの改善等について。
We proposed a method and device for making fine ice from supercooled water, and discussed their improvements with the requirement that this supercooled water be continuously produced using heat transfer tubes.

特開昭63−271074号公報、特開昭64−758
69号公報。
JP-A-63-271074, JP-A-64-758
Publication No. 69.

特開昭64−90973号公報、特開平1−11468
2号公報。
JP-A-64-90973, JP-A-1-11468
Publication No. 2.

実開昭63−139459号公報、実開平1−8823
5号公報実開平1−88236号公報、実開平1−88
237号公報、実開平1−97135号公報、実開平1
−112345号公報、実開平1−120022号公報
、実開平1−125940号公報、実開平1−1368
32号公報、実開昭1148538号公報、実開平1−
178528号公報1実開平2−527号公報等に様々
な提案を行った。いずれにしても、これらに提案した過
帝却水からジャーへノド状の氷を製造する製氷システム
の過冷却器は、水がその中を通水する伝熱管を冷却容器
内に配置し、この冷却容器内に冷却媒体として冷凍機の
ブラインを通液するか、或いは冷却容器をヒートポンプ
装置の蒸発器として機能するように構成するものであっ
た。これによって伝熱管の内壁温度を零度℃以下ではあ
るが−5,8℃以上に維持すれば、水の人口温度や流量
等の変動に拘わらず管内で凍結を起こすことなく過冷却
水の連続流れが製造できる。
Utility Model Application No. 63-139459, Utility Model Application No. 1-8823
No. 5 Publication No. 1-88236, Utility Model Application No. 1-88
237 Publication, Utility Model Application Publication No. 1-97135, Utility Model Application Publication No. 1999
-112345, Japanese Utility Model Application No. 1-120022, Japanese Utility Model Application No. 1-125940, Japanese Utility Model Application No. 1-1368
Publication No. 32, Publication of Utility Model Application No. 1148538, Publication of Utility Model Application No. 1999-
Various proposals were made in Publication No. 178528, Publication No. 2-527 of Utility Model Application, etc. In any case, the supercooler of the ice-making system that was proposed for producing globular ice from over-extracted water into a jar has a heat transfer tube placed inside the cooling container through which water passes. Brine from a refrigerator is passed through the cooling container as a cooling medium, or the cooling container is configured to function as an evaporator of a heat pump device. As a result, if the inner wall temperature of the heat transfer tube is maintained at -5.8℃ or lower, although it is below zero degrees Celsius, supercooled water will continue to flow without freezing inside the tubes, regardless of fluctuations in the water's population temperature or flow rate. can be manufactured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記の過冷却器において、伝熱管の内壁温度を5.8℃
〜0℃に制御することが肝要であるがこの伝熱管を配し
た冷却容器内に冷凍機のブラインを通液する方式では伝
熱管とブラインとの伝熱は対流熱伝達(液体の対流)と
なる。また、冷却容器をヒートポンプ装置の蒸発器とす
る方式でも伝熱管と奈発した気体熱媒との対流熱伝達(
気体の対流)となる。かような対流熱伝達による方式で
は熱伝達係数の面でも、また均一な熱伝達を行う面でも
その改善には限界がある。
In the above supercooler, the inner wall temperature of the heat transfer tube was set to 5.8°C.
It is important to control the temperature to ~0°C, but in the method of passing the brine of the refrigerator through a cooling container with heat transfer tubes, the heat transfer between the heat transfer tubes and the brine is due to convection heat transfer (liquid convection). Become. In addition, even when the cooling container is used as the evaporator of a heat pump device, convective heat transfer (
gas convection). Such convection heat transfer methods have limits to improvement in terms of heat transfer coefficient and uniform heat transfer.

本発明はこの限界を克服することを目的としたものであ
る。
The present invention aims to overcome this limitation.

〔問題点を解決する手段〕[Means to solve problems]

本発明は、該過冷却器における熱伝達を先のように対流
熱伝達によって行うのではなく、7!1!i騰熱伝達に
よって行うものであり、伝熱管をその中に配した麿却容
器を満液型の蒸発器に構成した点に特徴がある。すなわ
ち本発明によれば、蓄熱槽内に蓄えられた空調用熱源水
をヒートポンプ装置の蒸発器に連続供給して零度℃以下
の過冷却水にまで伶却し、この過冷却水を該蒸発器から
連続流れとして吐出させ、この吐出流をその過冷却状態
を解除しつつ該蓄熱槽に供給して該蓄熱槽に水−水スラ
リーを蓄えるようにした空調用氷蓄熱装置において、 
tiiJ記ヒートポンプ装置の蒸発器が、そのチューブ
側に前記の熱源水が連続通水されると共にソエル側にヒ
ートポンプの冷媒が(j(給されるシェルアンドデユー
プ型の熱交換器からなり、該ヒトポンプ装置が前記の蒸
発器から圧縮機、凝縮器および膨張弁を経て該蒸発器に
戻る冷媒のWi環サイクルを形成して稼働しているあい
だ、該蒸発器のンエル内に液冷媒がシェル内チューブを
覆うに充分な量で満たされるように構成した点に特徴を
有する空調用氷蓄熱装置を提供する。
In the present invention, heat transfer in the supercooler is not performed by convective heat transfer as described above, but by 7!1! This process is carried out by heat transfer by heating, and is characterized by a liquid-filled evaporator with a transfer vessel in which a heat transfer tube is placed. That is, according to the present invention, the heat source water for air conditioning stored in the heat storage tank is continuously supplied to the evaporator of the heat pump device to reduce the temperature to subcooled water below zero degrees Celsius, and this supercooled water is transferred to the evaporator. In an ice heat storage device for air conditioning, the water-water slurry is stored in the heat storage tank by discharging it as a continuous flow from the ice storage tank and supplying the discharged flow to the heat storage tank while releasing the supercooled state,
The evaporator of the heat pump device described in J is composed of a shell-and-dupe heat exchanger, in which the heat source water is continuously passed through the tube side, and the refrigerant of the heat pump is supplied to the soil side. While the human pump device is operating forming a cycle of refrigerant returning from the evaporator to the evaporator via the compressor, condenser and expansion valve, liquid refrigerant is shelled in the well of the evaporator. To provide an air conditioning ice heat storage device characterized in that it is configured to be filled with enough ice to cover an inner tube.

そして本発明によれば、この満液型華発器による過冷却
器を使用するという特徴的な構成に加えて、さらに ヒートポンプ装置の冷媒の循環サイクルを、該蒸発器−
圧縮機→凝縮器→受液器→液・M熱交換器−膨腸弁→該
薫発器からなるサイクルに形成し。
According to the present invention, in addition to the characteristic configuration of using the supercooler using the flooded florescent device, the refrigerant circulation cycle of the heat pump device is further changed from the evaporator to
The cycle consists of a compressor → condenser → liquid receiver → liquid/M heat exchanger → expansion valve → the smoke generator.

この液・液熱交換器において液冷媒が該蒸発器に連続イ
」(給される前の熱源水と熱交換させるようにした点 蓄熱槽内の熱源水を、該蒸発器に通じたあと蓄熱槽に戻
る熱源側循環水路と、空調のための9荷側熱交換器に通
じたあと蓄熱槽に戻る負荷側循環水路とに独立して循環
させるようにした点蓄熱槽内の熱源水を、空調のための
負荷側熱交換器に通じたあと該蒸発器に連続供給するよ
うにした点 M熱槽内の熱源水を、空調のための負荷側熱交換器およ
び咳液・液熱交換器を経たあと該蒸発器に連続供給する
ようにした点 などの工夫がなされた。
In this liquid-liquid heat exchanger, the liquid refrigerant is continuously supplied to the evaporator. The heat source water in the point heat storage tank is circulated independently between the heat source side circulation waterway that returns to the tank and the load side circulation waterway that passes through the nine load side heat exchangers for air conditioning and returns to the heat storage tank. The heat source water in the point M heat tank, which is continuously supplied to the evaporator after passing through the load side heat exchanger for air conditioning, is transferred to the load side heat exchanger for air conditioning and the cough fluid/liquid heat exchanger. The invention was devised by continuously supplying the water to the evaporator after passing through the process.

〔作用〕[Effect]

ヒートポンプ装置の蒸発器は、低圧器内に冷媒液が噴射
されることによって膨脹蒸発が行われるのが一般であり
、先に提案した過冷却器においてもヒートポンプ装置の
蒸発器は器内で冷媒を膨脹蒸発させ、この気体冷媒と伝
熱管壁を熱伝達させるものであったが2本発明は蒸発器
内に液冷媒を満たしておき、この液冷媒を沸騰させるも
のであるから、沸騰による強制撹拌によって熱伝達が良
好となり且つ器内の伝熱管の全体に均一に熱を伝達する
ことができる。
Generally, the evaporator of a heat pump device performs expansion evaporation by injecting refrigerant liquid into a low-pressure device, and in the supercooler proposed earlier, the evaporator of a heat pump device also performs expansion evaporation by injecting refrigerant liquid into a low-pressure device. In the present invention, the evaporator is filled with a liquid refrigerant and the liquid refrigerant is brought to a boil. Stirring improves heat transfer and allows heat to be uniformly transferred throughout the heat transfer tubes in the vessel.

また、ヒートポンプの冷媒循環サイクルに液・液熱交換
器を配置し、この液・液熱交換器において冷媒と熱源水
とを熱交換させることによって蒸発器に入る前の冷媒が
ヒートポンプ装置の能力以外に過剰に冷却されるので蒸
発器での冷却能力が高まるとともに5蒸発器に入る前の
熱源水が加温されるので蒸発器での凍結防止が図れる。
In addition, a liquid-liquid heat exchanger is placed in the refrigerant circulation cycle of the heat pump, and by exchanging heat between the refrigerant and the heat source water in this liquid-liquid heat exchanger, the refrigerant before entering the evaporator exceeds the capacity of the heat pump device. Since the water is excessively cooled, the cooling capacity of the evaporator increases, and the heat source water before entering the evaporator 5 is heated, thereby preventing freezing in the evaporator.

さらに、蓄熱槽内の熱源水を、空調のための負荷側熱交
換器に通じたあと該蒸発器に連続供給するようにするこ
とによって、設備を簡略化できるうえ、Xaい掛は運転
(昼間での冷房運転において製氷運転も同時に行うこと
)が高い成績係数のもとて実施できる。
Furthermore, by continuously supplying the heat source water in the heat storage tank to the load-side heat exchanger for air conditioning and then to the evaporator, the equipment can be simplified, and the Ice-making operation can be performed at the same time as air-conditioning operation) with a high coefficient of performance.

そのほか、以下の実施例で説明するような様々な作用を
本発明装置は供し、全体として省エネルギー的かつ効率
のよい空調用氷蓄熱装置が提供される。
In addition, the device of the present invention provides various functions as explained in the following examples, and as a whole, an energy-saving and efficient ice heat storage device for air conditioning is provided.

C実施例〕 第1図は本発明装置の一実施例を示したものである。1
は蓄熱槽、2は過冷却器、3は循環ポンプであり、蓄熱
槽1内の水はポンプ3の駆動により熱源側循環水路4を
経て過冷却器2に連続供給され、この過冷却器2によっ
て零度℃以下の過冷却水5となって大気中に吐出し、こ
の過冷却水5の吐出流は、場合によっては過冷却状態解
除装置6に衝突したうえ、蓄熱槽1内に戻される。過冷
却状態が解除するさいに微細な氷となり、蓄熱槽l内に
はシャーヘント状の氷8が溜まる。図示の例では、熱源
側循環水路4において、ポンプ3の吸込側に微細な氷を
捕集するためのフィルタ9が介装され、ポンプ3から過
冷却器2に至る径路に液・成熱交換器IOとその下情側
にバッファタンク11が介装されている。他方1M熱槽
l内の冷水が空調用の負荷側熱交換器12に通じたあと
再び蓄熱槽に戻る負荷側i環水路13が独立して形威し
である。すなわち、蓄熱IWl内の冷水はフィルタ14
負荷側ポンプ15.負荷側熱交換器12.散水装置j6
を経て槽内に戻る。負荷側熱交換器I2としては通常は
液・tl熱交換器を使用し、建物内のファンコイルユニ
ットやヒートポンプユニットの水(F、’I P 交t
#!23を循環する二次倒産温水と熱交換する。場合に
よってはこの負荷側熱交換器12自身を空調器の熱交換
器として使用することもできる。
Embodiment C] FIG. 1 shows an embodiment of the apparatus of the present invention. 1
2 is a heat storage tank, 2 is a supercooler, and 3 is a circulation pump. Water in the heat storage tank 1 is continuously supplied to the supercooler 2 through a heat source side circulation waterway 4 by the drive of the pump 3. As a result, the supercooled water 5 becomes subcooled water 5 below zero degrees Celsius and is discharged into the atmosphere. Depending on the case, the discharge flow of the supercooled water 5 collides with the supercooled state release device 6 and is returned to the heat storage tank 1. When the supercooled state is released, it becomes fine ice, and Scherchent-shaped ice 8 accumulates in the heat storage tank l. In the illustrated example, a filter 9 for collecting fine ice is interposed on the suction side of the pump 3 in the circulation waterway 4 on the heat source side, and a liquid/forming heat exchange is performed in the path from the pump 3 to the supercooler 2. A buffer tank 11 is interposed between the container IO and its lower side. On the other hand, there is an independent load-side i-ring water channel 13 through which the cold water in the 1M heat tank l passes through the load-side heat exchanger 12 for air conditioning and then returns to the heat storage tank. That is, the cold water in the heat storage IWl is filtered through the filter 14.
Load side pump 15. Load side heat exchanger 12. water sprinkler j6
After that, it returns to the tank. A liquid/TL heat exchanger is normally used as the load side heat exchanger I2, and the water (F,'I P
#! 23 to exchange heat with the secondary insolvent hot water that circulates. In some cases, the load-side heat exchanger 12 itself can be used as a heat exchanger for an air conditioner.

熱源側循環水路4の過冷却2W 2は、多数本の伝熱管
 (チューブ)17 をノニル18内に配置した/エル
アンドチューブ型熱交換2=からなっている。各デユー
プ17(以下伝熱管17と言う)は、シェル18(以下
冷却容器18と呼ぶ)を貫通して配置され一方の端は求
人ロヘノダ一部20に開口し、他方の端は大気に開放し
ていることから、本人ロヘッダ一部20に導入された水
は各伝熱管17内を流れて他方の開口端より大気中に吐
出する。ノニル側の冷却容器18はヒートポンプ装置の
蒸発器として機能するが3 これが満7夜型の華発器に
構成される点に本発明の大きな特徴がある。すなわち、
ヒートポンプ装置稼働中は冷却容器IB内には液冷媒2
1が伝熱管17を浸すに充分な量で、つまりその液面2
2が器内の伝熱管17より上方に位置するように、満た
されており、i面22の上方空間が負圧に維持され且つ
伝熱管17によっ液冷媒21が加熱されることによって
液が沸騰する状態に置かれる。
The supercooling 2W 2 of the heat source side circulation waterway 4 consists of an L&tube type heat exchanger 2 in which a large number of heat transfer tubes 17 are arranged inside a nonyl 18. Each duplex 17 (hereinafter referred to as a heat exchanger tube 17) is disposed through a shell 18 (hereinafter referred to as a cooling vessel 18), and one end thereof is open to the recruitment rohenoda part 20, and the other end is open to the atmosphere. Therefore, the water introduced into the header portion 20 flows through each heat transfer tube 17 and is discharged into the atmosphere from the other open end. The cooling container 18 on the nonyl side functions as an evaporator of the heat pump device, and a major feature of the present invention is that this is configured as a 7-night type evaporator. That is,
When the heat pump device is in operation, liquid refrigerant 2 is in the cooling container IB.
1 is sufficient to submerge the heat transfer tube 17, that is, the liquid level 2
The space above the i-plane 22 is maintained at a negative pressure, and the liquid refrigerant 21 is heated by the heat exchanger tubes 17, so that the liquid refrigerant 21 is heated by the heat exchanger tubes 17. placed in a boiling state.

なお 第1図において、24は圧縮機、25はO’*2
S、 26ハ受?f!iH,27ハ1vlt1%弁ヲ示
L テオリ、  コレらの間に冷媒配管されることによ
ってヒートポンプ装置を構成している。なお、受液器2
6と膨張弁27の間には先述の液・液熱交換器lOが介
装されている。凝縮器25は空冷式のフィンチューブ型
熱交換コイルからなり、ファン28の駆動によって空気
を通流することにより、圧縮機24から吐出する高圧冷
媒の凝縮熱を放熱する。この液冷媒は一たん受液2S2
6に送られ、液・i熱交換器10で過冷却器2に入る前
の熱源水と熱交換して冷却されたあと膨張弁27を経て
蒸発器である冷却容器18内に導入される。そのさい、
冷却容器18の下部に液冷媒導入口29が設けられるこ
とにより、器内の液冷媒21の層内にその下方から膨張
弁27を経た冷媒が導入される。冷却容器18の上部に
設けられた気体冷媒導出口30から圧縮機24に気体冷
媒が吸引されることにより冷却容器18内は低圧に維持
されるのでまた伝熱管17の中を通流する熱源水によっ
て熱が付与されるので、f!i、冷媒21は沸騰を起こ
す。そのさい、 I&r媒2Iの液面22が定常な位置
に維持されるように制御運転が行われると共に、この沸
HB発によって液冷媒21の温度を、伝熱管17の内面
忠度が一58℃以上で零度℃以下の温度に冷却されるよ
うな温度に制御される。
In addition, in Fig. 1, 24 is a compressor, 25 is O'*2
S, 26 ha? f! A heat pump device is constructed by connecting refrigerant piping between these parts. In addition, the liquid receiver 2
6 and the expansion valve 27 is interposed with the liquid-liquid heat exchanger lO mentioned above. The condenser 25 is composed of an air-cooled fin-tube heat exchange coil, and radiates heat of condensation of the high-pressure refrigerant discharged from the compressor 24 by passing air through it by driving a fan 28. Once this liquid refrigerant receives liquid 2S2
6, and is cooled by exchanging heat with the heat source water before entering the supercooler 2 in the liquid-i heat exchanger 10, and then introduced into the cooling container 18, which is an evaporator, through the expansion valve 27. At that time,
By providing a liquid refrigerant inlet 29 at the lower part of the cooling container 18, the refrigerant is introduced from below through the expansion valve 27 into the layer of liquid refrigerant 21 inside the container. Gaseous refrigerant is sucked into the compressor 24 from the gaseous refrigerant outlet 30 provided at the upper part of the cooling container 18, thereby maintaining the inside of the cooling container 18 at a low pressure. Since heat is imparted by f! i. Refrigerant 21 causes boiling. At that time, a controlled operation is performed so that the liquid level 22 of the I&R medium 2I is maintained at a steady position, and the temperature of the liquid refrigerant 21 is controlled by this boiling HB to a temperature of 158° C. The temperature is controlled so that it is cooled to a temperature below zero degrees Celsius.

これによって、過冷却器2の伝熱管17の吐出口からは
零度℃以下に過冷却された過冷却水の連続流れ5が吐出
し、これが傾斜衝突板1分配板2回転板等からなる吐出
流に衝撃を付与する過冷却状態解除装置6に触れること
により微細な水を析出しつつ蓄熱槽l内に溜まる。
As a result, a continuous flow 5 of supercooled water supercooled to below zero degree Celsius is discharged from the discharge port of the heat exchanger tube 17 of the supercooler 2, and this is a discharge flow composed of an inclined collision plate, a distribution plate, a rotating plate, etc. By touching the supercooling state release device 6 that applies an impact to the supercooled state, fine water is precipitated and accumulated in the heat storage tank l.

第2図は5空調用の負荷側熱交換器12が熱源側循環水
路4に介装された以外は第1図と同様の本発明に従う装
置を示している。すなわち、第1図では負荷側熱交換2
S】2は熱源側循環水路4とは独立して設けられたが、
第2図の場合には、熱源側循環水路4に負荷側熱交換器
12を挿入することにより、負荷側循環水路を省略し、
従って第1図のフィルタ14.ポンプ15.散水装置1
6等も省略したものである。熱源側循環水路4への負荷
側熱交換器12の挿入位置は、ポンプ3と液・液熱交換
器10との間が適切である。このように負荷側熱交tf
A器12を熱源側循環水路4に挿入することによって。
FIG. 2 shows a device according to the invention that is similar to FIG. 1 except that a load-side heat exchanger 12 for air conditioning is interposed in the heat source-side circulation channel 4. FIG. That is, in Fig. 1, the load side heat exchange 2
S]2 was provided independently of the heat source side circulation waterway 4,
In the case of FIG. 2, the load side circulation waterway is omitted by inserting the load side heat exchanger 12 into the heat source side circulation waterway 4,
Therefore, filter 14 of FIG. Pump 15. Watering device 1
6th grade is also omitted. The appropriate insertion position of the load-side heat exchanger 12 into the heat source-side circulation waterway 4 is between the pump 3 and the liquid-liquid heat exchanger 10. In this way, the load side heat exchanger tf
By inserting the A vessel 12 into the heat source side circulation waterway 4.

第1図の場合よりも設備が簡略化すると共に、性能面で
もさらに有利となる。すなわち、蓄熱システムは設備費
用を含めた経済性の観点より夜間蓄熱運転と昼間の追い
掛は運転を併用するのが一般であるが、冷却能力が一定
で省動力的な能力制御を適用するものとして、過冷却器
2の伝熱管17への熱源水入口温度が高いほど、そのヒ
ートポンプ装置の成績係数がよくなる。昼間の追い掛は
運転を行う場合に、第2図の例では負荷側熱交換器I2
の挿入によって第1図よりも高温となった水が伝熱管1
7に送られることになるので高い成績係数で運転ができ
ることになる。
The equipment is simpler than the case shown in FIG. 1, and it is also more advantageous in terms of performance. In other words, thermal storage systems generally use a combination of nighttime thermal storage operation and daytime chasing operation from an economic standpoint including equipment costs, but those that apply power-saving capacity control with a constant cooling capacity. As such, the higher the temperature of the heat source water inlet to the heat transfer tubes 17 of the supercooler 2, the better the coefficient of performance of the heat pump device. In the example of Fig. 2, when driving during the day, the load side heat exchanger I2
The water, which has become hotter than that shown in Figure 1 due to the insertion of the heat exchanger tube 1,
7, so he will be able to drive with a high coefficient of performance.

(発明の効果) 以上のようにして本発明によると、過冷却水を製造して
これから7ヤーヘノト状の氷を製造して空調用水蓄かを
行うさいに、その中心N 23である過冷却器を沸謄熱
伝達方式の/A液型茎発器に構成したので、従来の対流
熱伝達方式に比べて、熱伝達係数が向上すると共に伝熱
管の全体に均一な熱伝達が達成される。したがって、伝
熱管内面温度を正確に制御することが要求される過冷却
水の連I製造にとって高い効率のもとて正確な運転がで
きる。また8 ヒートポンプの冷媒循環サイクルに冷媒
と熱源水とを熱交換さセる液・液熱交換器を配置したこ
とにより、ヒートポンプによる全体の冷却能力には変動
を与えないで伝熱管での水の凍結防止が図れる。さらに
、負荷側熱交換器を熱源側循環水路に挿入することによ
り、追い掛は運転時のヒートポンプの成績係数が高くな
り、省エネルギーが達成されるなど1従来方式にはない
数々の効果が発揮され、氷蓄熱方式による空調設備とし
て多大の貢献ができる。
(Effects of the Invention) As described above, according to the present invention, when producing supercooled water and producing ice in the form of 7-year logs to store water for air conditioning, the supercooler which is the center of the Since this is configured as an /A liquid type stem generator using a boiling heat transfer method, the heat transfer coefficient is improved compared to the conventional convection heat transfer method, and uniform heat transfer is achieved throughout the heat transfer tube. Therefore, highly efficient and accurate operation is possible for the production of supercooled water, which requires accurate control of the inner surface temperature of the heat exchanger tubes. In addition, by installing a liquid-liquid heat exchanger that exchanges heat between the refrigerant and the heat source water in the refrigerant circulation cycle of the heat pump, it is possible to reduce the amount of water in the heat transfer tubes without affecting the overall cooling capacity of the heat pump. Freezing can be prevented. Furthermore, by inserting the load-side heat exchanger into the heat source-side circulation waterway, the heat pump has a higher coefficient of performance during operation, achieving energy savings, and many other effects not found in conventional methods. , it can make a great contribution as an air conditioning system using the ice heat storage method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に従う空調用氷蓄熱装置の一実施例を示
ず略断面系統図、第2図は本発明に従う空調用水M熱装
置の他の実施例を示ず略断面系統図である。 ■・・蓄熱槽、    2・・過冷却器3・・ポンプ、
    4・・熱源側循環水路5・・過冷却水、   
6・・過冷却状態解除装置9・・フィルタ、10・・液
 液熱交換器11  ・バッファタンク、12・・負荷
側熱交換器13・・負荷側循環水路、18・・伝熱管1
9・ 冷却容器(ンエル)、21・・液冷媒22・・液
冷媒の破面、24・・圧縮機25 ・ 凝縮器 6 受fi器 27 ・ 膨張弁 29・・液冷媒導入口 30 ・ 気体冷媒導出口。
FIG. 1 is a schematic sectional system diagram not showing one embodiment of the air conditioning ice heat storage device according to the present invention, and FIG. 2 is a schematic sectional system diagram not showing another embodiment of the air conditioning water M heat storage device according to the present invention. . ■... Heat storage tank, 2... Supercooler 3... Pump,
4. Heat source side circulation waterway 5. Supercooled water,
6.Supercooling state release device 9..Filter, 10..Liquid-liquid heat exchanger 11.Buffer tank, 12..Load side heat exchanger 13..Load side circulation waterway, 18..Heat transfer tube 1
9. Cooling container (Ner), 21.. Liquid refrigerant 22.. Fractured surface of liquid refrigerant, 24.. Compressor 25 ・ Condenser 6 Fi receiver 27 ・ Expansion valve 29.. Liquid refrigerant inlet 30 ・ Gas refrigerant outlet.

Claims (7)

【特許請求の範囲】[Claims] (1)蓄熱槽内に蓄えられた空調用熱源水をヒートポン
プ装置の蒸発器に連続供給して零度℃以下の過冷却水に
まで冷却し、この過冷却水を該蒸発器から連続流れとし
て吐出させ、この吐出流をその過冷却状態を解除しつつ
該蓄熱槽に供給して該蓄熱槽に氷−水スラリーを蓄える
ようにした空調用氷蓄熱装置において、前記ヒートポン
プ装置の蒸発器が、そのチューブ側に前記の熱源水が連
続通水されると共にシェル側にヒートポンプの冷媒が供
給されるシェルアンドチューブ型の熱交換器からなり、
該ヒートポンプ装置が前記の蒸発器から圧縮機、凝縮器
および膨脹弁を経て該蒸発器に戻る冷媒の循環サイクル
を形成して稼働しているあいだ、該蒸発器のシェル内に
液冷媒がシェル内チューブを覆うに充分な量で満たされ
るように構成された空調用氷蓄熱装置。
(1) Heat source water for air conditioning stored in a heat storage tank is continuously supplied to the evaporator of the heat pump device, cooled to subcooled water below zero degrees Celsius, and this supercooled water is discharged as a continuous flow from the evaporator. In the ice heat storage device for air conditioning, the discharge flow is released from its supercooled state and is supplied to the heat storage tank to store ice-water slurry in the heat storage tank. It consists of a shell and tube type heat exchanger in which the heat source water is continuously passed through the tube side and the refrigerant of the heat pump is supplied to the shell side,
While the heat pump device is operating by forming a circulation cycle of refrigerant from the evaporator through the compressor, condenser and expansion valve and back to the evaporator, liquid refrigerant is in the shell of the evaporator. An air conditioning ice storage device configured to be filled in sufficient quantity to cover the tubes.
(2)該ヒートポンプ装置の冷媒の循環サイクルは該蒸
発器→圧縮機→凝縮器→受液器→液・液熱交換器→膨脹
弁→該蒸発器からなるサイクルを形成し、この液・液熱
交換器において液冷媒が該蒸発器に連続供給される前の
熱源水と熱交換される請求項1に記載の空調用氷蓄熱装
置。
(2) The refrigerant circulation cycle of the heat pump device forms a cycle consisting of the evaporator → compressor → condenser → liquid receiver → liquid-liquid heat exchanger → expansion valve → the evaporator. The ice heat storage device for air conditioning according to claim 1, wherein the liquid refrigerant is heat exchanged with heat source water before being continuously supplied to the evaporator in the heat exchanger.
(3)蓄熱槽内の熱源水は、該蒸発器に通じたあと蓄熱
槽に戻る熱源側循環水路と、空調のための負荷側熱交換
器に通じたあと蓄熱槽に戻る負荷側循環水路とに独立し
て循環される請求項1または2に記載の空調用氷蓄熱装
置。
(3) The heat source water in the heat storage tank is divided into a heat source-side circulation waterway that passes through the evaporator and then returns to the heat storage tank, and a load-side circulation waterway that passes through the load-side heat exchanger for air conditioning and then returns to the heat storage tank. The ice heat storage device for air conditioning according to claim 1 or 2, wherein the ice heat storage device is circulated independently.
(4)蓄熱槽内の熱源水は、空調のための負荷側熱交換
器に通じたあと該蒸発器に連続供給される請求項1また
は2に記載の空調用氷蓄熱装置。
(4) The ice heat storage device for air conditioning according to claim 1 or 2, wherein the heat source water in the heat storage tank is continuously supplied to the evaporator after passing through a load-side heat exchanger for air conditioning.
(5)蓄熱槽内の熱源水は、空調のための負荷側熱交換
器および該液・液熱交換器を経たあと該蒸発器に連続供
給される請求項2に記載の空調用氷蓄熱装置。
(5) The ice heat storage device for air conditioning according to claim 2, wherein the heat source water in the heat storage tank is continuously supplied to the evaporator after passing through a load-side heat exchanger for air conditioning and the liquid-liquid heat exchanger. .
(6)蓄熱槽内の熱源水は、該蒸発器に供給される前に
バッファータンクに一たん通液される請求項1、2、3
、4または5に記載の空調用氷蓄熱装置。
(6) Claims 1, 2, and 3, wherein the heat source water in the heat storage tank is once passed through a buffer tank before being supplied to the evaporator.
The ice heat storage device for air conditioning according to , 4 or 5.
(7)蒸発器のチューブの内面温度が−5.8℃以上零
度℃以下に維持される請求項1、2、3、4、5または
6に記載の空調用氷蓄熱装置。
(7) The ice heat storage device for air conditioning according to claim 1, 2, 3, 4, 5, or 6, wherein the inner surface temperature of the tube of the evaporator is maintained at -5.8 degrees Celsius or higher and zero degrees Celsius or lower.
JP2037200A 1990-02-20 1990-02-20 Ice storage device for air conditioning Expired - Lifetime JPH0772634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2037200A JPH0772634B2 (en) 1990-02-20 1990-02-20 Ice storage device for air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2037200A JPH0772634B2 (en) 1990-02-20 1990-02-20 Ice storage device for air conditioning

Publications (2)

Publication Number Publication Date
JPH03241251A true JPH03241251A (en) 1991-10-28
JPH0772634B2 JPH0772634B2 (en) 1995-08-02

Family

ID=12490933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2037200A Expired - Lifetime JPH0772634B2 (en) 1990-02-20 1990-02-20 Ice storage device for air conditioning

Country Status (1)

Country Link
JP (1) JPH0772634B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103994609A (en) * 2014-04-28 2014-08-20 杭州赛富特设备有限公司 Evaporator for water-cooled centrifugal unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399140A (en) * 1989-09-12 1991-04-24 Mitsui Constr Co Ltd Supercooling type ice heat storage system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399140A (en) * 1989-09-12 1991-04-24 Mitsui Constr Co Ltd Supercooling type ice heat storage system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103994609A (en) * 2014-04-28 2014-08-20 杭州赛富特设备有限公司 Evaporator for water-cooled centrifugal unit

Also Published As

Publication number Publication date
JPH0772634B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
US3822561A (en) Self contained air cooling unit
CN109798159B (en) Distributed energy-changing method and system
JP3122223B2 (en) Ice storage device
CN104315635B (en) Medium- and small-sized high-temperature-difference double-working-condition dynamic ice-slurry cold storage air conditioner
CN106839824A (en) Control device of liquid cooling based on serpentine condenser
JPH03241251A (en) Ice reservoir for air condition
JPS6367630B2 (en)
CN210272010U (en) Dry-type transformer cooling system and dry-type transformer system
JP3099251B2 (en) Ice storage system
CN211041486U (en) Shell and tube condenser and air conditioning system
CN221099061U (en) Supercooled water type ice making system
CN211146775U (en) Ice-making air conditioner
CN203478721U (en) Air conditioner condenser, air conditioner outdoor unit and air conditioner
CN220436880U (en) Direct cooling type refrigerating device for cooling sulfuric acid solution
JPH03241252A (en) Heat source system to reserve ice and hot water for air conditioning
CN218495181U (en) Heat exchanger and air conditioner
JPH09119723A (en) Heat accumulator and air conditioner system
JPH0359335A (en) Thermal accumulation system
KR100485140B1 (en) Fin Tube installed Energy Storage-and-Recovery Device using Latent Heat of Fusion of Water and Air-Conditioning System with the Device
JP4514805B2 (en) Ice making system using supercooled water
JPH0438178Y2 (en)
JP2509667B2 (en) Thermal storage refrigeration system
JPH03271671A (en) Control method of heat pump device for manufacturing overcooled water
JP2000055520A (en) Liquefied natural gas cold using vaporizer
JP2649078B2 (en) Heat storage type cooling and heating method

Legal Events

Date Code Title Description
S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 15