JP3102042B2 - Ice making equipment - Google Patents

Ice making equipment

Info

Publication number
JP3102042B2
JP3102042B2 JP03021584A JP2158491A JP3102042B2 JP 3102042 B2 JP3102042 B2 JP 3102042B2 JP 03021584 A JP03021584 A JP 03021584A JP 2158491 A JP2158491 A JP 2158491A JP 3102042 B2 JP3102042 B2 JP 3102042B2
Authority
JP
Japan
Prior art keywords
water
aqueous solution
section
refrigerant
supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03021584A
Other languages
Japanese (ja)
Other versions
JPH04240367A (en
Inventor
弘二 松岡
功 近藤
伸二 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP03021584A priority Critical patent/JP3102042B2/en
Publication of JPH04240367A publication Critical patent/JPH04240367A/en
Application granted granted Critical
Publication of JP3102042B2 publication Critical patent/JP3102042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、蓄氷槽の水又は水溶液
を循環させて過冷却したのちその過冷却状態を再冷却に
より解消させてスラリー状の氷化物にするようにした製
氷装置に関し、特に過冷却解消部の冷却性能に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice making apparatus in which water or an aqueous solution in an ice storage tank is circulated and supercooled, and then the supercooled state is eliminated by recooling to produce slurry ice. In particular, it relates to the cooling performance of the supercooling elimination section.

【0002】従来より、冷却装置に接続された熱交換器
と蓄氷槽との間で蓄氷槽の水を循環させる水循環回路を
設け、熱交換器により蓄氷槽の水をスラリー状の氷化物
にするようにした製氷装置として、例えば特開昭63−
217171号公報に開示されるごとく、水循環路の出
口側を上流側で下方に向かいかつ出口端が蓄氷槽の水面
より一定高さだけ上方で開口するように形成された傾斜
樋とし、熱交換器をこの樋間に介設して、水循環路で熱
交換器により過冷却された水を樋の出口で過冷却状態を
解消させてスラリー状に氷化するとともに、この氷化物
を蓄氷槽に落下させるものは公知の技術である。また、
実開平1−112345号公報に開示されるごとく、邪
魔板及び傾斜樋を設置して、熱交換器で過冷却された水
を大気に放出して邪魔板に衝突させ、水の過冷却状態を
解消させて水を氷化させ、樋を介して蓄氷槽内に落下さ
せるものも公知の技術である。
Conventionally, a water circulation circuit for circulating water in an ice storage tank between a heat exchanger connected to a cooling device and an ice storage tank has been provided, and the water in the ice storage tank is slurried by the heat exchanger. For example, as an ice making device that is made into a compound,
As disclosed in Japanese Patent No. 217171, an inclined gutter is formed so that the outlet side of the water circulation path is directed downward at the upstream side and the outlet end is opened at a certain height above the water surface of the ice storage tank. A vessel is interposed between the gutters, and the water supercooled by the heat exchanger in the water circulation path is released from the supercooled state at the outlet of the gutter to be turned into a slurry, and the iced material is stored in an ice storage tank. It is a known technique to drop it on the surface. Also,
As disclosed in Japanese Utility Model Laid-Open Publication No. 1-112345, a baffle plate and an inclined gutter are provided, and water supercooled by the heat exchanger is released into the atmosphere and collides with the baffle plate to reduce the supercooled state of water. It is also a well-known technique to dissolve the water to make the water ice and drop it into an ice storage tank via a gutter.

【0003】[0003]

【発明が解決しようとする課題】これら従来の技術で
は、樋を用いて落下により水又は水溶液を移送するた
め、機器の配置等の設計上の制約があった。これを解決
するものとして、出願人は特願平2−105952号に
おいて、蓄氷槽の水又は水溶液を循環させるための水循
環路の途中の管路に、再冷却による過冷却解消部を設
け、そのままスラリー状で水又は水溶液の氷化物を閉管
路内により蓄氷槽まで送ることを提案した。このスラリ
ー状の氷化物を沈降させずに流すには、ある程度の流速
が必要であり、管路内壁への氷の付着を防止するために
も、この流速は速いほうがよい。しかしながら、流速が
速いと過冷却解消部で水又は水溶液の温度が十分に下が
りきる前に流れ去る。これを防止するには、過冷却解消
部の温度を下げて、水又は水溶液との温度差を大きくし
て冷却能力を高くすること、または過冷却解消部の伝熱
面積を大きくして冷却能力を高くすることが考えられる
が、前者は過冷却解消部の冷却用に特に低温の冷熱源を
発生するための装置が必要となり、後者は装置が大容量
になる欠点がある。本発明はかかる点に鑑みてなされた
ものであり、その目的は、水又は水溶液の過冷却状態の
解消を小さな装置で効率良く行うことにある。
In these prior arts, since water or an aqueous solution is transferred by falling using a gutter, there are design restrictions such as arrangement of equipment. In order to solve this problem, the applicant has disclosed in Japanese Patent Application No. 2-1055952 a supercooling elimination unit for recooling in a pipe in the middle of a water circulation path for circulating water or an aqueous solution in an ice storage tank. It was proposed to send the iced water or aqueous solution in the form of a slurry to an ice storage tank through a closed conduit. A certain flow rate is required to flow the slurry-like iced matter without settling, and the flow rate should be high in order to prevent the adhesion of ice to the inner wall of the pipeline. However, when the flow velocity is high, the water or the aqueous solution flows away before the temperature of the water or aqueous solution is sufficiently decreased in the subcooling elimination section. To prevent this, lower the temperature of the subcooling elimination section and increase the temperature difference with water or aqueous solution to increase the cooling capacity, or increase the heat transfer area of the supercooling elimination section to increase the cooling capacity. However, the former requires a device for generating a low-temperature cooling source for cooling the subcooling elimination part, and the latter has a disadvantage that the device has a large capacity. The present invention has been made in view of such a point, and an object of the present invention is to efficiently eliminate a supercooled state of water or an aqueous solution with a small device.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
本発明の解決手段は、図1に示すように、水又は水溶液
のスラリー状の氷化物を貯溜するための蓄氷槽(5)
と、冷却装置(2)に接続され、水又は水溶液を過冷却
するための主熱交換器(22)と、上記主熱交換器(2
2)と蓄氷槽(5)とを接続する復管路(51B)内の
流路中に介設され、水又は水溶液の過冷却状態を解消さ
せてスラリー状の氷化物にするための過冷却解消部
(8)とを備えた製氷装置を前提とする。
To achieve the above object, the present invention provides an ice storage tank (5) for storing a slurry of ice or water or an aqueous solution as shown in FIG.
A main heat exchanger (22) connected to the cooling device (2) for supercooling water or an aqueous solution, and the main heat exchanger (2).
2) is provided in a flow path in a return line (51B) connecting the ice storage tank (5) to the ice storage tank (5) to remove a supercooled state of water or an aqueous solution to form a slurry-like hydrate. It is assumed that the ice making device includes a cooling canceling unit (8).

【0005】第1の解決手段は、図3〜図12に示すよ
うに、過冷却解消部(8)の構成として、復管路(51
B)の管内表面に対し外方に膨出する窪み部(83)を
形成して、この窪み部(83)内面を過冷却解消部
(8)の冷却伝熱面(81)としたものである。
As shown in FIGS. 3 to 12, a first solution is to use a return pipe (51) as a structure of a subcooling elimination section (8).
A concave portion (83) bulging outward from the inner surface of the tube of (B) is formed, and the inner surface of the concave portion (83) is used as a cooling heat transfer surface (81) of the subcooling eliminating portion (8). is there.

【0006】第2の解決手段は、図13〜図18に示す
ように、過冷却解消部(8)の冷却伝熱面(81)の周
りに設けられ、冷却伝熱面(81)付近での水又は水溶
液の流速を局所的に遅くするための障壁部(82)を備
えたものである。
As shown in FIGS. 13 to 18, a second solution is provided around the cooling heat transfer surface (81) of the subcooling elimination section (8), and in the vicinity of the cooling heat transfer surface (81). And a barrier (82) for locally reducing the flow rate of water or aqueous solution.

【0007】第3の解決手段は、図19〜図22に示す
ように、上記第1又は第2の解決手段に加えて、過冷却
解消部(8)に近接して設けられ、過冷却解消部(8)
で生じた氷化物の管壁への付着を解離させるよう復管路
(51B)を加熱する凍結防止部(9)とを備えたもの
である。
As shown in FIGS. 19 to 22, the third solving means is provided in close proximity to the supercooling elimination section (8) in addition to the first or second solving means, and Department (8)
And a freezing prevention unit (9) for heating the return pipe (51B) so as to dissociate the adhered icy matter generated on the pipe wall to the pipe wall.

【0008】第4の解決手段は、図2及び図23に示す
ように、上記第1又は第2の解決手段に加えて、冷却装
置(2)を、圧縮機(11),(21)、凝縮器(1
2)、減圧機構(23)及び蒸発器として作用する主熱
交換器(22)を順次接続してなる冷媒回路(1)を備
えた冷却装置(2)とし、過冷却解消部(8)は上記冷
媒回路(1)の冷媒との熱交換により過冷却状態の水又
は水溶液を冷却するものであり、冷媒回路(1)の液管
部(35)と過冷却解消部(8)の冷媒入口端(86)
との間を減圧部(C4)を介して接続するとともに、過
冷却解消部(8)の冷媒出口端(87)は冷媒回路
(1)の低圧部(25)に接続する構成としたものであ
る。
As shown in FIG. 2 and FIG. 23, a fourth solution means includes a cooling device (2) in addition to the first or second solution means, and a compressor (11), (21), Condenser (1
2) A cooling device (2) including a refrigerant circuit (1) in which a pressure reducing mechanism (23) and a main heat exchanger (22) acting as an evaporator are sequentially connected. The supercooled water or aqueous solution is cooled by heat exchange with the refrigerant of the refrigerant circuit (1), and the liquid inlet (35) of the refrigerant circuit (1) and the refrigerant inlet of the supercool elimination unit (8). End (86)
And the refrigerant outlet end (87) of the subcooling eliminating section (8) is connected to the low pressure section (25) of the refrigerant circuit (1). is there.

【0009】第5の解決手段は、図2及び図24に示す
ように、上記第3の解決手段に加えて、冷却装置(2)
を、圧縮機(11)、(21)、凝縮器(12)、減圧
機構(23)及び蒸発器として作用する主熱交換器(2
2)を順次接続してなる冷媒回路(1)を備えた冷却装
置(2)とし、過冷却解消部(8)は上記冷媒回路
(1)の冷媒との熱交換により過冷却状態の水又は水溶
液を冷却するものであり、凍結防止部(9)は上記冷媒
回路(1)の冷媒との熱交換により過冷却解消部(8)
に近接する管壁を加熱するものであり、凍結防止部
(9)の冷媒入口端(96)を冷媒回路(1)の液管部
(35)に接続し、過冷却解消部(8)の冷媒出口端
(87)を冷媒回路(1)の低圧部(25)に接続する
とともに、凍結防止部(9)の冷媒出口端(97)と過
冷却解消部(8)の冷媒入口端(86)との間は減圧部
(C4)を介して接続するものである。第6の解決手段
は、過冷却解消部(8)の構成として、復管路(51
B)の管内表面に対し外方に復管路(51B)内の水又
は水溶液が流通可能な滞留部(83)を形成して、この
滞留部(83)内面に過冷却解消部(8)の冷却伝熱面
(81)を設けたものである。
The fifth solution is, as shown in FIGS. 2 and 24, a cooling device (2) in addition to the third solution.
To the main heat exchanger (2) acting as compressors (11), (21), condenser (12), pressure reducing mechanism (23) and evaporator.
2) is a cooling device (2) including a refrigerant circuit (1) which is sequentially connected, and the supercooling elimination unit (8) is provided with water or supercooled water by heat exchange with the refrigerant in the refrigerant circuit (1). The antifreeze section (9) cools the aqueous solution, and the supercooling eliminating section (8) is formed by heat exchange with the refrigerant in the refrigerant circuit (1).
The refrigerant inlet end (96) of the anti-freezing part (9) is connected to the liquid pipe part (35) of the refrigerant circuit (1), and the supercooling elimination part (8) is heated. The refrigerant outlet end (87) is connected to the low pressure part (25) of the refrigerant circuit (1), and the refrigerant outlet end (97) of the freeze prevention part (9) and the refrigerant inlet end (86) of the subcooling elimination part (8). ) Is connected via a decompression unit (C4). Sixth solution
Is a return line (51) as a configuration of the supercooling elimination section (8).
Water or water in the return line (51B) outward to the inner surface of the tube of B)
Forms a retention part (83) through which the aqueous solution can flow, and
Cooling heat transfer surface of subcooling elimination section (8) on inner surface of stagnation section (83)
(81) is provided.

【0010】[0010]

【作用】以上の解決手段により、請求項1の発明では、
過冷却解消部(8)の窪み部(83)において、水又は
水溶液の流れが淀んで遅くなる、いわゆる準静止状態に
なる。冷却伝熱面を通して冷却するときには、水又は水
溶液は流れが速いと、温度が十分に下がる前に流れ去
る。しかし、本発明の過冷却解消部(8)の窪み部(8
3)においては、水又は水溶液の流速が遅くなるので、
窪み部(83)内面の冷却伝熱面(81)により、水又
は水溶液の温度も十分に下がるので、冷却能力は向上
し、過冷却の解消は効率よく行われる。また、水又は水
溶液全部の流速を遅くするものではないので、生成した
氷化物の流れが悪くなることによる復管路(51)内の
閉塞も生じない。なお、水又は水溶液全部を再冷却する
ことなく、水又は水溶液全部の過冷却状態を解消できる
のは、窪み部(83)において氷化物ができ、この氷化
物が核となるからである。
According to the first aspect of the present invention,
In the depression (83) of the supercooling elimination section (8), a so-called quasi-stationary state in which the flow of the water or the aqueous solution is stagnant and slows down. When cooling through the cooling heat transfer surface, the water or aqueous solution will flow away before the temperature drops sufficiently if the flow is fast. However, the depression (8) of the subcooling eliminating part (8) of the present invention.
In 3), since the flow rate of water or aqueous solution becomes slow,
The temperature of the water or the aqueous solution is sufficiently lowered by the cooling heat transfer surface (81) on the inner surface of the concave portion (83), so that the cooling capacity is improved and the supercooling is efficiently eliminated. Further, since the flow rate of the water or the aqueous solution is not reduced, the flow of the produced icy substance does not deteriorate, so that the return pipe (51) is not blocked. The reason why the supercooled state of the whole water or the aqueous solution can be eliminated without recooling the whole of the water or the aqueous solution is that iced material is formed in the depression (83), and this iced material becomes a core.

【0011】請求項2の発明では、過冷却解消部(8)
の周りの障壁部(82)が水又は水溶液の流れを妨げる
ので、過冷却解消部(8)の冷却伝熱面(81)に接す
る所で水又は水溶液の流速が遅くなる。また、水又は水
溶液の全体の流速を遅くするものではないので、請求項
1の発明と同様に、冷却能力は向上し、過冷却の解消は
効率よく行われ、氷化物の流れが悪くなることによる復
管路(51B)内の閉塞も生じない。
According to the second aspect of the present invention, the supercooling eliminating section (8)
Of the water or the aqueous solution, the flow rate of the water or the aqueous solution becomes slower at the place where it contacts the cooling heat transfer surface (81) of the subcooling eliminating section (8). Further, since the overall flow rate of water or the aqueous solution is not reduced, the cooling capacity is improved, the supercooling is efficiently performed, and the flow of the icy substance is deteriorated, as in the first aspect of the present invention. Does not occur in the return line (51B).

【0012】請求項3の発明では、上記請求項1又は請
求項2の発明に加えて、過冷却解消部(8)の周りの管
壁を加熱する凍結防止部(9)により、過冷却解消部
(8)で生成した氷化物が過冷却解消部(8)付近の管
壁に付着するのを解離して、過冷却解消部(8)及びこ
の付近の管壁の凍結を阻止し、製氷効率を向上させる。
According to a third aspect of the present invention, in addition to the first or second aspect of the present invention, the supercooling elimination section (9) for heating the pipe wall around the supercooling elimination section (8) eliminates the supercooling. The iced product generated in the section (8) is dissociated from adhering to the tube wall in the vicinity of the subcooling elimination section (8) to prevent freezing of the subcooling elimination section (8) and the tube wall in the vicinity thereof, thereby making ice. Improve efficiency.

【0013】請求項4の発明では、上記請求項1又は請
求項2の発明に加えて、主熱交換器(22)が冷却装置
(2)の冷媒回路(1)に接続されていて、過冷却解消
部(8)には、上記冷媒回路(1)の液冷媒を減圧部
(C4)で減圧した低温の冷媒を流通して冷却するの
で、別途冷却装置を設けることなく、過冷却解消が行わ
れる。
According to a fourth aspect of the present invention, in addition to the first or second aspect, the main heat exchanger (22) is connected to the refrigerant circuit (1) of the cooling device (2). In the cooling elimination unit (8), the liquid refrigerant in the refrigerant circuit (1) is cooled by circulating a low-temperature refrigerant decompressed by the decompression unit (C4), so that supercooling can be eliminated without providing a separate cooling device. Done.

【0014】請求項5の発明では、上記請求項3の発明
に加えて、主熱交換器(22)が冷却装置(2)の冷媒
回路(1)に接続されていて、凍結防止部(9)には冷
媒回路(1)の比較的高温の液冷媒が流通する一方、過
冷却解消部(8)には凍結防止部(9)で冷媒との熱交
換により冷却され、さらに減圧部(C4)で減圧された
低温の冷媒が流通するので、別途加熱冷却装置を設ける
ことなく、過冷却解消と凍結防止が行われる。請求項6
の発明では、過冷却解消部(8)の滞留部(83)にお
いて、水又は水溶液の流れが淀んで遅くなるため、滞留
部(83)の内面に設けられた過冷却解消部(8)の冷
却伝熱面(81)により水又は水溶液の温度は十分に下
がる。また、水又は水溶液全体の流速を遅くするもので
はないため、請求項1の発明と同様に冷却能力は向上
し、過冷却の解消は効率よく行われ、氷化物の流れが悪
くなることによる復管路(51B)内の閉塞も生じな
い。
According to a fifth aspect of the present invention, in addition to the third aspect of the invention, the main heat exchanger (22) is connected to the refrigerant circuit (1) of the cooling device (2), ), The relatively high-temperature liquid refrigerant of the refrigerant circuit (1) flows, while the supercooling elimination unit (8) is cooled by heat exchange with the refrigerant in the antifreezing unit (9), and further cooled by the decompression unit (C4). Since the low-temperature refrigerant decompressed in step (1) flows, the supercooling is eliminated and the freezing is prevented without providing a separate heating and cooling device. Claim 6
According to the invention, the stagnation part (83) of the subcooling elimination part (8) is
And the flow of water or aqueous solution stagnates and slows down.
Cooling of the subcooling elimination section (8) provided on the inner surface of the section (83).
The temperature of water or aqueous solution is sufficiently lowered by the heat transfer surface (81).
To It also slows down the flow rate of water or the entire aqueous solution.
, Cooling capacity is improved as in the first aspect of the invention.
However, supercooling is efficiently eliminated and the flow of
Blockage in the return line (51B)
No.

【0015】[0015]

【実施例】以下、本発明の実施例について、図2以下の
図面に基づき説明する。図2は本発明の製氷装置を備え
た空気調和装置の実施例を示し、冷却装置(2)の冷媒
回路(1)は下記のように構成している。(11)は第
1圧縮機、(12)はこの第1圧縮機(11)の吐出側
に配置され、冷媒と室外空気との熱交換を行う室外熱交
換器、(13)はこの室外熱交換器(12)の冷媒流量
を調節し、又は減圧を行う室外電動膨張弁であって、上
記各機器(11)〜(13)は第1管路(14)中で直
列に接続されている。また、(21)は第2圧縮機、
(22)はこの第2圧縮機(21)の吐出側に配置さ
れ、後述の蓄氷槽(5)の水又は水溶液を過冷却するた
めの主熱交換器、(23)はこの主熱交換器(22)が
凝縮器として機能するときには冷媒流量を調節し、蒸発
器として機能するときには冷媒の減圧を行う水側電動膨
張弁であって、上記各機器(21)〜(23)は第2管
路(24)中で直列に接続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS. FIG. 2 shows an embodiment of an air conditioner provided with the ice making device of the present invention, and the refrigerant circuit (1) of the cooling device (2) is configured as follows. (11) is a first compressor, (12) is an outdoor heat exchanger disposed on the discharge side of the first compressor (11) and exchanges heat between refrigerant and outdoor air, and (13) is an outdoor heat exchanger. An outdoor electric expansion valve for adjusting or reducing the flow rate of refrigerant in an exchanger (12), wherein the devices (11) to (13) are connected in series in a first pipe (14). . (21) is the second compressor,
(22) is disposed on the discharge side of the second compressor (21), and is a main heat exchanger for supercooling water or an aqueous solution in an ice storage tank (5) described later, and (23) is a main heat exchanger. A water-side electric expansion valve that adjusts the flow rate of the refrigerant when the device (22) functions as a condenser, and reduces the pressure of the refrigerant when the device (22) functions as an evaporator; They are connected in series in a line (24).

【0016】なお、(SD1),(SD2)はそれぞれ
各圧縮機(11),(21)の吐出管に設けられた油分
離器、(C1),(C2)はこの油分離器(SD1),
(SD2)の吸入側にそれぞれ設けられた油戻し管(R
T1),(RT2)にそれぞれ介設された減圧用のキャ
ピラリーチューブである。さらに、(32),(32)
は各室内に配置される室内熱交換器、(33),(3
3)は冷媒を減圧する減圧弁としての室内電動膨張弁、
上記各機器(32),(33)はそれぞれ直列に接続さ
れ、かつその各組が第3管路(34)中で並列に接続さ
れている。また、(35)は室外電動膨張弁(13)と
水側電動膨張弁(23)とをつなぐ液管部である。そし
て、上記第1管路(14)及び第2管路(24)は第3
管路(34)に対して並列に接続されている。なお、
(AC)は各圧縮機(11),(21)の吸入側となる
第3管路(34)に設けられたアキュームレーターであ
る。また、(10)は室外熱交換器(12)のガス管と
室内熱交換器(32),(32)のガス管とを各圧縮機
(11),(21)の吐出側又は吸入側に切換連通させ
る四路切換弁(10)であって、この四路切換弁(1
0)が図中実線側に切り換わったときには室外熱交換器
(12)が凝縮器、主熱交換器(22)又は室内熱交換
器(32),(32)が蒸発器として機能する一方、四
路切換弁(10)が図中波線側に切り換わったときには
室外熱交換器(12)が蒸発器、主熱交換器(22)又
は室内熱交換器(32),(32)が凝縮蒸器として機
能する。さらに、各圧縮機(11),(21)の吸入側
をバイパス接続する低圧部(25)と、主熱交換器(2
2)のガス管を上記第2圧縮機(21)の吐出管と低圧
部(25)とに切換連通させる水側切換弁(26)とが
設けられている。この水側切換弁(26)は四路切換弁
のうちの3つのポートを利用して、水側切換弁(26)
が図中実線側に切り換わったときには主熱交換器(2
2)が蒸発器として機能する一方、水側切換弁(26)
が図中破線側に切り換わったときには主熱交換器(2
2)のガス管が第2圧縮機(21)の吐出管に連通し、
主熱交換器(22)が凝縮器として機能するようになさ
れている。なお、(C3)は水側切換弁(26)のデッ
ドポート側の配管に介設されたキャピラリーチューブで
ある。
Incidentally, (SD1) and (SD2) are oil separators provided in discharge pipes of the compressors (11) and (21), respectively, and (C1) and (C2) are oil separators (SD1). ,
(SD2) oil return pipes (R
T1) and (RT2) depressurized capillary tubes, respectively. Further, (32), (32)
Are indoor heat exchangers arranged in each room, (33), (3)
3) an indoor electric expansion valve as a pressure reducing valve for reducing the pressure of the refrigerant,
Each of the devices (32) and (33) is connected in series, and each set thereof is connected in parallel in the third conduit (34). Reference numeral (35) denotes a liquid pipe section connecting the outdoor electric expansion valve (13) and the water-side electric expansion valve (23). And, the first pipe (14) and the second pipe (24) are the third pipe.
It is connected in parallel to the conduit (34). In addition,
(AC) is an accumulator provided in the third pipe (34) on the suction side of each of the compressors (11) and (21). (10) connects the gas pipe of the outdoor heat exchanger (12) and the gas pipe of the indoor heat exchangers (32), (32) to the discharge side or the suction side of each of the compressors (11), (21). A four-way switching valve (10) for switching communication, the four-way switching valve (1
When 0) is switched to the solid line side in the figure, the outdoor heat exchanger (12) functions as a condenser, the main heat exchanger (22) or the indoor heat exchangers (32), (32) function as evaporators, When the four-way switching valve (10) is switched to the dashed line in the drawing, the outdoor heat exchanger (12) is an evaporator, the main heat exchanger (22) or the indoor heat exchangers (32), (32) are condensate evaporators. Function as Furthermore, a low-pressure section (25) that bypass-connects the suction side of each of the compressors (11) and (21), and a main heat exchanger (2).
A water-side switching valve (26) for switchingly communicating the gas pipe of (2) with the discharge pipe of the second compressor (21) and the low-pressure part (25) is provided. The water-side switching valve (26) utilizes three ports of the four-way switching valve to form the water-side switching valve (26).
Is switched to the solid line side in the figure, the main heat exchanger (2
2) functions as an evaporator, while the water-side switching valve (26)
Is switched to the broken line side in the figure, the main heat exchanger (2
2) the gas pipe communicates with the discharge pipe of the second compressor (21),
The main heat exchanger (22) functions as a condenser. Note that (C3) is a capillary tube interposed in the piping on the dead port side of the water-side switching valve (26).

【0017】さらに、第1圧縮機(11)及び第2圧縮
機(21)の吐出管どうしを接続するバイパス路(3)
が設けられていて、このバイパス路(3)には第2圧縮
機(21)の吐出管側から第1圧縮機(11)の吐出管
側への冷媒流通のみを許容する逆止弁(4)が介設され
ている。すなわち、室外熱交換器(12)及び主熱交換
器(22)が凝縮器として機能する際、主熱交換器(2
2)における凝縮温度が高く圧力が高くなった場合、第
2圧縮機(21)の吐出ガスを室外熱交換器(12)側
に逃がすことにより、放熱量を分配しうるようになされ
ている。ここで、製氷装置には、蓄熱媒体としての水又
は水溶液のスラリー状の氷化物を貯溜するための蓄氷槽
(5)が配置されていて、この蓄氷槽(5)と主熱交換
器(22)との間は、水循環路(51)により水又は水
溶液が循環するように接続されている。この水循環路
(51)は、蓄氷槽(5)の低部から主熱交換器(2
2)に水又は水溶液を供給する往管路(51A)と、主
熱交換器(22)から蓄氷槽(5)の上部に水又は水溶
液のスラリー状の氷化物を戻す復管路(51B)とから
なっており、往管路(51A)のポンプ(52)の下流
側には、水循環路(51)の水又は水溶液中の氷化物や
ゴミ等の固体物を除去するストレーナー(53)が介設
され、さらに、このストレーナー(53)の下流側に
は、主熱交換器(22)に供給される水又は水溶液を予
熱する予熱熱交換器(6)が介設されている。一方、冷
媒回路(1)の液ラインには、液冷媒の一部を水側電動
膨張弁(23)をバイパスさせて予熱熱交換器(6)に
流通させる予熱バイパス路(61)が設けられていて、
この予熱バイパス路(61)の予熱熱交換器(6)の下
流側には、冷媒の減圧機能及び流量制御機能(62)を
有する予熱電動膨張弁(62)が介設されている。この
予熱電動膨張弁(62)と水側電動膨張弁(23)とに
より、予熱バイパス路(61)の冷媒流量を調節すると
ともに、主熱交換器(22)の製氷運転時における冷媒
の減圧をも行うようになされている。
Further, a bypass path (3) for connecting discharge pipes of the first compressor (11) and the second compressor (21).
A check valve (4) that allows only refrigerant flow from the discharge pipe side of the second compressor (21) to the discharge pipe side of the first compressor (11) is provided in the bypass passage (3). ) Is interposed. That is, when the outdoor heat exchanger (12) and the main heat exchanger (22) function as condensers, the main heat exchanger (2)
When the condensing temperature in 2) is high and the pressure is high, the discharge gas of the second compressor (21) is allowed to escape to the outdoor heat exchanger (12) side, so that the amount of heat radiation can be distributed. Here, the ice making device is provided with an ice storage tank (5) for storing slurry or iced water or aqueous solution as a heat storage medium, and the ice storage tank (5) and the main heat exchanger are provided. The connection with (22) is connected so that water or an aqueous solution is circulated by a water circulation path (51). The water circulation path (51) extends from the lower part of the ice storage tank (5) to the main heat exchanger (2).
2) an outgoing pipeline (51A) for supplying water or aqueous solution, and a return pipeline (51B) for returning slurry or iced water or aqueous solution from the main heat exchanger (22) to the upper part of the ice storage tank (5). And a strainer (53) for removing solids such as icing and dust in water or an aqueous solution in the water circulation path (51) downstream of the pump (52) in the outward pipe (51A). A preheat heat exchanger (6) for preheating water or an aqueous solution supplied to the main heat exchanger (22) is further provided downstream of the strainer (53). On the other hand, the liquid line of the refrigerant circuit (1) is provided with a preheating bypass passage (61) for passing a part of the liquid refrigerant to the preheating heat exchanger (6) by bypassing the water-side electric expansion valve (23). And
On the downstream side of the preheating heat exchanger (6) in the preheating bypass passage (61), a preheating electric expansion valve (62) having a refrigerant pressure reducing function and a flow rate control function (62) is provided. The preheating electric expansion valve (62) and the water-side electric expansion valve (23) regulate the refrigerant flow rate in the preheating bypass path (61) and reduce the pressure of the refrigerant during the ice making operation of the main heat exchanger (22). Has also been made to do.

【0018】さらに、上記水循環路(51)の復管路
(51B)において、主熱交換器(22)の下流側に
は、復管路(51B)の水又は水溶液を冷却して主熱交
換器(22)で過冷却された水又は水溶液の過冷却状態
を解消させる過冷却解消部(8)としての再冷却器が設
けられ、この過冷却解消部(8)の周囲には、管路の凍
結を防止するための加熱伝熱面(91)を有する凍結防
止部(9)が設けられ、さらに、この過冷却解消部
(8)と主熱交換器(22)との間には、復管路(51
B)の凍結が主熱交換器(22)まで進展するのを阻止
するための凍結進展防止部としての保温熱交換器(7)
が設けられている。また、上記冷媒回路(1)の液管部
(35)から保温熱交換器(7)に液冷媒を流通させる
一方、この液管部(35)から分岐して解消バイパス路
(85)が延び、この解消バイパス路(85)は、図2
4に示すように凍結防止部(9)の冷媒入口端(96)
に接続され、この凍結防止部(9)の冷媒出口端(9
7)は減圧弁又はキャピラリーチューブからなる減圧部
(C4)を介して上記過冷却解消部(8)の冷媒入口端
(86)に接続されるとともに、その冷媒出口端(8
7)が圧縮機(11),(21)の吸入側となる低圧部
(25)に接続されている。すなわち、過冷却解消部
(8)において、減圧部(C4)で減圧され温度の下が
った冷媒との熱交換により、主熱交換器(22)で過冷
却された水又は水溶液を再冷却し、その過冷却状態を解
消させてスラリー状に氷化させ、復管路(51B)を介
してスラリー状の氷化物を蓄氷槽(5)まで循環させる
一方、凍結防止部(9)に凝縮された冷媒液をバイパス
させることにより、管壁を加熱して、過冷却状態の解消
により生じた氷化物の管壁への付着を解離させるように
なされている。
Further, in the return line (51B) of the water circulation path (51), downstream of the main heat exchanger (22), water or an aqueous solution in the return line (51B) is cooled to perform main heat exchange. A recooler is provided as a supercooling elimination unit (8) for eliminating the supercooled state of the water or the aqueous solution supercooled by the cooler (22), and a pipe line is provided around the supercooling elimination unit (8). An anti-freezing section (9) having a heating heat transfer surface (91) for preventing freezing is provided. Further, between the supercooling eliminating section (8) and the main heat exchanger (22), Return line (51
A heat-retaining heat exchanger (7) as a freezing prevention part for preventing freezing of B) from progressing to the main heat exchanger (22).
Is provided. Further, while the liquid refrigerant flows from the liquid pipe portion (35) of the refrigerant circuit (1) to the heat retaining heat exchanger (7), the elimination bypass path (85) branches off from the liquid pipe portion (35) and extends. The elimination bypass (85) corresponds to FIG.
As shown in FIG. 4, the refrigerant inlet end (96) of the anti-freezing part (9)
To the refrigerant outlet end (9) of the freeze prevention section (9).
7) is connected to the refrigerant inlet end (86) of the subcooling elimination unit (8) via a pressure reducing unit (C4) composed of a pressure reducing valve or a capillary tube, and has a refrigerant outlet end (8).
7) is connected to a low-pressure section (25) on the suction side of the compressors (11) and (21). That is, in the supercooling elimination section (8), the water or the aqueous solution supercooled in the main heat exchanger (22) is recooled by heat exchange with the refrigerant that has been decompressed in the decompression section (C4) and cooled down, The supercooled state is eliminated and the slurry is iced, and the slurry ice is circulated to the ice storage tank (5) via the return line (51B), while being condensed in the antifreezing section (9). By bypassing the refrigerant liquid, the pipe wall is heated to dissociate the adhered icy matter to the pipe wall caused by the elimination of the supercooled state.

【0019】さらに、保温熱交換器(7)において、液
ラインの液冷媒との熱交換により加熱して、上記過冷却
解消部(8)や復管路(51B)で水又は水溶液の過冷
却解消により生じた氷化物が復管路(51B)の管壁に
付着して凍結が主熱交換器(22)まで進展するのを防
止するようになされている。空気調和装置の運転時室内
で冷房を行うときには、四路切換弁(10)が図中実線
側に切り換えられる。そして、水側切換弁(26)が図
中実線側に切り換えられているときには、各圧縮機(1
1),(21)からの吐出冷媒がいずれも室外熱交換器
(12)で凝縮された後、各室内熱交換器(32),
(32)で蒸発することにより、室内の冷房を行う。ま
た水側切換弁(26)が図中破線側に切り換えられてい
るときには、第1圧縮機(11)の吐出冷媒が室外熱交
換器(12)に流れる一方、第2圧縮機(21)の吐出
冷媒は主熱交換器(22)に流れ、それぞれ凝縮された
後、各室内熱交換器(32),(32)で蒸発するよう
循環するまた、夜間等の電力が安価なときには、蓄氷槽
(5)に冷熱を蓄える蓄冷熱運転が行われる。すなわ
ち、四路切換弁(10)及び水側切換弁(26)を図中
実線側に切り換え、各室内電動膨張弁(33),(3
3)を閉じて、各圧縮機(11),(21)の吐出冷媒
を室外熱交器(12)で凝縮させた後、水側電動膨張弁
(23)又は予熱電動膨張弁(62)で減圧して主熱交
換器(22)で蒸発させることにより、蓄氷槽(5)の
水又は水溶液を過冷却して蓄氷槽(5)の水又は水溶液
を氷化し、冷熱を蓄えるようになされている。
Further, in the heat-retaining heat exchanger (7), heating is performed by exchanging heat with the liquid refrigerant in the liquid line, and the water or the aqueous solution is super-cooled in the sub-cooling eliminating section (8) or the return line (51B). The frozen matter generated by the dissolution is prevented from adhering to the pipe wall of the return pipe (51B) and freezing to propagate to the main heat exchanger (22). When cooling in the room during operation of the air conditioner, the four-way switching valve (10) is switched to the solid line side in the figure. When the water-side switching valve (26) is switched to the solid line side in the figure, each compressor (1
After the refrigerant discharged from (1) and (21) are both condensed in the outdoor heat exchanger (12), each indoor heat exchanger (32),
Evaporation in (32) cools the room. Also, when the water-side switching valve (26) is switched to the broken line side in the figure, the refrigerant discharged from the first compressor (11) flows to the outdoor heat exchanger (12), while the refrigerant discharged from the second compressor (21). The discharged refrigerant flows to the main heat exchanger (22), and after being condensed, circulates so as to evaporate in each of the indoor heat exchangers (32), (32). A cold storage operation for storing cold in the tank (5) is performed. That is, the four-way switching valve (10) and the water-side switching valve (26) are switched to the solid line side in the figure, and the indoor electric expansion valves (33), (3)
3) is closed, and the refrigerant discharged from each of the compressors (11) and (21) is condensed by the outdoor heat exchanger (12), and then the water-side electric expansion valve (23) or the preheating electric expansion valve (62). By depressurizing and evaporating the water or the aqueous solution in the ice storage tank (5) by evaporating the water or the aqueous solution in the ice storage tank (5), the water or the aqueous solution in the ice storage tank (5) is frozen to store cold heat. It has been done.

【0020】ここで、本発明では、主熱交換器(22)
下流側の復管路(51B)において、主熱交換器(2
2)で過冷却された水又は水溶液が過冷却解消部(8)
で再冷却され、その過冷却状態が解消し、スラリー状で
蓄氷槽(5)に強制循環され、蓄氷槽(5)にスラリー
状の氷化物が貯溜されて昼間の冷房運転に必要な冷熱が
蓄えられる。その際、復管路(51B)での水又は水溶
液の全体の流速が速いと、過冷却解消部(8)で水又は
水溶液の温度が十分に下がる前に流れ去る。また、復管
路(51B)での水又は水溶液の全体の流速を遅くする
と、氷化物のスラリーの管路内への氷の付着や管路の閉
塞を生じる。
Here, in the present invention, the main heat exchanger (22)
In the downstream return line (51B), the main heat exchanger (2
The supercooled water or aqueous solution in 2) is the subcooling cancellation part (8)
The supercooled state is eliminated, and the slurry is forcibly circulated to the ice storage tank (5) in a slurry state, and the iced substance in the slurry state is stored in the ice storage tank (5), which is necessary for daytime cooling operation. Cold heat is stored. At this time, if the overall flow velocity of the water or aqueous solution in the return line (51B) is high, the water or aqueous solution flows away before the temperature of the water or aqueous solution is sufficiently lowered in the subcooling elimination section (8). Also, if the overall flow rate of the water or the aqueous solution in the return line (51B) is reduced, ice adheres to the inside of the conduit of the slurry of the iced product and the conduit is blocked.

【0021】そこで、請求項1の発明に係わる実施例
は、復管路(51B)における管内表面に対し外方に膨
出する窪み部(83)を形成して、この窪み部(83)
内面を、過冷却解消部(8)の冷却伝熱面(81)とし
たことにより、この過冷却解消部(8)の冷却伝熱面
(81)で水又は水溶液の流速を局所的に遅くすること
ができるので、この冷却伝熱面(81)での水又は水溶
液の滞留時間は長くなり、水又は水溶液の温度を十分に
下げることができ、冷却能力が向上する。よって、この
冷却伝熱面(81)の伝熱面積を大きくすることなく、
また過冷却解消部(8)のために特に低温の冷熱源を用
意することなく、効率よく過冷却の解消が行える。図
3,図4は請求項1の発明の実施例に係わる過冷却解消
部(8)の冷却伝熱面(81)の形状を示したものであ
る。図3はその縦断面図、図4はその横断面図である。
円柱形状の窪み部(83)内面がこの冷却伝熱面(8
1)になっており、この円柱形状の窪み部(83)で水
又は水溶液の滞留時間が長くなり、温度が十分に下がる
ので、過冷却解消部(8)の冷却能力が高く、過冷却の
解消が効率よく行われる。
Therefore, in the embodiment according to the first aspect of the present invention, a concave portion (83) bulging outward with respect to the inner surface of the pipe in the return pipe (51B) is formed, and the concave portion (83) is formed.
By making the inner surface the cooling heat transfer surface (81) of the subcooling elimination section (8), the flow rate of water or aqueous solution is locally reduced on the cooling heat transfer surface (81) of the supercooling elimination section (8). Therefore, the residence time of the water or the aqueous solution on the cooling heat transfer surface (81) becomes longer, the temperature of the water or the aqueous solution can be sufficiently lowered, and the cooling capacity is improved. Therefore, without increasing the heat transfer area of the cooling heat transfer surface (81),
Further, supercooling can be efficiently eliminated without preparing a particularly low-temperature cooling source for the supercooling eliminating section (8). FIGS. 3 and 4 show the shape of the cooling heat transfer surface (81) of the subcooling eliminating section (8) according to the first embodiment of the present invention. FIG. 3 is a longitudinal sectional view, and FIG. 4 is a transverse sectional view thereof.
The inner surface of the cylindrical recess (83) is the cooling heat transfer surface (8).
1), the residence time of the water or the aqueous solution is prolonged in the cylindrical concave portion (83), and the temperature is sufficiently lowered. Therefore, the cooling capacity of the supercooling eliminating portion (8) is high, and Elimination is performed efficiently.

【0022】ここで冷却伝熱面(81)を冷却する手段
として、過冷却解消部(8)の冷媒入口端(86)から
導入した冷媒により冷却伝熱面(81)を冷却し、その
冷媒を過冷却解消部(8)の冷媒出口端(87)から出
すようにする。この冷媒として請求項4の発明のように
冷却装置(1)の冷媒回路(2)のものを用いるのが望
ましいが、請求項1の発明は別途冷却装置を設けてその
冷媒を用いてもよく、この冷却装置(1)の冷媒回路
(2)の冷媒を用いるものに限定されるものではない。
なお、請求項1の発明において、過冷却解消部(8)の
窪み部(83)の形状は図3,図4に限定されるもので
はない。図5〜図12は上記実施例1の変形例を示し、
各奇数番号の図は縦断面図、各偶数番号の図は前の番号
の図に対応する横断面図である。ここで、図5,図6は
窪み部(83)の形状を円錐とした場合、図7,図8は
窪み部(83)の形状を半球とした場合、図9,図10
は円柱形状の窪み部(83)が3個ある場合、図11,
図12は窪み部(83)が配管の横断面を一周してつな
がっている場合である。これらの変形例においても、水
又は水溶液の流速が局所的に遅くなり、温度が十分に下
がるので、過冷却解消部(8)の冷却能力が高く、過冷
却の解消が効率よく行われる。他に三角柱、直方体など
の形状の窪み部(83)も同様の効果を示す。
Here, as a means for cooling the cooling heat transfer surface (81), the cooling heat transfer surface (81) is cooled by the refrigerant introduced from the refrigerant inlet end (86) of the supercool elimination section (8), and the refrigerant is cooled. From the refrigerant outlet end (87) of the subcooling eliminating section (8). As this refrigerant, it is desirable to use the refrigerant circuit (2) of the cooling device (1) as in the invention of claim 4, but in the invention of claim 1, a separate cooling device may be provided and the refrigerant may be used. However, the present invention is not limited to the one using the refrigerant of the refrigerant circuit (2) of the cooling device (1).
In the first aspect of the present invention, the shape of the depression (83) of the subcooling eliminating section (8) is not limited to FIGS. 5 to 12 show modifications of the first embodiment,
Each odd-numbered figure is a vertical cross-sectional view, and each even-numbered figure is a cross-sectional view corresponding to the previous numbered figure. Here, FIGS. 5 and 6 show the case where the shape of the recess (83) is a cone, and FIGS. 7 and 8 show the case where the shape of the recess (83) is a hemisphere.
FIG. 11 shows a case where there are three cylindrical recesses (83).
FIG. 12 shows a case in which the recessed part (83) is connected around the cross section of the pipe. Also in these modified examples, the flow rate of the water or the aqueous solution is locally reduced and the temperature is sufficiently lowered, so that the cooling capacity of the subcooling elimination unit (8) is high, and the supercooling is efficiently eliminated. In addition, a depression (83) having a shape such as a triangular prism or a rectangular parallelepiped shows the same effect.

【0023】次に、請求項2の発明に係わる実施例につ
いて説明する。図13,図14は過冷却解消部(8)の
冷却伝熱面(81)の縦断面と横断面をそれぞれ示す。
本発明では、過冷却解消部(8)の冷却伝熱面(81)
の周りを中空の円柱形状の障壁部(82)で囲み、この
障壁部(82)の一方端は過冷却解消部(8)と接して
閉じており、他端の開口部からのみ水又は水溶液は出入
りするので、水又は水溶液の流れが妨げられ、流速がこ
の冷却伝熱面(81)で局所的に遅くなる。よって、こ
の冷却伝熱面(81)での水又は水溶液の滞留時間が長
くなり、温度が十分に下がるので、過冷却解消部(8)
の冷却能力が高く、過冷却の解消が効率よく行われる。
過冷却解消部(8)の構成は異なるが、請求項1の発明
と同様の効果を発揮する。ここで冷却伝熱面(81)の
冷却手段は請求項1と同様である。
Next, an embodiment according to the second aspect of the present invention will be described. FIGS. 13 and 14 show a longitudinal section and a transverse section, respectively, of the cooling heat transfer surface (81) of the subcooling eliminating section (8).
In the present invention, the cooling heat transfer surface (81) of the subcooling eliminating section (8)
Is surrounded by a hollow cylindrical barrier portion (82), one end of which is in contact with the supercooling elimination portion (8) and is closed, and water or aqueous solution is only provided from the opening at the other end. As water flows in and out, the flow of water or aqueous solution is obstructed, and the flow velocity is locally reduced on the cooling heat transfer surface (81). Therefore, the residence time of the water or the aqueous solution on the cooling heat transfer surface (81) is prolonged, and the temperature is sufficiently lowered.
Has a high cooling capacity, and supercooling is efficiently eliminated.
Although the configuration of the supercooling elimination section (8) is different, the same effect as the first aspect of the present invention is exhibited. Here, the cooling means of the cooling heat transfer surface (81) is the same as in claim 1.

【0024】なお、この実施例として図13,図14で
示した障壁部(82)は円柱形状としたが、過冷却解消
部(8)の冷却伝熱面(81)を囲む形状であれば、直
方体又は三角柱の形状を有するものでもよく、請求項2
の発明において、過冷却解消部(8)の冷却伝熱面(8
1)及び障壁部(82)の形状は図13,図14に限定
されるものではない。図15〜図18は上記実施例の各
変形例を示し、各奇数番号の図は縦断面図、各偶数番号
の図は前の番号の図に対応する横断面図である。図1
5,図16は過冷却解消部(8)の冷却伝熱面(81)
が円柱形状を有して、管路内に突き出ており、その周り
を過冷却解消部(8)より大きい中空の円柱形状の障壁
部(82)で囲っていて、障壁部(82)の一方端は過
冷却解消部(8)と接して閉じており、他端の開口して
いる場合である。図17,図18は過冷却解消部(8)
の冷却伝熱面(81)が円柱形状を有して、復管路(5
1B)を横断しており、この冷却伝熱面(81)の水又
は水溶液の上流と下流とに板状の障壁部(82)を設け
ている場合である。これら変形例においても、水又は水
溶液の流速が遅くなり、温度が十分に下がるので、過冷
却解消部(8)の冷却能力が高く、過冷却の解消が効率
よく行われる。また、水又は水溶液全部の流速を遅くす
るものではないので、生成した氷化物の流れが悪くなる
ことによる復管路(51)内の閉塞も生じない。なお、
水又は水溶液全部を冷却することなく、水又は水溶液全
部の過冷却状態を解消できるのは、窪み部(83)にお
いて氷化物ができ、この氷化物が核となるからである。
なお、これら請求項1及び請求項2の発明に係わる実施
例において、水又は水溶液全部を再冷却することなく、
水又は水溶液全部の過冷却状態を解消できるのは、発明
の窪み部(83)又は障壁部(82)の内側において氷
化物ができ、この氷化物が核となるからである。
In this embodiment, the barrier portion (82) shown in FIGS. 13 and 14 has a cylindrical shape. However, the barrier portion (82) may have any shape as long as it surrounds the cooling heat transfer surface (81) of the subcooling eliminating portion (8). , A rectangular parallelepiped or a triangular prism.
In the invention, the cooling heat transfer surface (8)
The shapes of 1) and the barrier portion (82) are not limited to FIGS. FIGS. 15 to 18 show modifications of the above embodiment. Each of the odd-numbered figures is a vertical sectional view, and each of the even-numbered figures is a transverse sectional view corresponding to the preceding figure. FIG.
5, FIG. 16 shows a cooling heat transfer surface (81) of the subcooling eliminating section (8).
Has a cylindrical shape, protrudes into the pipeline, and is surrounded by a hollow cylindrical barrier portion (82) larger than the supercooling elimination portion (8), and one of the barrier portions (82) The end is closed in contact with the subcooling eliminating portion (8), and the other end is open. FIGS. 17 and 18 show the supercooling elimination section (8).
The cooling heat transfer surface (81) has a cylindrical shape, and the return line (5)
1B), and a plate-like barrier portion (82) is provided upstream and downstream of the water or aqueous solution on the cooling heat transfer surface (81). Also in these modified examples, the flow rate of the water or the aqueous solution is slowed and the temperature is sufficiently lowered, so that the cooling capacity of the subcooling elimination section (8) is high, and the supercooling is efficiently eliminated. Further, since the flow rate of the water or the aqueous solution is not reduced, the flow of the produced icy substance does not deteriorate, so that the return pipe (51) is not blocked. In addition,
The supercooled state of the whole water or aqueous solution can be eliminated without cooling the whole water or aqueous solution because iced products are formed in the depression (83), and the iced products become nuclei.
In the embodiments according to the first and second aspects of the present invention, without recooling the whole water or aqueous solution,
The reason why the supercooled state of the water or the aqueous solution can be eliminated is that iced matter is formed inside the recessed part (83) or the barrier part (82) of the present invention, and this iced matter becomes a core.

【0025】請求項3の発明に係わる実施例は、上記請
求項1又は請求項2の発明に係わる実施例において、過
冷却解消部(8)の冷却伝熱面(81)に近接して凍結
防止部(9)の加熱伝熱面(91)を設けるのであり、
図19,図20は請求項1の発明に係わる実施例におい
て凍結防止部(9)を設けた実施例である。過冷却解消
部(8)に近接した凍結防止部(9)により、過冷却解
消部(8)で生じた氷化物の管壁への付着を解離させる
ことができるので、氷化物の管壁への付着と成長による
閉塞を防止できる。とくに、請求項1又は請求項2の発
明に係わる実施例による過冷却解消部(8)は、冷却能
力が高いので、冷却伝熱面(81)が小さくできる。よ
って、近接した凍結防止部(9)の加熱伝熱面(91)
も小さくできる。ここで加熱伝熱面(91)を加熱する
手段として、凍結防止部(9)の冷媒入口端(96)か
ら導入した熱媒により加熱伝熱面(81)を加熱し、そ
の熱媒を凍結防止部(9)の冷媒出口端(97)から出
すようにする。この実施例の凍結防止部(9)と過冷却
解消部(8)は二重円管になっており、上記熱媒は過冷
却解消部(8)の外側にある凍結防止部(9)の空間を
通って、凍結防止部(9)の冷媒入口端(96)から凍
結防止部(9)の冷媒出口端(97)に抜ける。また、
冷却伝熱面(81)を冷却する手段として、過冷却解消
部(8)の冷媒入口端(86)から導入した冷媒により
冷却伝熱面(81)を冷却し、その冷媒を過冷却解消部
(8)の冷媒出口端(87)から出すようにする。この
熱媒及び冷媒として請求項5の発明のように冷却装置
(1)の冷媒回路(2)のものを用いるのが望ましい
が、請求項3の発明は別途加熱冷却装置を設けてその熱
冷媒を用いてもよく、この冷却装置(1)の冷媒回路
(2)の冷媒を用いるものに限定されるものではない。
なお、図21,図22は請求項3の発明に係わる実施例
の変形例を示し、請求項2の発明に係わる実施例におい
て凍結防止部(9)を設けた実施例である。
The embodiment according to the third aspect of the present invention is the same as the embodiment according to the first or second aspect of the present invention, except that the freezing is performed near the cooling heat transfer surface (81) of the subcooling eliminating section (8). A heating heat transfer surface (91) of the prevention unit (9) is provided.
FIGS. 19 and 20 show an embodiment according to the first aspect of the present invention, in which an antifreeze section (9) is provided. The freezing prevention part (9) adjacent to the supercooling elimination part (8) can dissociate the adhered icy matter generated in the supercooling elimination part (8) to the tube wall. Clogging due to the adhesion and growth of water can be prevented. In particular, since the supercooling elimination section (8) according to the embodiment of the first or second aspect of the present invention has a high cooling capacity, the cooling heat transfer surface (81) can be reduced. Therefore, the heating heat transfer surface (91) of the adjacent freeze prevention unit (9)
Can also be reduced. Here, as a means for heating the heating heat transfer surface (91), the heating heat transfer surface (81) is heated by a heat medium introduced from the refrigerant inlet end (96) of the freeze prevention unit (9), and the heat medium is frozen. The liquid flows out from the refrigerant outlet end (97) of the preventing portion (9). The antifreeze section (9) and the supercooling elimination section (8) of this embodiment are double circular tubes, and the heat medium is supplied to the antifreeze section (9) outside the supercooling elimination section (8). Through the space, the refrigerant flows from the refrigerant inlet end (96) of the freeze prevention unit (9) to the refrigerant outlet end (97) of the freeze prevention unit (9). Also,
As means for cooling the cooling heat transfer surface (81), the cooling heat transfer surface (81) is cooled by the refrigerant introduced from the refrigerant inlet end (86) of the subcooling elimination unit (8), and the refrigerant is supercooled. The refrigerant is discharged from the refrigerant outlet end (87) of (8). As the heat medium and the refrigerant, it is desirable to use the refrigerant circuit (2) of the cooling device (1) as in the invention of claim 5, but the invention of claim 3 provides a separate heating and cooling device and The cooling device (1) is not limited to the one using the refrigerant of the refrigerant circuit (2).
FIGS. 21 and 22 show a modification of the embodiment according to the third aspect of the present invention, which is an embodiment according to the second aspect of the present invention in which an antifreeze section (9) is provided.

【0026】請求項4の発明に係わる実施例は、上記請
求項1又は請求項2の発明に係わる実施例において、過
冷却解消部(8)の冷却用の冷熱源として、冷却装置
(2)の冷媒回路(1)から分岐した液冷媒を用いるの
であり、図2の実施例では、解消バイパス路(85)を
凍結防止部(9)に接続したのち、過冷却解消部(8)
に接続しているが、この実施例はこの凍結防止部(9)
を除いて直接に解消バイパス路(85)を過冷却解消部
(8)と接続するのである。具体的には、凝縮器として
の室外熱交換器(12)の出口側の液管部(35)から
分岐した解消バイパス路(85)を、図23に要部を示
すように、減圧部(C4)を介して、過冷却解消部
(8)に接続し、過冷却解消部(8)の出口端は圧縮機
(11),(21)の吸入側の低圧部(25)に接続す
るのである。すなわち、減圧部(C4)により温度が下
がった冷媒液を過冷却解消部(8)に流して、水又は水
溶液を冷却する。よって、別途冷却装置を設ける必要が
ないのである。
According to a fourth aspect of the present invention, in the above-described first or second aspect of the present invention, the cooling device (2) is used as a cooling heat source for cooling the subcooling eliminating section (8). In the embodiment shown in FIG. 2, after the elimination bypass path (85) is connected to the freezing prevention section (9), the subcooling elimination section (8) is used.
In this embodiment, the anti-freezing part (9)
The elimination bypass path (85) is directly connected to the subcooling elimination section (8) except for the above. Specifically, as shown in FIG. 23, the elimination bypass path (85) branched from the liquid pipe section (35) on the outlet side of the outdoor heat exchanger (12) as a condenser is connected to a decompression section (85). C4), it is connected to the subcooling elimination section (8), and the outlet end of the supercooling elimination section (8) is connected to the low-pressure section (25) on the suction side of the compressors (11) and (21). is there. That is, the refrigerant liquid whose temperature has been lowered by the decompression unit (C4) is caused to flow to the subcooling elimination unit (8) to cool the water or the aqueous solution. Therefore, there is no need to provide a separate cooling device.

【0027】請求項5の発明に係わる実施例は、上記請
求項3の発明に係わる実施例において、過冷却解消部
(8)の冷却及び凍結防止部(9)の加熱の熱源とし
て、冷却装置(2)の冷媒回路(1)から分岐した液冷
媒を用いるのであり、図2及び図24に要部を示したよ
うに、凝縮器としての室外熱交換器(12)の出口側の
液管部(35)から分岐した解消バイパス路(85)を
凍結防止部(9)の冷媒入口端(96)に接続し、さら
に凍結防止部(9)の冷媒出口端(97)を減圧部(C
4)を介して、過冷却解消部(8)の冷媒入口端(8
6)に接続し、そして過冷却解消部(8)の冷媒出口端
(87)は圧縮機(11),(21)の吸入側の低圧部
(25)に接続するのである。すなわち、凝縮後の液冷
媒を、凍結防止部(9)による過冷却解消部(8)に近
接する管壁の加熱に用い、さらにこの液冷媒を減圧部
(C4)により温度を下げて、過冷却解消部(8)に流
して、水又は水溶液を冷却する。よって、別途加熱冷却
装置を設ける必要がないのである。なお、図25と図2
6は請求項5の発明に係わる実施例の各変形例の要部を
示す。図25の実施例は減圧部(C4)としてキャピラ
リーチュブを用い、冷熱損失を少なくするために、過冷
却解消部(8)の冷媒入口端(86)としてのキャピラ
リーチューブ(C4)の出口端を冷却伝熱面(81)の
近傍に設けるものである。図26の実施例は減圧部(C
4)として、過冷却解消部(8)と凍結防止部(9)の
間の壁面に設けたオリフィスを用いたものである。この
実施例では凍結防止部(9)の冷媒出口端(97)、減
圧部(C4)と過冷却解消部(8)の冷媒入口端(8
6)が近接し、事実上一体となっているので、構造が簡
単になる。なお、これらの発明に係わる実施例におい
て、水又は水溶液全部を再冷却することなく、水又は水
溶液全部の過冷却状態を解消できるのは、窪み部(8
3)又は障壁部(82)の内側において氷化物ができ、
この氷化物が核となるからである。
According to a fifth aspect of the present invention, in the embodiment of the third aspect of the present invention, a cooling device is used as a heat source for cooling the supercooling eliminating section (8) and heating the antifreezing section (9). The liquid refrigerant branched from the refrigerant circuit (1) of (2) is used. As shown in FIG. 2 and FIG. 24, the liquid pipe on the outlet side of the outdoor heat exchanger (12) as a condenser is used. The elimination bypass path (85) branched from the section (35) is connected to the refrigerant inlet end (96) of the freeze prevention section (9), and the refrigerant outlet end (97) of the freeze prevention section (9) is further connected to the decompression section (C).
4), the refrigerant inlet end (8) of the subcooling elimination section (8).
6), and the refrigerant outlet end (87) of the subcooling eliminating section (8) is connected to the low pressure section (25) on the suction side of the compressors (11) and (21). That is, the condensed liquid refrigerant is used for heating the pipe wall adjacent to the supercooling elimination unit (8) by the antifreezing unit (9), and the temperature of the liquid refrigerant is further reduced by the decompression unit (C4) to reduce the temperature. The water or the aqueous solution is cooled by flowing to the cooling canceling section (8). Therefore, there is no need to provide a separate heating and cooling device. FIG. 25 and FIG.
Reference numeral 6 denotes a main part of each modification of the embodiment according to the fifth aspect of the present invention. In the embodiment of FIG. 25, a capillary tube is used as the pressure reducing section (C4), and the outlet end of the capillary tube (C4) as the refrigerant inlet end (86) of the subcooling eliminating section (8) is used in order to reduce the cooling loss. It is provided near the cooling heat transfer surface (81). The embodiment of FIG.
As 4), an orifice provided on a wall surface between the supercooling eliminating section (8) and the freeze preventing section (9) is used. In this embodiment, the refrigerant outlet end (97) of the freeze prevention unit (9), and the refrigerant inlet end (8) of the decompression unit (C4) and the supercool elimination unit (8).
6) is so close and practically integral that the structure is simplified. In the embodiments according to these inventions, it is possible to eliminate the supercooled state of the water or the aqueous solution without recooling the whole of the water or the aqueous solution.
3) or ice is formed inside the barrier portion (82);
This is because the iced material becomes a nucleus.

【0028】[0028]

【発明の効果】以上説明したように、請求項1の発明に
よれば、過冷却状態を解消する過冷却解消部(8)の冷
却伝熱面(81)として、復管路(51B)における管
内表面に対して外方に膨出する窪み部(83)を形成し
て、この窪み部(83)内面を用いたことにより、水又
は水溶液の流速が窪み部(83)で遅くなり、十分に温
度が下がってから流れ去るので、冷却能力の向上が図れ
る。さらに、水又は水溶液の流速はこの窪み部(83)
でのみ遅くなり、全体としては速く保つことができるの
で、過冷却解消部(8)で生じた氷化物の流れが悪くな
り、復管路(51B)内で閉塞するようなことはない。
また、この窪み部(83)で効率よく過冷却が解消でき
るので、過冷却解消部(8)の冷却伝熱面(81)を小
さくできる、あるいは特に低温の冷熱源を用意しなくて
もよい。
As described above, according to the first aspect of the present invention, the cooling heat transfer surface (81) of the subcooling elimination unit (8) for eliminating the supercooling state is used in the return pipe (51B). By forming a dent portion (83) bulging outward with respect to the inner surface of the pipe and using the inner surface of the dent portion (83), the flow rate of water or aqueous solution is slowed down at the dent portion (83), and After the temperature has dropped, it flows away, so that the cooling capacity can be improved. Further, the flow rate of the water or the aqueous solution is controlled by the depression (83).
, And can be kept fast as a whole, so that the flow of the icy matter generated in the subcooling elimination section (8) does not deteriorate, and there is no clogging in the return pipe (51B).
In addition, since the supercooling can be efficiently eliminated by the concave portion (83), the cooling heat transfer surface (81) of the supercooling eliminating portion (8) can be reduced, or a particularly low-temperature cold heat source does not need to be prepared. .

【0029】請求項2の発明によれば、過冷却解消部
(8)の冷却伝熱面(81)の周りに障壁部(82)を
設けることにより、水又は水溶液の流れが妨げられ、冷
却伝熱面(81)に接する所で遅くなり、十分に温度が
下がってから流れ去るので、冷却能力の向上が図れる。
さらに、水又は水溶液の流速はこの冷却伝熱面(81)
に接する所でのみ遅くなり、全体としては速く保つこと
ができるので、過冷却解消部(8)で生じた氷化物の流
れが悪くなり、復管路(51B)内で閉塞するようなこ
とはない。また、この障壁部(82)を有する過冷却解
消部(8)で効率よく過冷却を解消できるので、過冷却
解消部(8)の冷却伝熱面(81)を小さくできる、あ
るいは特に低温の冷熱源を用意しなくてもよい。
According to the second aspect of the present invention, the flow of the water or the aqueous solution is hindered by providing the barrier section (82) around the cooling heat transfer surface (81) of the subcooling eliminating section (8). The temperature is reduced at a position in contact with the heat transfer surface (81), and flows away after the temperature is sufficiently lowered, so that the cooling capacity can be improved.
Further, the flow rate of water or aqueous solution is controlled by the cooling heat transfer surface (81).
, And can be kept fast as a whole, so that the flow of iced matter generated in the subcooling elimination section (8) becomes worse, and it is possible to prevent the flow in the return pipe (51B) from being blocked. Absent. Further, since the supercooling can be efficiently eliminated by the supercooling elimination section (8) having the barrier section (82), the cooling heat transfer surface (81) of the supercooling elimination section (8) can be made small, or particularly, at a low temperature. It is not necessary to prepare a cold heat source.

【0030】請求項3の発明によると、上記請求項1又
は請求項2の発明に加えて、過冷却解消部(8)に近接
して設けられ、過冷却解消部(8)で生じた氷化物の管
壁への付着を解離させるよう復管路(51B)を加熱す
る凍結防止部(9)を備えたことにより、過冷却解消部
(8)及びこの付近の管壁の凍結を防止し、過冷却解消
部(8)の製氷効率を向上させる。特に請求項1又は請
求項2の発明の過冷却解消部(8)の冷却伝熱面(8
1)は小さくできるので、この凍結防止部(9)の加熱
伝熱面(91)も小さくできる。
According to the third aspect of the present invention, in addition to the first or second aspect of the present invention, the ice formed in the subcooling eliminating section (8) is provided near the subcooling eliminating section (8). A freezing prevention section (9) for heating the return pipe (51B) so as to dissociate the adhesion of the compound to the pipe wall prevents freezing of the supercooling elimination section (8) and the pipe wall in the vicinity thereof. In addition, the ice making efficiency of the subcooling eliminating section (8) is improved. In particular, the cooling heat transfer surface (8) of the subcooling elimination section (8) according to the first or second aspect of the present invention.
Since 1) can be made smaller, the heat transfer surface (91) of the anti-freezing portion (9) can also be made smaller.

【0031】請求項4の発明によると、上記請求項1又
は請求項2の発明に加えて、主熱交換器(22)が冷却
装置(2)の冷媒回路(1)に接続されていて、過冷却
解消部(8)には、上記冷媒回路(1)の液冷媒を減圧
部(C4)で減圧し低温として流通するので、別途冷却
装置を設ける必要がなく、よって装置の小型化及びコス
トの低減を図ることができる。
According to a fourth aspect of the present invention, in addition to the first or second aspect, the main heat exchanger (22) is connected to the refrigerant circuit (1) of the cooling device (2), Since the liquid refrigerant in the refrigerant circuit (1) is decompressed in the decompression section (C4) and flows at a low temperature in the subcooling elimination section (8), it is not necessary to provide a separate cooling device, so that the size and cost of the apparatus can be reduced. Can be reduced.

【0032】請求項5の発明によると、上記請求項3の
発明に加えて、主熱交換器(22)が冷却装置(2)の
冷媒回路(1)に接続されていて、凍結防止部(9)に
は、上記冷媒回路(1)の液冷媒を流通する一方、過冷
却解消部(8)には、凍結防止部(9)で冷媒との熱交
換により冷却され、さらに減圧部(C4)で減圧され低
温となった冷媒が流通するので、別途加熱冷却装置を設
ける必要がなく、よって装置の小型化及びコストの低減
を図ることができる。請求項6の発明によると、過冷却
状態を解消する過冷却解消部(8)の冷却伝熱面(8
1)を、復管路(51B)における管内表面に対して外
方に復管路(51B)内の水又は水溶液が流通可能な滞
留部(83)を形成して、この滞留部(83)内面に設
けたことにより、水又は水溶液の流速が滞留部(83)
で遅くなり、十分に温度が下がってから流れ去るので、
冷却能力の向上が図れる。さらに、水又は水溶液の流速
はこの滞留部(83)でのみ遅くなり、全体としては速
く保つことができるので、過冷却解消部(8)で生じた
氷化物の流れが悪くなり、復管路(51B)内で閉塞す
るようなことはない。また、この滞留部(83)で効率
よく過冷却が解消できるので、過冷却解消部(8)の冷
却伝熱面(81)を小さくできる、あるいは特に冷熱源
を用意しなくてもよい。
According to the fifth aspect of the present invention, in addition to the third aspect of the present invention, the main heat exchanger (22) is connected to the refrigerant circuit (1) of the cooling device (2), In 9), the liquid refrigerant in the refrigerant circuit (1) is circulated, while the supercooling elimination section (8) is cooled by heat exchange with the refrigerant in the antifreezing section (9), and is further cooled in the decompression section (C4). Since the refrigerant which has been decompressed and cooled to a low temperature flows in the step (2), it is not necessary to provide a separate heating and cooling device, so that the size and cost of the device can be reduced. According to the invention of claim 6, supercooling
The cooling heat transfer surface (8)
1) is outside the pipe inner surface in the return line (51B).
Water or aqueous solution in the return pipe (51B)
A retaining portion (83) is formed and provided on the inner surface of the retaining portion (83).
The flow rate of the water or the aqueous solution is reduced by the
Slows down and flows away after the temperature drops enough,
The cooling capacity can be improved. In addition, the flow rate of water or aqueous solution
Is slowed down only in this stagnation section (83), and as a whole
Occurred in the subcooling elimination section (8)
The flow of iced material deteriorates and blocks in the return line (51B).
There is no such thing. In addition, the efficiency of the stay (83)
Since supercooling can be eliminated well, the cooling
The heat transfer surface (81) can be made smaller, or especially a cold heat source
Need not be prepared.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製氷装置の基本構成を示すブロック図
である。
FIG. 1 is a block diagram showing a basic configuration of an ice making device of the present invention.

【図2】本発明の実施例を示す冷媒配管系統図である。FIG. 2 is a refrigerant piping system diagram showing an embodiment of the present invention.

【図3】請求項1の発明の実施例を示す要部縦断面図で
ある。
FIG. 3 is a longitudinal sectional view of a main part showing an embodiment of the invention of claim 1;

【図4】請求項1の発明の実施例を示す要部横断面図で
ある。
FIG. 4 is a cross-sectional view of a main part showing an embodiment of the invention of claim 1;

【図5】請求項1の発明の実施例を示す要部縦断面図で
ある。
FIG. 5 is a vertical sectional view of an essential part showing an embodiment of the invention of claim 1;

【図6】請求項1の発明の実施例を示す要部横断面図で
ある。
FIG. 6 is a cross-sectional view of an essential part showing an embodiment of the invention of claim 1;

【図7】請求項1の発明の実施例を示す要部縦断面図で
ある。
FIG. 7 is a longitudinal sectional view of an essential part showing an embodiment of the invention of claim 1;

【図8】請求項1の発明の実施例を示す要部横断面図で
ある。
FIG. 8 is a cross-sectional view of a main part showing an embodiment of the invention of claim 1;

【図9】請求項1の発明の実施例を示す要部縦断面図で
ある。
FIG. 9 is a longitudinal sectional view of an essential part showing an embodiment of the invention of claim 1;

【図10】請求項1の発明の実施例を示す要部横断面図
である。
FIG. 10 is a cross-sectional view of a main part showing an embodiment of the first invention.

【図11】請求項1の発明の実施例を示す要部縦断面図
である。
FIG. 11 is a vertical sectional view of an essential part showing an embodiment of the invention of claim 1;

【図12】請求項1の発明の実施例を示す要部横断面図
である。
FIG. 12 is a cross-sectional view of a main part showing an embodiment of the first invention.

【図13】請求項2の発明の実施例を示す要部縦断面図
である。
FIG. 13 is a longitudinal sectional view of a main part showing an embodiment of the invention of claim 2;

【図14】請求項2の発明の実施例を示す要部横断面図
である。
FIG. 14 is a main part transverse sectional view showing an embodiment of the invention of claim 2;

【図15】請求項2の発明の実施例を示す要部縦断面図
である。
FIG. 15 is a vertical sectional view of an essential part showing an embodiment of the invention of claim 2;

【図16】請求項2の発明の実施例を示す要部横断面図
である。
FIG. 16 is a main part transverse sectional view showing an embodiment of the invention of claim 2;

【図17】請求項2の発明の実施例を示す要部縦断面図
である。
FIG. 17 is a longitudinal sectional view of an essential part showing an embodiment of the invention of claim 2;

【図18】請求項2の発明の実施例を示す要部横断面図
である。
FIG. 18 is a main part transverse sectional view showing an embodiment of the invention of claim 2;

【図19】請求項3の発明の実施例を示す要部縦断面図
である。
FIG. 19 is a vertical sectional view of a main part showing an embodiment of the third invention.

【図20】請求項3の発明の実施例を示す要部横断面図
である。
FIG. 20 is a main part transverse sectional view showing an embodiment of the invention of claim 3;

【図21】請求項3の発明の実施例を示す要部縦断面図
である。
FIG. 21 is a longitudinal sectional view of a main part showing an embodiment of the invention of claim 3;

【図22】請求項3の発明の実施例を示す要部横断面図
である。
FIG. 22 is a main part transverse sectional view showing an embodiment of the invention of claim 3;

【図23】請求項4の発明の実施例を示す要部縦断面図
である。
FIG. 23 is a longitudinal sectional view of an essential part showing an embodiment of the invention of claim 4;

【図24】請求項5の発明の実施例を示す要部縦断面図
である。
FIG. 24 is a longitudinal sectional view of a main part showing an embodiment of the invention of claim 5;

【図25】請求項5の発明の実施例を示す要部縦断面図
である。
FIG. 25 is a longitudinal sectional view of a main part showing an embodiment of the invention of claim 5;

【図26】請求項5の発明の実施例を示す要部縦断面図
である。
FIG. 26 is a vertical sectional view of an essential part showing an embodiment of the invention of claim 5;

【符号の説明】[Explanation of symbols]

1 冷媒回路 2 冷却装置 5 蓄氷槽 8 過冷却解消部 9 凍結防止部 22 主熱交換器 25 低圧部 35 液管部 51B 復管路 81 過冷却解消部の冷却伝熱面 82 過冷却解消部の障壁部 83 過冷却解消部の窪み部 85 解消バイパス路 86 過冷却解消部の冷媒入口端 87 過冷却解消部の冷媒出口端 96 凍結防止部の冷媒入口端 97 凍結防止部の冷媒出口端 C4 減圧部 DESCRIPTION OF SYMBOLS 1 Refrigerant circuit 2 Cooling device 5 Ice storage tank 8 Supercooling elimination part 9 Freezing prevention part 22 Main heat exchanger 25 Low pressure part 35 Liquid pipe part 51B Return line 81 Cooling heat transfer surface of supercooling elimination part 82 Supercooling elimination part 83 Depressed portion of supercooled elimination part 85 Elimination bypass passage 86 Refrigerant inlet end of supercooled elimination part 87 Refrigerant outlet end of supercooled elimination part 96 Refrigerant inlet end of antifreeze part 97 Refrigerant outlet end of antifreeze part C4 Decompression section

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−97893(JP,A) 特開 昭63−14063(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25C 1/00 F24F 5/00 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-2-97893 (JP, A) JP-A-63-14063 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25C 1/00 F24F 5/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水又は水溶液のスラリー状の氷化物を貯
溜するための蓄氷槽(5)と、冷却装置(2)に接続さ
れ、水又は水溶液を過冷却するための主熱交換器(2
2)と、上記主熱交換器(22)と蓄氷槽(5)とを接
続する復管路(51B)内の流路中に介設され、水又は
水溶液の過冷却状態を解消させてスラリー状の氷化物に
するための過冷却解消部(8)とを備えた製氷装置にお
いて、上記復管路(51B)における管内表面に対し外
方に膨出する窪み部(83)を形成して、この窪み部
(83)内面を、上記過冷却解消部(8)の冷却伝熱面
(81)としたことを特徴とする製氷装置。
An ice storage tank (5) for storing a slurry of ice or water or an aqueous solution, and a main heat exchanger (superheater) connected to a cooling device (2) for supercooling the water or the aqueous solution. 2
2) and a flow path in a return pipe (51B) connecting the main heat exchanger (22) and the ice storage tank (5) to eliminate a supercooled state of water or an aqueous solution. In an ice making device provided with a supercooling elimination part (8) for making slurry-like iced material, a dent part (83) bulging outward with respect to the inner surface of the pipe in the return pipe (51B) is formed. An ice making apparatus characterized in that an inner surface of the recess (83) is used as a cooling heat transfer surface (81) of the subcooling eliminating portion (8).
【請求項2】 水又は水溶液のスラリー状の氷化物を貯
溜するための蓄氷槽(5)と、冷却装置(2)に接続さ
れ、水又は水溶液を過冷却するための主熱交換器(2
2)と、上記主熱交換器(22)と蓄氷槽(5)とを接
続する復管路(51B)内の流路中に介設され、水又は
水溶液の過冷却状態を解消させてスラリー状の氷化物に
するための過冷却解消部(8)とを備えた製氷装置にお
いて、上記過冷却解消部(8)の冷却伝熱面(81)の
周りに設けられ、水又は水溶液の流速を冷却伝熱面(8
1)で局所的に遅くするための障壁部(82)を備えた
ことを特徴とする製氷装置。
2. An ice storage tank (5) for storing icy slurry in the form of water or an aqueous solution, and a main heat exchanger connected to a cooling device (2) for supercooling the water or the aqueous solution. 2
2) and a flow path in a return pipe (51B) connecting the main heat exchanger (22) and the ice storage tank (5) to eliminate a supercooled state of water or an aqueous solution. In an ice making device provided with a supercooling elimination section (8) for converting into a slurry-like iced material, the icemaking apparatus is provided around a cooling heat transfer surface (81) of the supercooling elimination section (8), and is provided with water or an aqueous solution. Set the flow velocity to the cooling heat transfer surface (8
An ice making device comprising a barrier portion (82) for locally slowing in (1).
【請求項3】 過冷却解消部(8)に近接して設けら
れ、過冷却解消部(8)で生じた氷化物の管壁への付着
を解離させるよう復管路(51B)を加熱する凍結防止
部(9)を備えたことを特徴とする請求項1又は請求項
2記載の製氷装置。
3. A return pipe (51B), which is provided adjacent to the subcooling elimination section (8), and heats the return pipe (51B) so as to dissociate the adhesion of the hydrate generated in the supercooling elimination section (8) to the tube wall. The ice making device according to claim 1 or 2, further comprising an anti-freezing portion (9).
【請求項4】 冷却装置(2)は、圧縮機(11),
(21)、凝縮器(12)、減圧機構(23)及び蒸発
器として作用する主熱交換器(22)を順次接続してな
る冷媒回路(1)を備え、過冷却解消部(8)は上記冷
媒回路(1)の冷媒との熱交換により過冷却状態の水又
は水溶液を冷却するものであり、冷媒回路(1)の液管
部(35)と過冷却解消部(8)の冷媒入口端(86)
との間は減圧部(C4)を介して接続され、過冷却解消
部(8)の冷媒出口端(87)は冷媒回路(1)の低圧
部(25)に接続されていることを特徴とする請求項1
又は請求項2記載の製氷装置。
4. The cooling device (2) includes a compressor (11),
(21) a refrigerant circuit (1) in which a condenser (12), a pressure reducing mechanism (23), and a main heat exchanger (22) acting as an evaporator are sequentially connected. The supercooled water or aqueous solution is cooled by heat exchange with the refrigerant of the refrigerant circuit (1), and the liquid inlet (35) of the refrigerant circuit (1) and the refrigerant inlet of the supercool elimination unit (8). End (86)
Are connected via a pressure reducing section (C4), and the refrigerant outlet end (87) of the subcooling eliminating section (8) is connected to the low pressure section (25) of the refrigerant circuit (1). Claim 1
Or the ice making device according to claim 2.
【請求項5】 冷却装置(2)は、圧縮機(11),
(21)、凝縮器(12)、減圧機構(23)及び蒸発
器として作用する主熱交換器(22)を順次接続してな
る冷媒回路(1)を備え、過冷却解消部(8)は上記冷
媒回路(1)の冷媒との熱交換により過冷却状態の水又
は水溶液を冷却するものであり、凍結防止部(9)は上
記冷媒回路(1)の冷媒との熱交換により過冷却解消部
(8)に近接する管壁を加熱するものであり、凍結防止
部(9)の冷媒入口端(96)は冷媒回路(1)の液管
部(35)に接続され、過冷却解消部(8)の冷媒出口
端(87)は冷媒回路の低圧部(25)に接続され、凍
結防止部(9)の冷媒出口端(97)と過冷却解消部
(8)の冷媒入口端(86)との間は減圧部(C4)を
介して接続されていることを特徴とする請求項3記載の
製氷装置。
5. The cooling device (2) includes a compressor (11),
(21) a refrigerant circuit (1) in which a condenser (12), a pressure reducing mechanism (23), and a main heat exchanger (22) acting as an evaporator are sequentially connected. The supercooled water or the aqueous solution is cooled by heat exchange with the refrigerant in the refrigerant circuit (1), and the antifreeze section (9) eliminates supercooling by heat exchange with the refrigerant in the refrigerant circuit (1). The pipe wall adjacent to the section (8) is heated, and the refrigerant inlet end (96) of the freeze prevention section (9) is connected to the liquid pipe section (35) of the refrigerant circuit (1), and the supercooling elimination section The refrigerant outlet end (87) of (8) is connected to the low-pressure part (25) of the refrigerant circuit, and the refrigerant outlet end (97) of the freezing prevention part (9) and the refrigerant inlet end (86) of the subcooling elimination part (8). 4. The ice making device according to claim 3, wherein the device is connected via a decompression unit (C4).
【請求項6】 水又は水溶液のスラリー状の氷化物を貯
溜するための蓄氷槽(5)と、冷却装置(2)に接続さ
れ、水又は水溶液を過冷却するための主熱交換器(2
2)と、上記主熱交換器(22)と蓄氷槽(5)とを接
続する復管路(51B)内の流路中に介設され、水又は
水溶液の過冷却状態を解消させてスラリー状の氷化物に
するための過冷却解消部(8)とを備えた製氷装置にお
いて、上記復管路(51B)における管内表面に対し外
方に復管路(51B)内の水又は水溶液が流通可能な滞
留部(83)を形成して、この滞留部(83)内面に、
上記過冷却解消部(8)の冷却伝熱面(81)を設けた
ことを特徴とする製氷装置。
6. A slurry of iced water or aqueous solution is stored.
Ice storage tank (5) for storing and cooling device (2)
The main heat exchanger (2) for subcooling water or aqueous solution
2), the main heat exchanger (22) and the ice storage tank (5) are connected.
Is provided in the flow path in the return line (51B)
Eliminate the supercooled state of the aqueous solution to form slurry-like ice
Ice making device equipped with a supercooling elimination section (8)
Outside the inner surface of the pipe in the return pipe (51B).
Water or aqueous solution in the return pipe (51B)
Forming a retaining portion (83), and on the inner surface of the retaining portion (83),
The cooling heat transfer surface (81) of the supercooling elimination section (8) is provided.
An ice making device, characterized in that:
JP03021584A 1991-01-22 1991-01-22 Ice making equipment Expired - Fee Related JP3102042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03021584A JP3102042B2 (en) 1991-01-22 1991-01-22 Ice making equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03021584A JP3102042B2 (en) 1991-01-22 1991-01-22 Ice making equipment

Publications (2)

Publication Number Publication Date
JPH04240367A JPH04240367A (en) 1992-08-27
JP3102042B2 true JP3102042B2 (en) 2000-10-23

Family

ID=12059088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03021584A Expired - Fee Related JP3102042B2 (en) 1991-01-22 1991-01-22 Ice making equipment

Country Status (1)

Country Link
JP (1) JP3102042B2 (en)

Also Published As

Publication number Publication date
JPH04240367A (en) 1992-08-27

Similar Documents

Publication Publication Date Title
JP3102042B2 (en) Ice making equipment
JP2727754B2 (en) Ice making equipment
JPH04222372A (en) Heat accumulating type air conditioning apparatus
JP2946889B2 (en) Ice making equipment
JP2982742B2 (en) Ice making equipment
JP2806155B2 (en) Ice making equipment
JPH03271643A (en) Operation method of ice regenerating air-conditioning system
JPH09310894A (en) Ice heat accumulator
JP3141777B2 (en) Ice storage device
JP2630143B2 (en) Ice making equipment
JP3920540B2 (en) Air conditioner
JP2841908B2 (en) Ice making equipment
JP3427628B2 (en) Ice storage device
JP2924460B2 (en) Air conditioner
JPH0810098B2 (en) Ice making equipment
JP3266334B2 (en) Heat storage tank for air conditioning
JPH0810099B2 (en) Ice making equipment
JPH07122524B2 (en) refrigerator
JPH11325627A (en) Refrigerator
JPH1047822A (en) Ice heat storage device
JP3788391B2 (en) Ice heat storage device
JPH0359335A (en) Thermal accumulation system
JPH10185249A (en) Ice storage apparatus
JPH02219959A (en) Regenerative air conditioner
JPH0799303B2 (en) Ice making equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080825

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees