JP2630143B2 - Ice making equipment - Google Patents

Ice making equipment

Info

Publication number
JP2630143B2
JP2630143B2 JP3335051A JP33505191A JP2630143B2 JP 2630143 B2 JP2630143 B2 JP 2630143B2 JP 3335051 A JP3335051 A JP 3335051A JP 33505191 A JP33505191 A JP 33505191A JP 2630143 B2 JP2630143 B2 JP 2630143B2
Authority
JP
Japan
Prior art keywords
ice making
water
heat exchanger
ice
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3335051A
Other languages
Japanese (ja)
Other versions
JPH05164367A (en
Inventor
武夫 植野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP3335051A priority Critical patent/JP2630143B2/en
Publication of JPH05164367A publication Critical patent/JPH05164367A/en
Application granted granted Critical
Publication of JP2630143B2 publication Critical patent/JP2630143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水又は水溶液が流通す
る水流通路内に熱交換器を配置し、熱交換器で氷化した
氷化物を輸送するようにした製氷装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an ice making apparatus in which a heat exchanger is disposed in a water flow passage through which water or an aqueous solution flows, and which transports iced products in the heat exchanger.

【0002】[0002]

【従来の技術】従来より、例えば特開昭63―2171
71号公報に開示される如く、蓄氷槽の水を循環させる
水循環路を設け、水循環路の出口側を上流側で下方に向
かいかつ出口端が蓄氷槽の水面より一定高さだけ上方で
開口するように形成された傾斜樋とし、熱交換器を該樋
間に介設して、水循環路で熱交換器により冷却された水
を樋の出口で過冷却状態を解消させてスラリー状に氷化
するとともに、この氷化物を蓄氷槽に落下させることに
より、水の氷化の進行による水循環路の凍結を防止し
て、安定した製氷を行おうとする製氷装置は公知の技術
である。
2. Description of the Related Art Conventionally, for example, Japanese Patent Application Laid-Open No. 63-2171
As disclosed in Japanese Patent No. 71, a water circulation path for circulating water in an ice storage tank is provided, and the outlet side of the water circulation path is directed downward on the upstream side and the outlet end is at a certain height above the water surface of the ice storage tank. An inclined gutter formed so as to open, a heat exchanger is interposed between the gutters, and the water cooled by the heat exchanger in the water circulation path is removed from the supercooled state at the outlet of the gutter to form a slurry. An ice-making apparatus which is designed to stably perform ice making by preventing the water circulation path from freezing due to the progress of ice formation of water by causing the iced material to fall into an ice storage tank while being iced.

【0003】また、実開平1―112345号公報に開
示される如く、水循環路の出口端を蓄氷槽の上方に開口
させ、その前方に邪魔板を有する傾斜樋を設置して、熱
交換器で過冷却された水を大気中に放出して邪魔板に衝
突させることにより、水の過冷却状態を解消させて水を
氷化させ、樋を介して蓄氷槽内に落下させることによ
り、より確実に水循環路の凍結を防止しようとするもの
も公知の技術である。
Further, as disclosed in Japanese Utility Model Laid-Open Publication No. 1-112345, the outlet end of the water circulation path is opened above the ice storage tank, and an inclined gutter having a baffle plate is provided in front of the opening to form a heat exchanger. By releasing the supercooled water into the atmosphere and colliding with the baffle, the supercooled state of the water is eliminated, the water is iced, and dropped into the ice storage tank through the gutter, A technique for more reliably preventing freezing of the water circuit is also a known technique.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来のもののうち後者のものでは、蓄氷槽の上方に過冷却
解消部が設けられているために、熱交換器と過冷却解消
部までの距離が長いとその間の配管で過冷却状態が解消
してしまう虞れがある。したがって、熱交換器を蓄氷槽
の近くに設けなければならないので、水配管を曲げる等
の加工が困難となる等、設計上の制約が大きいという問
題がある。
However, in the latter one of the above-mentioned conventional ones, the distance between the heat exchanger and the supercooling elimination part is provided because the supercooling elimination part is provided above the ice storage tank. If the length is too long, the supercooled state may be eliminated by the piping between them. Therefore, since the heat exchanger must be provided near the ice storage tank, there is a problem in that the design such as bending of the water pipe becomes difficult, and the design restrictions are large.

【0005】一方、上記従来のもののうち前者のもので
は、過冷却解消部として、蓄氷槽の上方に相当の高低差
を持った樋を設置する必要があり、やはり設計上の制約
が大きい。また、大気に晒される時間が長いので大気と
の熱交換による熱の浪費が大きいという問題がある。
[0005] On the other hand, in the former one of the above-mentioned conventional ones, it is necessary to install a gutter having a considerable difference in height above the ice storage tank as a supercooling elimination part, which again imposes a large design restriction. Further, there is a problem that heat is wasted due to heat exchange with the atmosphere because the time of exposure to the air is long.

【0006】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、水又は水溶液が流通する流通路に、
水又は水溶液によって輸送可能な氷化物を生成しうる熱
交換器を設けることにより、連続的に安定した製氷を行
う製氷装置を提供することにある。
[0006] The present invention has been made in view of such a point, and an object thereof is to provide a flow passage through which water or an aqueous solution flows,
An object of the present invention is to provide an ice making device that continuously and stably makes ice by providing a heat exchanger that can generate iced products that can be transported by water or an aqueous solution.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の講じた手段は、図1に示すように、水又
は水溶液が流通する水流通路(20)を備え、該水流通
路(20)内に配設された熱交換器(4)の製氷部(4
1)において水又は水溶液を氷化した後、該氷を輸送す
るようにした製氷装置を前提とする。
In order to achieve the above object, the means according to claim 1 has a water flow passage (20) through which water or an aqueous solution flows, as shown in FIG. disposed 20) within the heat exchanger ice making section (4) (4
It is assumed that the ice making device is configured to transport the ice after the water or the aqueous solution is iced in 1) .

【0008】そして、図2及び図3に示すように、上記
熱交換器(4)の製氷部(41)を、鉛直方向に延びる
略円筒状に形成すると共に、その外周面側に水又は水溶
液中に浸漬される多数の底付き穴(44,…)を設け
る。また、該製氷部(41)を、各底付き穴(44,
…)の底部を形成する内筒部材(42)と、各底付き穴
(44,…)の軸線が少なくとも該穴の開放側に向って
水平方向よりも上向きに形成されるように該各底付き穴
(44,…)の内壁部を形成する外筒部材(43)とで
構成する。
Then, as shown in FIGS. 2 and 3, the ice making part (41) of the heat exchanger (4) extends in the vertical direction.
And forming a substantially cylindrical shape, provided with a large number of bottomed holes to be immersed in water or an aqueous solution to the outer peripheral surface (44, ...)
You. Further, the ice making section (41) is connected to each of the bottomed holes (44,
…) And an inner cylindrical member (42) forming a bottom portion, and each bottomed hole
The axis of (44,...) Is at least toward the open side of the hole.
Each bottomed hole is formed so that it is formed more upward than horizontal.
(44,...) And the outer cylindrical member (43) forming the inner wall portion.
Configure.

【0009】さらに、上記各底付き穴(44,…)で水
又は水溶液を氷化するよう冷却する冷却手段と、該冷却
手段により生成された氷化物(45,…)を加熱する加
熱手段とを備えさせる。
Furthermore, heating means for heating a cooling means for cooling to Korika water or an aqueous solution in the above bottomed holes (44, ...), the ice product produced by the cooling means (45, ...) Is provided.

【0010】また、上記外筒部材(43)を、熱膨張率
が内筒部材(42)の熱膨張率に対して同等又は高い材
料で形成した構成としたものである。
Further , the outer cylinder member (43) is provided with a thermal expansion coefficient.
Is equal to or higher than the coefficient of thermal expansion of the inner cylindrical member (42).
It is a structure formed by a material.

【0011】請求項2の発明の講じた手段は、図1に示
すように、水又は水溶液が流通する水流通路(20)を
備え、該水流通路(20)内に配設された熱交換器
(4)の製氷部(41)において水又は水溶液を氷化し
た後、該氷を輸送するようにした製氷装置を前提とす
る。
The means taken by the invention of claim 2 is shown in FIG.
As shown in FIG.
A heat exchanger provided in the water flow passage (20).
In the ice making section (41) of (4), water or an aqueous solution is
After that, it is assumed that the ice making device is designed to transport the ice.
You.

【0012】そして、上記熱交換器(4a〜4c)を複
数個配置し、各熱交換器(4a〜4c)の製氷部(4
1)に、水又は水溶液中に浸漬される多数の底付き穴
(44,…)を備えさせ、該各底付き穴(44,…)の
軸線を少なくとも該穴の開放側に向って水平方向よりも
上向きに形成する。
The heat exchangers (4a to 4c) are used in duplicate.
Arrange several pieces, and make the ice making section (4) of each heat exchanger (4a-4c).
In 1), a number of bottomed holes immersed in water or aqueous solution
(44,...), And each bottomed hole (44,.
The axis at least towards the open side of the hole than horizontally
Form upward.

【0013】さらに、上記各熱交換器(4a〜4c)に
対応して設けられた複数個の減圧機構(3a〜3c)
と、上記各熱交換器(4a〜4c)毎に設けられ、冷媒
の流通方向を、凝縮器(2)から減圧機構(3a〜3
c)を介して熱交換器(4a〜4c)に流通させる経路
と凝縮器(2)から熱交換器(4a〜4c)に直接流通
させる経路とに切換える経路切換手段(101a〜10
1c)とを備えさせる。また、一部の熱交換器に対して
凝縮器(2)から冷媒を直接流通させて底付き穴(4
4,…)から氷化物を剥離するとともに、他の熱交換器
に対して上記一部の熱交換器で冷却された液冷媒を減圧
機構を介して流通させて底付き穴(44,…)で水又は
水溶液を氷化させるよう各経路切換手段(101a〜1
01c)を制御する剥離−製氷同時運転制御手段とを備
えさせた構成としている。
Further, each of the heat exchangers (4a to 4c) has
A plurality of pressure reducing mechanisms (3a to 3c) provided correspondingly
And a refrigerant provided for each of the heat exchangers (4a to 4c).
Flow direction from the condenser (2) to the pressure reducing mechanism (3a to 3a).
c) through the heat exchangers (4a-4c)
And flow directly from condenser (2) to heat exchangers (4a-4c)
Path switching means (101a to 101a)
1c). Also, for some heat exchangers
The refrigerant is allowed to flow directly from the condenser (2) and the hole with the bottom (4
4, ...) to separate the iced material and other heat exchangers
Depressurize the liquid refrigerant cooled by the above part of heat exchanger
Circulated through the mechanism and water or
Each path switching means (101a-1
01c) for controlling simultaneous operation of peeling and ice making
The configuration is as follows.

【0014】[0014]

【作用】以上の構成により、請求項1の発明では、水流
通路(20)に配設された熱交換器(4)において、冷
却手段により、水流通路(20)を流通する水等が冷却
されて、熱交換器(4)の製氷部(41)の表面に氷化
物(45,…)が生成される。そのとき、製氷部(4
1)には多数の底付き穴(44,…)が形成されてお
り、各底付き穴(41)は水平線よりも上向きに開放さ
れているので、生成された氷化物(45,…)が加熱手
段により加熱されて底付き穴(44,…)の底部付近か
ら融解すると、氷化物(45,…)の浮力により自然に
製氷部(41)から遊離する。そして、この剥離された
粒状の氷化物(45,…)が輸送される。
According to the above construction, in the first aspect of the present invention, in the heat exchanger (4) disposed in the water flow passage (20), water or the like flowing through the water flow passage (20) is cooled by the cooling means. Thus, iced substances (45,...) Are generated on the surface of the ice making section (41) of the heat exchanger (4). At that time, the ice making section (4
1) are formed with a number of bottomed holes (44,...), And each bottomed hole (41) is opened upward from a horizontal line.
When the generated iced material (45,...) Is heated by the heating means and melts from near the bottom of the bottomed hole (44,...), Ice is naturally produced by the buoyancy of the iced material (45,...). Released from part (41). Then, the stripped particulate ice products (45, ...) is sent transportation.

【0015】その場合、水等が過冷却されるのではな
く、熱交換器(4)の製氷部(41)の各底付き穴(4
4,…)内に直接氷化物(45,…)が生成されるの
で、熱交換器(4)の製氷部(41)内部が凍結する虞
れはほとんどなく、安定して連続的に製氷が行われるこ
とになる。
In this case, the water or the like is not supercooled, but the bottomed holes (4) of the ice making section (41) of the heat exchanger (4) are not cooled.
(4,...) Are directly generated in the ice making section (41) of the heat exchanger (4), and there is almost no possibility that the inside of the ice making section (41) is frozen. Will be done.

【0016】また、熱交換器(4)の製氷部(41)は
円筒状であるので、その外周面側に多数の底付き穴(4
4,…)を設けることが可能であり、装置が小形化でき
る。
The ice making part (41) of the heat exchanger (4) is
Since it is cylindrical, a number of holes with bottoms (4
4, ...) can be provided, and the device can be downsized.
You.

【0017】さらに、製氷部(41)を構成する外筒部
材(43)の方が内筒部材(42)に対し熱膨張率が同
等又は高くなっているいるので、製氷時に製氷部(4
1)が冷却されたときにも、内筒部材(42)−外筒部
材(43)間に隙間が生じることはない。従って、この
隙間が凍結して製氷性能が悪化するといったことが未然
に防止されることになる。
Further, an outer cylinder part constituting the ice making part (41)
The material (43) has the same thermal expansion coefficient as the inner cylinder member (42).
The ice making part (4
Even when 1) is cooled, the inner cylinder member (42) -the outer cylinder portion
There is no gap between the members (43). Therefore, this
The gap freezes and the ice making performance deteriorates
Will be prevented.

【0018】請求項2の発明では、剥離−製氷同時運転
手段により、経路切換手段(101)の切換えを制御す
る。つまり、一部の熱交換器(例えば4a)では、凝縮
器( 2)から直接流通される比較的高温の冷媒により氷
化物(45,…)の剥離が行われる。その後、この熱交
換器で冷却された低温の液冷媒を利用して他方の熱交換
器(例えば4b,4c)で底付き穴(44,…)での製
氷動作が行われる。これにより、冷媒の熱が有効に利用
され、製氷効率が向上することになる。
According to the second aspect of the present invention, simultaneous operation of peeling and ice making is performed.
Means for controlling the switching of the path switching means (101).
You. That is, in some heat exchangers (for example, 4a), condensation
Ice by the relatively high-temperature refrigerant flowing directly from the vessel ( 2)
(45,...) Are removed. Then this hot exchange
Heat exchange using the low-temperature liquid refrigerant cooled by the heat exchanger
(4b, 4c) with holes (44,...)
Ice movement is performed. This effectively utilizes the heat of the refrigerant
As a result, the ice making efficiency is improved.

【0019】[0019]

【実施例】以下、本発明の実施例について、図面に基づ
き説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1は第1実施例に係る製氷装置の冷媒配
管系統を示し、(1)は低圧のガス冷媒を吸入し、高圧
のガス冷媒に圧縮して吐出する圧縮機、(2)は該圧縮
機(1)から吐出された冷媒を凝縮,液化する凝縮器で
ある。上記圧縮機(1)及び凝縮器(2)に対して、3
台の第1〜第3製氷ユニット(A〜C)が配置されてお
り、該各製氷ユニット(A〜C)には、冷媒と水又は水
溶液(以下、水等という)との熱交換を行うための第1
〜第3熱交換器(4a〜4c)が配置されているととも
に、該各熱交換器(4a〜4c)の液管側には、製氷時
のみ減圧弁として機能する第1〜第3電動膨張弁(3a
〜3c)が介設され、各熱交換器(4a〜4c)のガス
管側には通路を開閉する第1〜第3ガス開閉弁(6a〜
6c)が介設されている。上記各機器は、冷媒配管によ
り接続され、閉回路の主冷媒回路(9)が構成されてい
る。
FIG. 1 shows a refrigerant piping system of an ice making apparatus according to a first embodiment. (1) is a compressor that sucks a low-pressure gas refrigerant, compresses it into a high-pressure gas refrigerant, and discharges it. A condenser for condensing and liquefying the refrigerant discharged from the compressor (1). For the compressor (1) and the condenser (2), 3
The first to third ice making units (A to C) are arranged, and each of the ice making units (A to C) exchanges heat between a refrigerant and water or an aqueous solution (hereinafter referred to as water or the like). First for
The third to third heat exchangers (4a to 4c) are arranged, and the first to third electric expansions functioning as pressure reducing valves only during ice making are provided on the liquid tube side of each of the heat exchangers (4a to 4c). Valve (3a
To 3c), and first to third gas on-off valves (6a to 3c) for opening and closing passages on the gas pipe side of each heat exchanger (4a to 4c).
6c) is interposed. The above devices are connected by a refrigerant pipe to form a closed circuit main refrigerant circuit (9).

【0021】なお、(7a〜7c)は、上記各熱交換器
(4a〜4c)の液管に各電動膨張弁(3a〜3c)と
並列に接続され、各熱交換器(4a〜4c)側からの冷
媒の流通のみを許容する第1〜第3逆止弁、(5)は上
記主冷媒回路(9)の凝縮器(2)−第1電動膨張弁
(3a)間の液管に介設された液開閉弁である。
In addition, (7a-7c) is connected in parallel with each electric expansion valve (3a-3c) to the liquid pipe of each heat exchanger (4a-4c), and each heat exchanger (4a-4c) The first to third check valves permitting only the flow of the refrigerant from the side, and (5) are connected to the liquid pipe between the condenser (2) and the first electric expansion valve (3a) of the main refrigerant circuit (9). This is an interposed liquid on-off valve.

【0022】また、上記主冷媒回路(9)の凝縮器
(2)−液開閉弁(5)間の液管と、各熱交換器(4a
〜4c)−ガス開閉弁(6a〜6c)間の冷媒配管(液
管またはガス管となりうる部位)とは、各々第1〜第3
バイパス開閉弁(11a〜11c)を介して、バイパス
路(10)により接続されている。
A liquid pipe between the condenser (2) and the liquid on-off valve (5) of the main refrigerant circuit (9) is connected to each heat exchanger (4a).
-4c)-refrigerant pipes (parts that can be liquid pipes or gas pipes) between the gas on-off valves (6a-6c) are first to third, respectively.
They are connected by a bypass passage (10) via bypass on-off valves (11a to 11c).

【0023】そして、上記各製氷ユニット(A〜C)の
熱交換器(4a〜4c)には、蓄氷槽(図示せず)の水
等を循環させる第1〜第3水循環路(20a〜20c)
が各々接続されており、各水循環路(20a〜20c)
の往路側には水等の流量を調節する第1〜第3水量制御
弁(21a〜21c)が介設されている。
The first to third water circulation paths (20a to 20c) for circulating water and the like in an ice storage tank (not shown) are provided in the heat exchangers (4a to 4c) of the ice making units (A to C). 20c)
Are connected to each other, and each water circulation path (20a to 20c)
First to third water flow control valves (21a to 21c) for adjusting the flow rate of water or the like are provided on the outward path side.

【0024】すなわち、各製氷ユニット(A〜C)にお
いて、各電動膨張弁(3a〜3c)側から冷媒を流通さ
せたときには、冷媒を各熱交換器(4a〜4c)で蒸発
させて水等を氷化する一方、ガス開閉弁(6a〜6c)
を閉じ、バイパス開閉弁(1a〜11c)を開いたとき
には、凝縮器(2)で凝縮された比較的高温の液冷媒を
熱交換器(4a〜4c)に流通させて氷化物を熱交換器
(4a〜4c)から剥離し、水循環路(20a〜20
c)を介して蓄氷槽に輸送するようになされている。
That is, in each of the ice making units (A to C), when the refrigerant is circulated from each of the electric expansion valves (3a to 3c ), the refrigerant is evaporated in each of the heat exchangers (4a to 4c) to form water or the like. Gas on-off valves (6a-6c)
Is closed, and when the bypass on-off valves (1a to 11c) are opened, the relatively high-temperature liquid refrigerant condensed in the condenser (2) is passed through the heat exchangers (4a to 4c) to remove the iced material. (4a to 4c), and separated from the water circulation path (20a to 20c).
c) to be transported to an ice storage tank.

【0025】次に、図2及び図3は上記各熱交換器(4
a〜4c)の製氷部である伝熱管(41)の構造を示
し、該伝熱管(41)は、銅製の内筒部材(42)と、
該内筒部材(42)の外周側に設けられたアルミニウム
製の外筒部材(43)とからなり、この内筒部材(4
2)及び外筒部材(43)に跨がって、一定の角度で上
方に傾く軸線を有する多数の底付き穴(44,…)がハ
ニカム状に分布して形成されており、上記内筒部材(4
2)は各底付き穴(44,…)の底部を構成し、外筒部
材(43)は各底付き穴(44,…)の内壁部を構成し
ている。
Next, FIGS. 2 and 3 show each of the above heat exchangers (4).
a to 4c) showing a structure of a heat transfer tube (41) which is an ice making part, wherein the heat transfer tube (41) includes a copper inner cylinder member (42);
An aluminum outer cylinder member (43) provided on the outer peripheral side of the inner cylinder member (42);
2) and a plurality of bottomed holes (44,...) Having an axis inclined upward at a certain angle over the outer cylinder member (43) are formed in a honeycomb-like distribution and formed in the inner cylinder. Member (4
2) constitutes the bottom of each bottomed hole (44,...), And the outer cylinder member (43) constitutes the inner wall of each bottomed hole (44,...).

【0026】なお、上記外筒部材(43)は、一方向に
傾いた軸線を有するハニカム状の穴が形成された平板を
アルミニウムのダイキャスト等により製作し、この平板
を内筒部材(42)に巻回するか、平板を円筒状にした
後に内筒部材(42)に嵌合するようになされている。
The outer cylinder member (43) is manufactured by die-casting aluminum or the like and having a honeycomb-shaped hole having an axis inclined in one direction, and this flat plate is used as the inner cylinder member (42). Or after the flat plate is formed into a cylindrical shape, the flat plate is fitted to the inner cylindrical member (42).

【0027】そして、冷媒回路(9)の冷媒は上記内筒
部材(42)の内部を流通する一方、外筒部材(43)
の周囲を水循環路(20a〜20c)の水等が流通し、
冷媒と水等との熱交換を行うようになされている。すな
わち、製氷時、内筒部材(42)の内部を冷媒が蒸発し
ながら流通することで、各底付き穴(44,…)の底部
から水等を冷却して氷化させ、各底付き穴(44,…)
の底部から側壁部の一部に亘るコップ底状の氷化物(4
5,…)を形成する。また、この氷化物(45,…)を
伝熱管(41)から剥離するときには、内筒部材(4
2)内部に高温の冷媒を流通させ、氷化物(45,…)
の底部側表面を融解して、氷化物(45,…)自体の浮
力と水等の流れとにより、速やかに伝熱管(41)から
遊離させるようにしている。
The refrigerant in the refrigerant circuit (9) flows through the inside of the inner cylinder member (42), while flowing through the outer cylinder member (43).
Around the water circulation water (20a-20c), etc.,
Heat exchange between the refrigerant and water or the like is performed. That is, at the time of ice making, the refrigerant flows through the inside of the inner cylinder member (42) while evaporating, thereby cooling water or the like from the bottom of each of the bottomed holes (44,. (44, ...)
Cup-shaped iced material (4) extending from the bottom to a part of the side wall
5, ...). When the iced substance (45,...) Is separated from the heat transfer tube (41), the inner cylinder member (4
2) High-temperature refrigerant is circulated inside, and iced material (45, ...)
Is melted so as to be quickly released from the heat transfer tube (41) by the buoyancy of the iced material (45,...) Itself and the flow of water or the like.

【0028】ここで、上記各底付き穴(44,…)の径
は3mm程度に設けられており、略米粒大の氷化物(4
5,…)を生成することにより、浮力と輸送性能とのバ
ランスをとるようにしている。すなわち、氷化物(4
5,…)の大きさが0.1cm3 を越えると、浮力が大き
くなり過ぎて、水循環路(20a〜20c)における輸
送性能を悪化させるので、底付き穴(44,…)の径は
5mm以下が好ましい。
Here, the diameter of each of the bottomed holes (44,...) Is set to about 3 mm, and the size of the substantially rice grain-sized
5,...) To balance buoyancy and transport performance. That is, the iced substance (4
If the size of (5,...) Exceeds 0.1 cm 3 , the buoyancy becomes too large and the transport performance in the water circulation path (20a to 20c) is deteriorated. The following is preferred.

【0029】次に、製氷装置の運転制御について、下記
表1及び図4のタイムチャートに基づき説明する。下記
表1は運転モードにおける各弁の開閉状態等を示す。
Next, the operation control of the ice making device will be described with reference to the following Table 1 and the time chart of FIG. Table 1 below shows the open / close state of each valve in the operation mode.

【0030】[0030]

【表1】 上記表1に示すように、各製氷ユニット(A〜C)共に
製氷を行うとき(図4の時刻to )には、各電動膨張弁
(3a〜3c)を適正な冷媒の過熱度を保持する開度に
開き、各バイパス開閉弁(11a〜11c)をいずれも
閉じ、各水量制御弁(21a〜21c)、各ガス開閉弁
(6a〜6c)及び液開閉弁(5)をいずれも開いて、
凝縮器(2)で凝縮された液冷媒を各電動膨張弁(3a
〜3c)で絞り、各熱交換器(4a〜4c)で蒸発さ
せ、合流後、圧縮機(1)に戻すよう循環させる。
[Table 1] As shown in Table 1, when making ice with both ice making units (A to C) (at time to in FIG. 4), each electric expansion valve (3a to 3c) holds an appropriate degree of superheat of the refrigerant. Open to the degree of opening, close each of the bypass on-off valves (11a to 11c), open each of the water volume control valves (21a to 21c), each of the gas on-off valves (6a to 6c), and all of the liquid on-off valves (5). ,
The liquid refrigerant condensed in the condenser (2) is supplied to each electric expansion valve (3a
To 3c), evaporate in each of the heat exchangers (4a to 4c), and after merging, circulate back to the compressor (1).

【0031】次に、図1のように各熱交換器(4a〜4
c)を冷媒回路(9)内に並列に配置した場合、凝縮器
(2)に近い第1製氷ユニット(A)側が能力が大きい
ので製氷が先に行われることになる。そこで、第1製氷
ユニット(A)側から順に氷化物(45,…)を剥離し
ていくことになるが、このとき(図4の時刻t1 )、液
開閉弁(5)を閉じ、第1ガス開閉弁(6a)を閉じ
て、第1バイパス開閉弁(11a)を開くとともに、第
1電動膨張弁(3a)を全開にする。また、水等への暖
熱の持出しを抑制すべく、第1水量制御弁(21a)を
低開度に絞り、第2,第3製氷ユニット(B,C)の各
(21b,21c)はそれまでの状態と同様に制御す
る。すなわち、バイパス路(10)を介して第1熱交換
器(4a)に高温の液冷媒を流通させ、氷化物(45,
…)との熱交換により、第1熱交換器(4a)の各伝熱
管(41,…)表面に生成された氷化物(45,…)を
剥離させる。また、第1熱交換器(4a)で氷化物(4
5,…)との熱交換により過冷却された低温の液冷媒を
第1電動膨張弁(3a)及び第1逆止弁(7a)を介し
て第2,第3電動膨張弁(3b,3c)に送り込んで、
ここで減圧された冷媒を第2,第3熱交換器(4b,4
c)で蒸発させ、効率の高い製氷を行うようにしてい
る。
Next, as shown in FIG. 1, each heat exchanger (4a to 4a)
When c) is arranged in parallel in the refrigerant circuit (9), the first ice making unit (A) near the condenser (2) has a large capacity, so that ice making is performed first. Then, the iced substances (45,...) Are sequentially peeled from the first ice making unit (A) side. At this time (time t1 in FIG. 4), the liquid on-off valve (5) is closed and the first The gas on-off valve (6a) is closed, the first bypass on-off valve (11a) is opened, and the first electric expansion valve (3a) is fully opened. Further, in order to suppress the release of warm heat to water or the like, the first water amount control valve (21a) is throttled to a low opening, and the valves (21b, 21c) of the second and third ice making units (B, C) are reduced. Is controlled in the same manner as before. That is, the high-temperature liquid refrigerant flows through the first heat exchanger (4a) via the bypass path (10), and
..), The hydrated substances (45,...) Generated on the surfaces of the heat transfer tubes (41,...) Of the first heat exchanger (4a) are peeled off. In the first heat exchanger (4a), the hydrate (4
, 5) through the first motor-operated expansion valve (3a) and the first check valve (7a) to supply the second and third motorized expansion valves (3b, 3c). )
Here, the decompressed refrigerant is supplied to the second and third heat exchangers (4b, 4b).
Evaporation is performed in c) to make ice making with high efficiency.

【0032】さらに、第1製氷ユニット(A)における
氷化物(45,…)の剥離が終了し、第2製氷ユニット
(B)での製氷が完了すると(図4の時刻t2 )、液開
閉弁(5)は閉じたままで、第1バイパス開閉弁(11
a)を閉じ第1ガス開閉弁(6a)を開き第1電動膨張
弁(3a)を適度な開度に制御するとともに、第2バイ
パス開閉弁(11b)を開き第2電動膨張弁(3b)を
全開にし、かつ第2ガス開閉弁(6b)を閉じる。な
お、第3製氷ユニット(C)の各弁はそれまでの状態と
同様に制御する。また、第1水量制御弁(21a)を開
き、第2水量制御弁(21b)を絞る。これにより、上
述の第1熱交換器(4a)内で氷化物(45,…)を剥
離した場合と同様に第熱交換器(4b)内における氷
化物(45,…)を剥離する一方、第1熱交換器(4
a)で先に生成された氷化物(45,…)を蓄氷槽に輸
送した後再び製氷を行い、第3熱交換器(4c)での製
氷運転を続行する。
Further, when the peeling of the iced substances (45,...) In the first ice making unit (A) is completed and the ice making in the second ice making unit (B) is completed (time t2 in FIG. 4), the liquid on-off valve is opened. (5) remains closed and the first bypass on-off valve (11
a) is closed and the first gas on-off valve (6a) is opened to control the first electric expansion valve (3a) to an appropriate opening degree, and the second bypass on-off valve (11b) is opened to open the second electric expansion valve (3b). Is fully opened, and the second gas on-off valve (6b) is closed. The valves of the third ice making unit (C) are controlled in the same manner as before. Further, the first water flow control valve (21a) is opened, and the second water flow control valve (21b) is throttled. Thereby , the iced substances (45,...) Are peeled off in the first heat exchanger (4a).
In the same manner as when separated , the iced substances (45,...) In the second heat exchanger (4b) are peeled off, while the first heat exchanger (4b) is separated.
After the iced substance (45,...) previously generated in a) is transported to the ice storage tank, ice making is performed again, and the ice making operation in the third heat exchanger (4c) is continued.

【0033】また、第2製氷ユニット(B)における製
氷が完了すると(図4の時刻t3 )、上述と同様に各弁
の開閉の切換を行って、第3製氷ユニット(C)におけ
る氷化物(45,…)の剥離と、第1,第2製氷ユニッ
ト(A,B)における製氷とを行う。
When the ice making in the second ice making unit (B) is completed (time t3 in FIG. 4), the opening and closing of each valve is switched in the same manner as described above, so that the icing material (C) in the third ice making unit (C) is changed. 45), and ice making in the first and second ice making units (A, B).

【0034】そして、第3製氷ユニット(C)における
氷化物(45,…)の剥離が終了すると(図4の時刻t
4 )、再び全ユニット(A〜C)における同時製氷を行
って、その後、第1ユニット(A)から氷化物(45,
…)の剥離を上記と同様の手順で行って、次第に蓄氷槽
に氷化物を蓄えていく。
When the peeling of the iced substances (45,...) In the third ice making unit (C) is completed (time t in FIG. 4).
4) Simultaneous ice making in all the units (A to C) is performed again, and then the iced products (45,
…) Is performed in the same procedure as described above, and the iced material is gradually stored in the ice storage tank.

【0035】上記制御により、請求項の発明にいう剥
離−製氷同時運転制御手段(102)が構成されてい
る。
The above control constitutes the simultaneous peeling-ice making operation control means (102) according to the second aspect of the present invention.

【0036】なお、上記制御において、製氷の完了時期
は、冷媒の蒸発温度から検知するようにしている。
In the above control, the completion time of ice making is detected from the evaporation temperature of the refrigerant.

【0037】したがって、上記実施例では、水循環路
(20)に配置された熱交換器(4)において、水循環
路(20)を流通する水等が冷媒との熱交換により冷却
されて熱交換器(4)の製氷部である伝熱管(41)の
各底付き穴(44,…)内に氷化物(45,…)が生成
される。そのとき、各底付き穴(41)の軸線は少なく
とも水平線よりも上向きに形成されているので、生成さ
れた氷化物(45,…)が加熱されて伝熱管(41)と
の境界部が融解すると、氷化物(45,…)の浮力によ
り自然に伝熱管(41)から遊離する。したがって、こ
の剥離された氷化物(45,…)を出口側に輸送させる
ことにより、粒状の氷化物(45,…)を利用すること
ができる。
Therefore, in the above embodiment, in the heat exchanger (4) disposed in the water circulation path (20), the water and the like flowing through the water circulation path (20) are cooled by heat exchange with the refrigerant, and the heat exchanger (4) is cooled. Iced products (45,...) Are generated in the bottom holes (44,...) Of the heat transfer tube (41), which is the ice making unit of (4). At this time, since the axis of each bottomed hole (41) is formed at least above the horizontal line, the generated hydrate (45,...) Is heated, and the boundary with the heat transfer tube (41) is melted. Then, the frost (45,...) Is naturally released from the heat transfer tube (41) by buoyancy. Therefore, by transporting the separated iced substances (45,...) To the outlet side, the granular iced substances (45,...) Can be used.

【0038】その場合、上記従来の公報のもののよう
に、熱交換器で過冷却して、水循環路の下流側で過冷却
を解消して氷化物を生成するようにすると、過冷却状態
にある水等の内部には氷核になる塵埃,微小な氷片等が
存在するので、少しの条件変化等によって熱交換器の伝
熱管で凍結する虞れが極めて強く、安定した製氷を行う
のは困難である。それに対し、本発明では、水等を過冷
却するのではなく、熱交換器(4)の伝熱管(41)の
各底付き穴(44,…)内に直接氷化物(45,…)を
生成させるので、熱交換器(4)の伝熱管(41)内部
が凍結する虞れはほとんどない。よって、安定して連続
的に流動性のあるダイナミックアイスを作ることができ
るのである。
In this case, as in the above-mentioned conventional publication, if supercooling is performed by a heat exchanger and supercooling is eliminated at the downstream side of the water circulation path to generate iced products, the supercooling state is established. Dust and tiny ice chips, which become ice nuclei, are present inside water, etc., so there is a strong possibility that freezing will occur in the heat exchanger tubes of the heat exchanger due to slight changes in conditions. Have difficulty. On the other hand, in the present invention, instead of supercooling water or the like, iced products (45,...) Are directly placed in each bottomed hole (44,...) Of the heat transfer tube (41) of the heat exchanger (4). Since it is generated, there is almost no possibility that the inside of the heat transfer tube (41) of the heat exchanger (4) is frozen. Therefore, it is possible to stably and continuously produce dynamic ice having fluidity.

【0039】また、熱交換器(4)の伝熱管(41)の
各底付き穴(44,…)の径を5mm以下にした場合、米
粒大の氷化物(45,…)が生成される。したがって、
大きな氷化物のように、水循環路(20)内で水等の表
面に浮かび上がって輸送が困難になるほど浮力は大きく
なく、適度の浮力と氷化物(45,…)の輸送性能とが
得られることになる。
When the diameter of each bottomed hole (44,...) Of the heat transfer tube (41) of the heat exchanger (4) is set to 5 mm or less, flakes (45,...) Of rice grains are generated. . Therefore,
Like a large iced substance, the buoyancy is not so great that it is difficult to transport it by floating on the surface of water or the like in the water circulation path (20), and a moderate buoyancy and the transport performance of the iced substance (45,...) Can be obtained. Will be.

【0040】特に、上記実施例のように、熱交換器
(4)の伝熱管(41)を内筒部材(42)と外筒部材
(43)とで形成し、内筒部材(42)の方を熱伝導率
の高い材料で(上記実施例では銅で)構成した場合、製
氷時には底付き穴(44,…)の底部から氷化するの
で、コップ底状の氷化物(45,…)が得られるととも
に、剥離時にも底部の境界面から融解していくので剥離
が容易となる。
In particular, as in the above embodiment, the heat transfer tube (41) of the heat exchanger (4) is formed by the inner cylinder member (42) and the outer cylinder member (43). When the other side is made of a material having a high thermal conductivity (copper in the above embodiment), ice is formed from the bottom of the bottomed hole (44,...) At the time of ice making, so that the iced substance (45,. Is obtained, and also at the time of peeling, it is melted from the bottom boundary surface, so that peeling becomes easy.

【0041】また、熱交換器(4)の伝熱管(41)の
形状は上記実施例のような円筒状に限定されるものでは
なく、例えば皿状のものとし、上方に開口面を有する多
数の底付き穴を設けてもよい。ただし、上記実施例のよ
うに円筒状とすることにより、伝熱管(41)に多数の
底付き穴(44,…)を設けることができ、装置の小形
化を図ることができる。
Further, the shape of the heat transfer tube (41) of the heat exchanger (4) is not limited to the cylindrical shape as in the above embodiment, but may be, for example, a dish shape and may have a large number of openings having an opening surface above. May be provided with a bottomed hole. However, by forming the heat transfer tube (41) into a cylindrical shape as in the above embodiment, a number of bottomed holes (44,...) Can be provided in the heat transfer tube (41), and the size of the device can be reduced.

【0042】さらに、その場合、伝熱管(41)を内筒
部材(42)と外筒部材(43)とで構成し、外筒部材
(43)の方を熱膨張率が同等又は高い材料で形成した
場合、製氷時に伝熱管(41)が冷却されたときにも、
内筒部材(42)−外筒部材(43)間に隙間ができな
いので、隙間が凍結して製氷性能が悪化するのを有効に
防止することができる。
Further, in this case, the heat transfer tube (41) is composed of an inner tube member (42) and an outer tube member (43), and the outer tube member (43) is made of a material having a thermal expansion coefficient equal to or higher than that of the outer tube member (43). When the heat transfer tube (41) is cooled during ice making,
Since there is no gap between the inner cylinder member (42) and the outer cylinder member (43), it is possible to effectively prevent the gap from freezing and deteriorating the ice making performance.

【0043】本発明の冷却手段及び加熱手段は、上記実
施例のような冷媒回路(9)の冷媒を利用するものに限
定されるものではなく、例えばサーモモジュールで加
熱,冷却したり、電気ヒータで加熱することも可能であ
る。ただし、上記実施例のごとく、冷媒回路(9)の冷
媒を利用して水等の冷却、加熱を行うようにした場合、
冷媒の冷熱,暖熱の有効利用、例えば空気調和装置の蓄
熱に利用して運転効率を高める等の利用が可能になる。
The cooling means and the heating means of the present invention are not limited to those using the refrigerant of the refrigerant circuit (9) as in the above-mentioned embodiment. For example, heating and cooling by a thermo module, electric heaters, etc. It is also possible to heat with. However, as in the above embodiment, when cooling or heating water or the like is performed using the refrigerant in the refrigerant circuit (9),
This makes it possible to effectively use the cold heat and the warm heat of the refrigerant, for example, to use the heat storage of the air conditioner to increase the operation efficiency.

【0044】特に、複数の熱交換器(4a〜4c)、経
路切換手段(101a〜101c)を配置し、剥離−製
氷同時運転手段により、一方の熱交換器(例えば4a)
で凝縮器(2)から直接流通する液冷媒との熱交換によ
り氷化物(45,…)の剥離を行いながら、その熱交換
で過冷却された低温の液冷媒を利用して他方の熱交換器
(例えば4b,4c)で製氷を行うようにした場合、低
温状態で製氷を行うことができ、製氷効率の向上を図る
ことができる。
In particular, a plurality of heat exchangers (4a to 4c) and route switching means (101a to 101c) are arranged, and one of the heat exchangers (for example, 4a) is operated by the simultaneous peeling-ice making means.
The liquefied refrigerant (45,...) Is separated by heat exchange with the liquid refrigerant flowing directly from the condenser (2), and the other heat exchange is performed using the low-temperature liquid refrigerant supercooled by the heat exchange. In the case where ice making is performed by a vessel (for example, 4b, 4c), ice making can be performed in a low temperature state, and ice making efficiency can be improved.

【0045】また、冷媒配管系統の構成は上記実施例に
限定されるものではなく、他の構成が可能である。例え
ば図5は、上記実施例の変形例を示し、各製氷ユニット
(A〜C)には、上記実施例と同様に、第1〜第3電動
膨張弁(3a〜3c)、第1〜第3熱交換器(4a〜4
c)、ガス開閉弁(6a〜6c)が配置されているとと
もに、各電動膨張弁(3a〜3c)−凝縮器(2)間の
液管には、個別に液開閉弁(5a〜5c)が介設され、
この各液開閉弁(5a〜5c)−電動膨張弁(3a〜3
c)間の液管と、熱交換器(4a〜4c)−ガス開閉弁
(6a〜6c)間の配管とは、各々2つの逆止弁(12
a〜12c),(13a〜13c)を介してバイパス路
(10)により接続されている。なお、各熱交換器(4
a〜4c)の伝熱管(41,…)の構成は上記実施例と
同様である。
[0045] The configuration of the refrigerant piping system is not limited to the above embodiments, other configurations are possible. For example, FIG. 5 shows a modification of the above-described embodiment. Each of the ice making units (A to C) has first to third electric expansion valves (3a to 3c), 3 heat exchangers (4a-4
c), gas on / off valves (6a to 6c) are arranged, and liquid on / off valves (5a to 5c) are individually provided in the liquid pipes between the electric expansion valves (3a to 3c) and the condenser (2). Is interposed,
These liquid on-off valves (5a to 5c) -electric expansion valves (3a to 3)
c) and the pipe between the heat exchanger (4a-4c) and the gas on-off valve (6a-6c) are each provided with two check valves (12
a to 12c) and (13a to 13c) via a bypass (10). In addition, each heat exchanger (4
The configurations of the heat transfer tubes (41,...) of (a) to (4c) are the same as in the above embodiment.

【0046】そして、この冷媒回路(9)を利用して、
下記表2のように各運転モードによる製氷運転が行われ
る。なお、この剥離−製氷制御は、図4のタイムチャー
トと同様の手順である。
Then, utilizing this refrigerant circuit (9),
The ice making operation in each operation mode is performed as shown in Table 2 below. Note that this peeling-ice making control is the same procedure as the time chart of FIG.

【0047】[0047]

【表2】 すなわち、全製氷ユニット(A〜C)で製氷を行うとき
には、各電動膨張弁(3a〜3c)の開度を適度に制御
して、各液開閉弁(5a〜5c)、ガス開閉弁(6a〜
6c)及び水量制御弁(21a〜21c)をいずれも開
き、各熱交換器(4a〜4c)の伝熱管(41,…)内
で冷媒を蒸発させることにより、水等を冷却して製氷を
行う。
[Table 2] That is, when ice is made in all the ice making units (A to C), the opening degree of each of the electric expansion valves (3a to 3c) is controlled appropriately, and each of the liquid on / off valves (5a to 5c) and the gas on / off valve (6a). ~
6c) and the water amount control valves (21a to 21c) are both opened to evaporate the refrigerant in the heat transfer tubes (41,...) Of the heat exchangers (4a to 4c), thereby cooling water and the like to make ice. Do.

【0048】また、第1製氷ユニット(A)で氷化物の
剥離を行い、第2,第3ユニット(B,C)で製氷を行
うときには、第1液開閉弁(5a)は開いたままで第1
ガス開閉弁(6a)を閉じ、第1電動膨張弁(3a)を
全開にすることで、液冷媒を凝縮器(2)から結果的に
減圧機構を介さず直接第1熱交換器(4a)に流通さ
せ、氷化物(45,…)を剥離する。一方、第2,第3
液開閉弁(5b,5c)を閉じることにより、バイパス
路(10)を介して、第1熱交換器(4a)で過冷却さ
れた液冷媒を第2,第3電動膨張弁(3b,3c)に流
通させ、第2,第3熱交換器(4b,4c)で製氷を行
う。
When the iced product is separated in the first ice making unit (A) and ice is made in the second and third units (B, C), the first liquid on / off valve (5a) is kept open and the first liquid on / off valve (5a) is kept open. 1
By closing the gas on-off valve (6a) and fully opening the first electric expansion valve (3a), the liquid refrigerant is condensed from the condenser (2) and consequently directly to the first heat exchanger (4a) without going through the pressure reducing mechanism. To separate the iced substances (45,...). On the other hand, the second and third
By closing the liquid on-off valves (5b, 5c), the liquid refrigerant supercooled in the first heat exchanger (4a) is passed through the bypass passage (10) to the second and third electric expansion valves (3b, 3c). ) And make ice in the second and third heat exchangers (4b, 4c).

【0049】また、第2製氷ユニット(B)で氷化物
(45,…)の剥離を行うときには、第2電動膨張弁
(3b)を全開に、第2ガス開閉弁(6b)を閉じるこ
とで、第2熱交換器(4b)で氷化物(45,…)の剥
離を行う一方、第1,第3電動膨張弁(3a,3c)の
開度を適度に調節し、第1,第3液開閉弁(5a,5
c)を閉じ第1,第3ガス開閉弁(6a,6c)を開く
ことで、上記と同様に第1,第3熱交換器(4a,4
c)における製氷を行う。
When the frost (45,...) Is separated in the second ice making unit (B), the second electric expansion valve (3b) is fully opened and the second gas on-off valve (6b) is closed. , While the second heat exchanger (4b) separates the iced substances (45,...), The opening degrees of the first and third electric expansion valves (3a, 3c) are adjusted appropriately, and the first and third electric expansion valves (3a, 3c) are adjusted. Liquid on-off valve (5a, 5
c) is closed and the first and third gas on-off valves (6a, 6c) are opened, so that the first and third heat exchangers (4a, 4
Perform ice making in c).

【0050】なお、第3製氷ユニット(C)で氷化物
(45,…)の剥離を行うときも、上述と同様であるの
で、説明は省略する。また、水量制御弁(21a〜21
c)は、氷化物(45,…)の剥離を行うときのみ絞
り、製氷時には開いておく。
When the iced products (45,...) Are peeled off in the third ice making unit (C), it is the same as described above, and the description is omitted. In addition, the water amount control valves (21a-21)
c) is squeezed only when peeling iced substances (45,...), and is opened during ice making.

【0051】したがって、上記変形例においても、上記
実施例と同様に、複数の熱交換器(4a〜4c)を利用
して、一方の熱交換器(例えば4a)で氷化物(45,
…)を剥離しながら、他方の熱交換器(例えば4b,4
c)で製氷を行うことができ、上記実施例と同様の効果
を得ることができる。
Therefore, in the above-mentioned modification, as in the above-described embodiment, a plurality of heat exchangers (4a to 4c) are used and one of the heat exchangers (for example, 4a) is used to form the hydrated material (45, 4a).
..) While removing the other heat exchanger (eg, 4b, 4b).
Ice making can be performed in c), and the same effect as in the above embodiment can be obtained.

【0052】なお、上記実施例では、水循環路(20)
に流通する液体は水だけでなく、ブライン等の水溶液を
使用することも可能である。
In the above embodiment, the water circulation path (20)
As the liquid flowing through the water, not only water but also an aqueous solution such as brine can be used.

【0053】[0053]

【発明の効果】以上説明したように、請求項1の発明に
よれば、水又は水溶液が流通する流通路に熱交換器を配
置し、熱交換器で水等を氷化させて輸送するようにした
製氷装置の構成として、熱交換器の製氷部に水等に浸漬
される多数の上向きの底付き穴を設け、この各底付き穴
で水等を冷却して底部に氷化物を生成するとともに、こ
の氷化物を加熱して底付き穴から剥離するようにしたの
で、水等を過冷却することなく連続的な製氷を安定して
行うことができる。
As described above, according to the first aspect of the present invention, the heat exchanger is disposed in the flow passage through which the water or the aqueous solution flows, and the water or the like is transported by icing the water or the like with the heat exchanger. As the configuration of the ice making device, a large number of upward bottomed holes immersed in water or the like are provided in the ice making section of the heat exchanger, and the water or the like is cooled in each of the bottomed holes to produce iced material at the bottom. At the same time, the iced material is heated to be separated from the bottom hole, so that continuous ice making can be stably performed without supercooling water or the like.

【0054】また、熱交換器の製氷部を略円筒状に形成
し、各底付き穴を円筒の外周面側に 設けたので、製氷部
に多くの底付き穴を設けることができ、よって、装置の
小形化を図ることができる。
The ice making part of the heat exchanger is formed in a substantially cylindrical shape.
Since the bottomed holes are provided on the outer peripheral side of the cylinder,
Many bottom holes can be provided in the
The size can be reduced.

【0055】さらに、製氷部を底付き穴の底部を形成す
る内筒部材と内壁部を形成する外筒部材とで構成し、外
筒部材の方を内筒部材よりも熱膨張率が同等又は高い材
料で形成したので、製氷時、冷却されたときに両部材が
密着し、隙間に侵入した水等の凍結による製氷機能の悪
化を防止することができる。
Further, the ice making section is formed with the bottom of the hole with the bottom.
And an outer cylinder member forming an inner wall portion.
A material with the same or higher thermal expansion coefficient as the inner cylinder member than the inner cylinder member
Since both parts were formed during ice making and cooling,
Poor ice making function due to freezing of water etc.
Can be prevented.

【0056】請求項2の発明によれば、上述した請求項
1記載の発明に係る効果と同様に、底付き穴に生成した
氷化物を剥離することで連続的な製氷を安定して行うこ
とができる。また、一部の熱交換器で冷媒との熱交換に
より氷化物を剥離し、この熱交換で冷却された冷媒を他
の熱交換器に減圧機構を介して流通させて、製氷するよ
うにしたので、熱のロスを低減しながら、製氷と氷化物
の剥離とを同時に行うことができ、よって、製氷効率の
向上を図ることができる。
According to the invention of claim 2, the above-mentioned claim is provided.
In the same manner as the effect according to the invention described in item 1, the hole is formed in the bottom hole.
Continuous ice making can be performed stably by peeling off iced material.
Can be. In addition, some heat exchangers are used for heat exchange with refrigerant.
More iced material is separated, and the refrigerant cooled by this heat exchange is removed
Through a decompression mechanism to make ice.
Ice making and icing while reducing heat loss
Can be performed at the same time, thus improving ice making efficiency.
Improvement can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に係る製氷装置の配管系統図である。FIG. 1 is a piping diagram of an ice making device according to an embodiment.

【図2】熱交換器の伝熱管の外観構造を示す斜視図であ
る。
FIG. 2 is a perspective view showing an external structure of a heat transfer tube of the heat exchanger.

【図3】熱交換器の伝熱管の縦断面構造を示す部分断面
図である。
FIG. 3 is a partial sectional view showing a vertical sectional structure of a heat transfer tube of the heat exchanger.

【図4】第1〜第3製氷ユニットの運転状態の変化を示
すタイムチャート図である。
FIG. 4 is a time chart illustrating a change in an operation state of the first to third ice making units.

【図5】実施例の変形例に係る製氷装置の配管系統図で
ある。
FIG. 5 is a piping diagram of an ice making device according to a modification of the embodiment.

【符号の説明】[Explanation of symbols]

2 凝縮器 3 電動膨張弁(減圧機構) 4 熱交換器 41 伝熱管(製氷部) 42 内筒部材 43 外筒部材 44 底付き穴 45 氷化物 101 経路切換手段 2 Condenser 3 Electric expansion valve (decompression mechanism) 4 Heat exchanger 41 Heat transfer tube (ice making part) 42 Inner cylinder member 43 Outer cylinder member 44 Bottom hole 45 Iced material 101 Route switching means

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水又は水溶液が流通する水流通路(2
0)を備え、該水流通路(20)内に配設された熱交換
器(4)の製氷部(41)において水又は水溶液を氷化
した後、該氷を輸送するようにした製氷装置であって、 上記熱交換器(4)の製氷部(41)は、鉛直方向に延
びる略円筒状に形成されていると共に、その外周面側に
水又は水溶液中に浸漬される多数の底付き穴(44,
…)を有している一方、該製氷部(41)は、各底付き
穴(44,…)の底部を形成する内筒部材(42)と、
各底付き穴(44,…)の軸線が少なくとも該穴の開放
側に向って水平方向よりも上向きに形成されるように該
各底付き穴(44,…)の内壁部を形成する外筒部材
(43)とで構成されており、 上記 各底付き穴(44,…)で水又は水溶液を氷化する
よう冷却する冷却手段と、該冷却手段により生成された
氷化物(45,…)を加熱する加熱手段とを備えてい
て、 上記外筒部材(43)は、熱膨張率が内筒部材(42)
の熱膨張率に対して同等又は高い材料で形成されている
ことを特徴とする製氷装置。
1. A water flow passage (2) through which water or an aqueous solution flows.
0) , and water or an aqueous solution is frozen in the ice making section (41) of the heat exchanger (4) disposed in the water flow passage (20).
And then transporting the ice, wherein the ice making section (41) of the heat exchanger (4) extends in a vertical direction.
And a plurality of bottomed holes (44, 44) immersed in water or an aqueous solution.
…)), While the ice making part (41) has
An inner cylinder member (42) forming the bottom of the hole (44, ...);
The axis of each bottomed hole (44,...) Is at least open to the hole
Side so that it is formed more upward than horizontal.
An outer cylindrical member forming an inner wall portion of each bottomed hole (44,...)
(43) and is configured de, a cooling means for cooling to Korika water or an aqueous solution in the above bottomed holes (44, ...), the cooling means ice product produced by (45, ...) and Tei and a heating means for heating
Te, the outer tube member (43) has a thermal expansion coefficient inner cylindrical member (42)
An ice making device characterized by being formed of a material having the same or higher thermal expansion coefficient .
【請求項2】 水又は水溶液が流通する水流通路(2
0)を備え、該水流通路(20)内に配設された熱交換
器(4)の製氷部(41)において水又は水溶液を氷化
した後、該氷を輸送するようにした製氷装置であって、 上記熱交換器(4a〜4c)は複数個配置され、各熱交
換器(4a〜4c)の製氷部(41)は、水又は水溶液
中に浸漬される多数の底付き穴(44,…)を有し、該
各底付き穴(44,…)の軸線は少なくとも該穴の開放
側に向って水平方向よりも上向きに形成されており、 上記各熱交換器(4a〜4c)に対応して設けられた複
数個の減圧機構(3a〜3c)と、 上記各熱交換器(4a〜4c)毎に設けられ、冷媒の流
通方向を、凝縮器(2)から減圧機構(3a〜3c)を
介して熱交換器(4a〜4c)に流通させる経路と凝縮
器(2)から熱交換器(4a〜4c)に直接流通させる
経路とに切換え る経路切換手段(101a〜101c)
と、 一部の熱交換器に対して凝縮器(2)から冷媒を直接流
通させて底付き穴(44,…)から氷化物を剥離すると
ともに、他の熱交換器に対して上記一部の熱交換器で冷
却された液冷媒を減圧機構を介して流通させて底付き穴
(44,…)で水又は水溶液を氷化させるよう各経路切
換手段(101a〜101c)を制御する剥離−製氷同
時運転制御手段とを備えていることを特徴とする製氷装
置。
2. A water flow passage (2 ) through which water or an aqueous solution flows.
0) and heat exchange disposed in the water flow passage (20).
Water or aqueous solution is frozen in the ice making part (41) of the vessel (4)
And then transporting the ice, wherein a plurality of the heat exchangers (4a to 4c) are arranged and each heat exchanger
The ice making part (41) of the exchangers (4a to 4c) is made of water or an aqueous solution.
Having a number of bottomed holes (44, ...) immersed therein.
The axis of each bottomed hole (44, ...) is at least the opening of the hole
The heat exchangers (4a to 4c) are provided so as to face upward from the horizontal direction.
A plurality of pressure reducing mechanisms (3a to 3c) and a plurality of pressure reducing mechanisms (3a to 3c) are provided for each of the heat exchangers (4a to 4c).
From the condenser (2) to the pressure reducing mechanism (3a to 3c)
Through which heat is passed through heat exchangers (4a-4c) and condensation
Flow directly from the heat exchanger (4a to 4c) from the heat exchanger (2)
Switching Ru path switching means and the path (101 a to 101 c)
And the refrigerant flows directly from the condenser (2) to some heat exchangers.
Through the bottom holes (44, ...)
In both cases, the other heat exchangers are cooled by some of the above heat exchangers.
Refrigerated liquid refrigerant is circulated through the pressure reducing mechanism,
(44, ...) cut each path to make water or aqueous solution ice
To control the changing means (101a to 101c)
Ice making device, comprising:
Place.
JP3335051A 1991-12-18 1991-12-18 Ice making equipment Expired - Fee Related JP2630143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3335051A JP2630143B2 (en) 1991-12-18 1991-12-18 Ice making equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3335051A JP2630143B2 (en) 1991-12-18 1991-12-18 Ice making equipment

Publications (2)

Publication Number Publication Date
JPH05164367A JPH05164367A (en) 1993-06-29
JP2630143B2 true JP2630143B2 (en) 1997-07-16

Family

ID=18284199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3335051A Expired - Fee Related JP2630143B2 (en) 1991-12-18 1991-12-18 Ice making equipment

Country Status (1)

Country Link
JP (1) JP2630143B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4063436B2 (en) * 1999-02-08 2008-03-19 株式会社大気社 Ice making equipment
EP1684035A3 (en) * 2005-01-24 2008-07-16 Franz Haslinger Apparatus for ice thermal storage and direct cooling

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103678U (en) * 1982-01-07 1983-07-14 トヨタ自動車株式会社 Evaporator structure of ice storage tank for air conditioning

Also Published As

Publication number Publication date
JPH05164367A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
US4565070A (en) Apparatus and method for defrosting a heat exchanger in a refrigeration circuit
JPH05502934A (en) Simple hot gas defrosting refrigeration system
US20110271703A1 (en) Refrigerator
KR20030029882A (en) Heat pump
JPH09318206A (en) Heat pump type air conditioner
JPH11173711A (en) Dual refrigerator
JP2630143B2 (en) Ice making equipment
JP6912673B2 (en) Defrost system
JP2003202135A (en) Regenerative air-conditioning device
JP2946889B2 (en) Ice making equipment
JP2727754B2 (en) Ice making equipment
JP2982742B2 (en) Ice making equipment
JPH0561539B2 (en)
JP3102042B2 (en) Ice making equipment
JP2508240B2 (en) Ice heat storage device and ice heat storage type air conditioner equipped with the ice heat storage device
JPH0438178Y2 (en)
JP2005104087A (en) Heat storage type mold cooling system
JPH1047822A (en) Ice heat storage device
JPH06213525A (en) Ice heat accumulator and air conditioner using the same
JPH07117302B2 (en) Ice heat storage type air conditioner
JP2000055516A (en) Ice heat storage device
JP2005134095A (en) Device for preparing low-temperature liquid including ice
JPH04263776A (en) Unit cooler
JPH04335958A (en) Refrigerating apparatus using heat pump
JPS6367631B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970304

LAPS Cancellation because of no payment of annual fees