JP2806155B2 - Ice making equipment - Google Patents

Ice making equipment

Info

Publication number
JP2806155B2
JP2806155B2 JP4183403A JP18340392A JP2806155B2 JP 2806155 B2 JP2806155 B2 JP 2806155B2 JP 4183403 A JP4183403 A JP 4183403A JP 18340392 A JP18340392 A JP 18340392A JP 2806155 B2 JP2806155 B2 JP 2806155B2
Authority
JP
Japan
Prior art keywords
ice
refrigerant
storage material
heat
cold storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4183403A
Other languages
Japanese (ja)
Other versions
JPH0626672A (en
Inventor
弘二 松岡
伸二 松浦
恭伸 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP4183403A priority Critical patent/JP2806155B2/en
Publication of JPH0626672A publication Critical patent/JPH0626672A/en
Application granted granted Critical
Publication of JP2806155B2 publication Critical patent/JP2806155B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、空気調和装置等に使用
される製氷装置に係り、とくに蓄氷槽容積に対するIP
F向上および蓄熱利用時の蓄熱回収効率の向上対策に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice making device used for an air conditioner, etc.
The present invention relates to measures for improving F and improving heat storage recovery efficiency when utilizing heat storage.

【0002】[0002]

【従来の技術】この種の製氷装置は、特開平4−386
7号公報に開示されているように、蓄氷槽(21)と過
冷却生成冷却器である水熱交換器と過冷却解消部とを循
環路により順次接続して水または水溶液である蓄冷材の
循環可能な閉回路に形成され、水熱交換器で蓄冷材を過
冷却し、蓄冷材の過冷却状態を循環路内の過冷却解消部
で解消してスラリー状の氷化物を生成し、スラリー状の
氷化物が混在する蓄冷材を蓄氷槽まで流通して蓄氷槽に
貯溜している。
2. Description of the Related Art This type of ice making apparatus is disclosed in Japanese Patent Application Laid-Open No. 4-386.
As disclosed in Japanese Patent Application Publication No. 7-107, an ice storage tank (21), a water heat exchanger as a supercooling generation cooler, and a supercooling elimination section are sequentially connected by a circulation path to form a cold storage material as water or aqueous solution Is formed in a closed circuit that can be circulated, supercooling the regenerator material with a water heat exchanger, eliminating the supercooled state of the regenerator material in the supercooling elimination section in the circulation path to generate slurry-like iced matter, The regenerative material containing the slurry-like ice is distributed to the ice storage tank and stored in the ice storage tank.

【0003】また、循環路は蓄氷槽への流入口が蓄冷材
中に開口して蓄冷材中に氷化物が混在する蓄冷材を流入
させており、蓄氷槽の上部空間より蓄冷材を流下する場
合に比べて上部空間を小さくすることができ、小容量の
蓄氷槽でも大きなIPF(製氷時の蓄冷材の全体積に対
する氷体積の割合)が得られるようにしている。
[0003] In the circulation path, an inlet to the ice storage tank is opened in the cold storage material to allow the cold storage material containing icing to flow into the cold storage material, and the cold storage material is supplied from the upper space of the ice storage tank. The upper space can be made smaller than in the case of flowing down, and a large IPF (ratio of ice volume to the total volume of the cold storage material during ice making) can be obtained even with a small capacity ice storage tank.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記製
氷装置では、流入口が蓄氷槽の蓄冷材中に開口している
ために、何等の措置も講じないと流入口が氷化物で詰ま
るおそれがある。つまり、氷化物が液中に蓄積層を形成
するIPFが大きい場合に流入口は氷化物で詰まり易い
が、IPFが小さい場合であっても、スラリー状の氷化
物が液状の蓄冷材中を浮遊して流入口に侵入しやすいた
めに、詰まり易い。
However, in the above ice making device, since the inflow port is opened in the cold storage material of the ice storage tank, the inflow port may be clogged with icing matter unless any measures are taken. is there. In other words, when the IPF that forms an accumulation layer in the liquid is large, the inflow port is likely to be clogged with the ice. However, even when the IPF is small, the slurry-like ice floats in the liquid cold storage material. It is easy to clog because it is easy to enter the inflow port.

【0005】本発明は、かかる点に鑑みてなされたもの
であって、蓄氷槽内の蓄冷材中に開口する流入管の目詰
まりを防止することを目的としている。
[0005] The present invention has been made in view of the above, and has as its object to prevent clogging of an inflow pipe that opens into a cold storage material in an ice storage tank.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る発明が講じた手段は、蓄冷材(W)
中に開口し、液状の蓄冷材(W)の貯溜空間を形成する
噴流を生起する流入管を設けるものである。
Means for solving the problems In order to achieve the above object, the means according to the first aspect of the present invention is a cold storage material (W).
An inflow pipe that opens to the inside and generates a jet that forms a storage space for a liquid cold storage material (W) is provided.

【0007】具体的には、請求項1に係る発明が講じた
手段は、図1に示すように、スラリー状に氷化された蓄
冷材(W)を貯溜するための蓄氷槽(21)と、蓄冷材
(W)を過冷却するための冷却手段(25)と、該蓄氷
槽(21)と該冷却手段(25)との間に設けられて該
蓄冷材(W)の過冷却状態を解消する過冷却解消部(2
7)とが蓄冷材(W)の循環可能に接続されて製氷回路
(Y)が構成され、過冷却された蓄冷材(W)の過冷却
状態を解消して生成した氷化物を上記蓄氷槽(21)に
貯溜する製氷装置を前提としている。
More specifically, as shown in FIG. 1, the means adopted by the invention according to claim 1 is an ice storage tank (21) for storing a cold storage material (W) which has been turned into a slurry. If, cooling means for the regenerator material (W) is subcooled (25), accumulating ice
The cooling means (25) is provided between the tank (21) and the cooling means (25).
A supercooling elimination unit (2) for eliminating the supercooled state of the cold storage material (W)
7) is connected to the cold storage material (W) in a circulating manner to form an ice making circuit (Y). It is assumed that an ice making device is stored in the tank (21).

【0008】そして、図6に示すように、上記蓄氷槽
(21)には、上記製氷回路(Y)から蓄冷材(W)が
流入する流入口(85)が形成されると共に、上記製氷
回路(Y)に蓄冷材(W)を流出させる流出口(87)
が形成された構成としている。
As shown in FIG. 6, the ice storage tank (21) is formed with an inlet (85) through which the cold storage material (W) flows from the ice making circuit (Y), and the ice making tank (21). Outlet (87) for letting out cold storage material (W) into circuit (Y)
Is formed.

【0009】上記蓄氷槽(21)内には、上記流入口
(85)に接続される一方、該蓄氷槽(21)の内底部
付近から上方に向かって蓄冷材(W)中に開口する開口
部(93)を備え、スラリー状に氷化した蓄冷材(W)
を該開口部(93)から放出して液状の蓄冷材(W)の
貯留空間(S)を形成する噴流を生起する流入管(9
1)が設けられている構成としている。
[0009] The aforementioned蓄氷tank (21), whereas that will be connected to the inlet (85), the inner bottom portion of the accumulating ice bath (21)
An opening that opens into the cold storage material (W) from near to upward
Part (93), cold storage material (W) iced into slurry
Is discharged from the opening (93) to generate a jet forming a storage space (S) for the liquid cold storage material (W).
1) is provided.

【0010】[0010]

【作用】上記の構成により、請求項1に係る発明では、
冷却手段(25)で過冷却された蓄冷材(W)が、過冷
却解消部(27)において過冷却状態を解消されて氷化
し、氷化物が混在する蓄冷材(W)が流入管(91)
開口部(93)より蓄氷槽(21)に流入し、蓄氷槽
(21)内に氷化物が貯溜される。
According to the first aspect of the present invention,
Subcooled regenerator material in the cooling means (25) (W) is supercooled
The refrigerating material (W) in which the supercooled state is eliminated in the rejection canceling section (27) and iced and iced material is mixed is introduced into the inflow pipe (91) .
The ice flows into the ice storage tank (21) through the opening (93) , and iced matter is stored in the ice storage tank (21).

【0011】流入管(91)は、液状の蓄冷材(W)の
貯溜空間(液空間)(S)を形成する噴流を生起するの
で、噴流の流入流域に氷化物が存在していても噴流によ
って流入流域外に押し退けられ、流入管(91)内に氷
化物が侵入して詰まることがない。
The inflow pipe (91) generates a jet forming a storage space (liquid space) (S) for the liquid regenerator material (W), so that even if icing matter is present in the inflow area of the jet, the jet is generated. As a result, it is pushed out of the inflow basin, so that the hydrate does not enter the inflow pipe (91) and is clogged.

【0012】[0012]

【発明の効果】以上のように、請求項1に係る発明によ
れば、流入管(91)が液空間(S)を形成する噴流を
生起するので、流入管(91)の詰まりを防止すること
ができ、蓄冷材(W)中に流入管(91)が開口してい
ても常に蓄氷槽(21)への氷化物の流入を確保するこ
とができる。したがって、所定容積の貯溜容量に対して
上部空間をできるだけ小さくして蓄氷槽(21)を小容
量化する場合にも、流入管(91)の詰まりによるIP
Fの低下を防止することができる。
As described above, according to the first aspect of the present invention, since the inflow pipe (91) generates a jet forming the liquid space (S), clogging of the inflow pipe (91) is prevented. Even if the inflow pipe (91) is open in the cold storage material (W), it is possible to always ensure the flow of the iced substance into the ice storage tank (21). Therefore, even when the upper space is made as small as possible with respect to the storage capacity of the predetermined volume to reduce the capacity of the ice storage tank (21), the IP due to the clogging of the inflow pipe (91) can be reduced.
F can be prevented from lowering.

【0013】[0013]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1〜図6は請求項1に係る発明の第1実
施例を示す。図1は、本実施例の製氷装置(M)を備え
た空気調和装置(N)の全体構成を示し、室外ユニット
(X)に対して、複数の室内ユニット(A),(A),
…が接続されたいわゆるマルチ形空気調和装置である。
FIGS. 1 to 6 show a first embodiment of the present invention. FIG. 1 shows an overall configuration of an air conditioner (N) including an ice making device (M) according to the present embodiment, and a plurality of indoor units (A), (A), and an outdoor unit (X).
... are connected so-called multi-type air conditioners.

【0015】上記室外ユニット(X)においては、
(1)は第1圧縮機、(11)は第2圧縮機(11)、
(2)は図中実線と図中破線との2方向に切り換わる四
路切換弁、(3)は冷房運転時には凝縮器として暖房運
転時には蒸発器として機能する熱源側空気熱交換器とし
ての室外熱交換器、(4)は通常冷房運転時には冷媒流
量調節弁として機能し、暖房運転時と蓄熱冷房運転時と
には冷媒を減圧する高熱源側減圧機構として機能する室
外電動膨脹弁である。
In the outdoor unit (X),
(1) is a first compressor, (11) is a second compressor (11),
(2) is a four-way switching valve that switches in two directions, a solid line and a broken line in the figure, and (3) is an outdoor heat source side air heat exchanger that functions as a condenser during cooling operation and as an evaporator during heating operation. The heat exchanger (4) is an outdoor electric expansion valve that functions as a refrigerant flow control valve during normal cooling operation, and functions as a high heat source side pressure reducing mechanism that depressurizes the refrigerant during heating operation and heat storage cooling operation.

【0016】一方、各室内ユニット(A),(A),…
は、同一構成のものが並列に接続されており、(6)は
冷房運転時には利用側減圧機構として機能し、暖房運転
時には冷媒流量調整弁として機能する室内電動膨脹弁、
(7)は冷房運転時には蒸発器として、暖房運転時には
凝縮器として機能する利用側熱交換器としての室内熱交
換器である。
On the other hand, each indoor unit (A), (A),...
Are electrically connected in parallel, and (6) is an indoor electric expansion valve that functions as a use side pressure reducing mechanism during cooling operation and functions as a refrigerant flow control valve during heating operation.
(7) is an indoor heat exchanger as a use side heat exchanger that functions as an evaporator during a cooling operation and as a condenser during a heating operation.

【0017】そして、上記第1圧縮機(1)と、四路切
換弁(2)と、室外熱交換器(3)と、室外電動膨脹弁
(4)とが順次接続された高熱源側回路(B)と、室外
電動膨脹弁(4)側より各室内ユニットの(A),
(A),…の室内電動膨脹弁(6),(6),…と室内
熱交換器(7),(7),…とが順次接続された利用側
回路(C)とが形成され、高熱源側回路(B)の室外電
動膨脹弁(4)側と利用側回路(C)の室内電動膨脹弁
(6),(6),…側とが接続部(g)において接続さ
れる一方、利用側回路(C)の室内熱交換器(7),
(7),…側は四路切換弁(2)に接続されて、冷媒が
可逆循環して室外空気との熱交換によって得た熱を室内
空気に放出するヒートポンプ作用を有する主冷媒回路
(E)が形成されている。
A high heat source side circuit in which the first compressor (1), the four-way switching valve (2), the outdoor heat exchanger (3), and the outdoor electric expansion valve (4) are sequentially connected. (B) and (A) and (A) of each indoor unit from the outdoor electric expansion valve (4) side.
The indoor electric expansion valves (6), (6),... Of (A), and the indoor heat exchangers (7), (7),. The outdoor electric expansion valve (4) side of the high heat source side circuit (B) and the indoor electric expansion valves (6), (6),... Side of the utilization side circuit (C) are connected at the connection part (g). , The indoor heat exchanger (7) of the use side circuit (C),
The (7),... Sides are connected to the four-way switching valve (2), and the main refrigerant circuit (E) has a heat pump function of releasing the heat obtained by reversible circulation of the refrigerant and heat exchange with the outdoor air to the indoor air. ) Is formed.

【0018】また、主冷媒回路(E)には、高熱源側回
路(B)に対して並列に低熱源側回路(H)が接続さ
れ、つまり、低熱源側回路(H)は、一端が第1圧縮機
(1)の吸込側に、他端が上記接続部(g)に接続され
ている。低熱源側回路(H)には、第1圧縮機(1)側
より第2圧縮機(11)と、低熱源側熱交換器(13)
と、蓄熱冷房運転時に流量調整をする低熱源側電動膨脹
弁(14)とが順次接続されている。第1圧縮機(1)
の吐出側と第2圧縮機(11)の吐出側との間には、第
1圧縮機(1)から第2圧縮機(11)への冷媒の流入
を阻止する逆止弁(17)と、ピークカット用電磁弁
(19)とが並列に接続されている。また、上記空気調
和装置(N)には、冷媒との熱交換により冷熱を蓄熱す
る蓄熱運転と、この蓄熱を利用して冷房を行う蓄熱冷房
運転とを行うための製氷装置(M)が配置されている。
A low heat source side circuit (H) is connected to the main refrigerant circuit (E) in parallel with the high heat source side circuit (B), that is, the low heat source side circuit (H) has one end. The other end is connected to the suction portion of the first compressor (1) and to the connection portion (g). The low heat source side circuit (H) includes a second compressor (11) from the first compressor (1) side and a low heat source side heat exchanger (13).
And a low heat source side electric expansion valve (14) for adjusting the flow rate during the heat storage cooling operation. First compressor (1)
A check valve (17) between the discharge side of the first compressor and the discharge side of the second compressor (11) for preventing refrigerant from flowing from the first compressor (1) to the second compressor (11); , And a peak cut solenoid valve (19) are connected in parallel. The air conditioner (N) includes an ice making device (M) for performing a heat storage operation for storing cold heat by exchanging heat with a refrigerant and a heat storage cooling operation for performing cooling using the heat storage. Have been.

【0019】該製氷装置(M)は、スラリー状に氷化さ
れた蓄冷材(W)を貯溜して冷熱を蓄熱する蓄氷槽(2
1)と、ポンプ(23)と、低熱源側熱交換器(13)
と、冷媒との熱交換によって蓄冷材(W)を過冷却す
る、請求項1に係る発明の冷却手段としての過冷却生成
熱交換器(25)と、凍結進展防止部(31)と、蓄冷
材(W)の過冷却状態を解消する過冷却解消部(27)
とが循環路(29)によって蓄冷材(W)の循環可能に
順次接続されて閉回路の製氷回路(Y)に形成されてい
る。蓄冷材(W)としては、水または水溶液が用いられ
る。
The ice making device (M) stores an ice storage material (W) which has been iced into a slurry and stores cold heat.
1), a pump (23), and a heat source side heat exchanger (13)
A supercooling-generating heat exchanger (25) as a cooling means according to the invention according to the first aspect, wherein the cold storage material (W) is supercooled by heat exchange with a refrigerant; Supercooling elimination unit (27) for eliminating the supercooled state of material (W)
Are sequentially connected by a circulation path (29) so that the cold storage material (W) can be circulated to form a closed circuit ice making circuit (Y). Water or an aqueous solution is used as the cold storage material (W).

【0020】上記低熱源側熱交換器(13)は、蓄熱運
転時には蓄冷材(W)を予熱する凝縮器として機能し、
蓄熱冷房運転時には冷媒と蓄冷材(W)との熱交換によ
り冷熱を回収する凝縮器として機能するように構成され
ている。
The low heat source side heat exchanger (13) functions as a condenser for preheating the cold storage material (W) during the heat storage operation.
At the time of heat storage cooling operation, it is configured to function as a condenser for recovering cold heat by heat exchange between the refrigerant and the cold storage material (W).

【0021】また、上記製氷回路(Y)の過冷却生成熱
交換器(25)への冷熱の供給を目的として、主冷媒回
路(E)には過冷却生成回路(F)が接続されている。
該過冷却生成回路(F)は、流入端(33a)が主冷媒
回路(E)の接続部(g)に接続され、低熱源側回路
(H)との共通管路(35)を経て分岐部(37)で低
熱源側回路(H)と分岐して流出端(33b)が両圧縮
機(1),(11)の吸込側に接続され、該過冷却生成
回路(F)には接続部(g)側より蓄熱運転時に減圧機
構として機能する水側電動膨脹弁(39)と、過冷却生
成熱交換器(25)とが順次介設されている。
A supercooling generation circuit (F) is connected to the main refrigerant circuit (E) for the purpose of supplying cold heat to the supercooling generation heat exchanger (25) of the ice making circuit (Y). .
The subcooling generation circuit (F) has an inflow end (33a) connected to the connection part (g) of the main refrigerant circuit (E), and branches via a common conduit (35) with the low heat source side circuit (H). The branch (37) branches off from the low heat source side circuit (H), and the outflow end (33b) is connected to the suction side of both compressors (1) and (11), and is connected to the supercooling generation circuit (F). From the part (g) side, a water-side electric expansion valve (39) functioning as a pressure reducing mechanism during the heat storage operation and a supercooling-generation heat exchanger (25) are sequentially provided.

【0022】過冷却生成熱交換器(25)は、満液式で
あって、液冷媒の液面を調整して冷却能力が制御される
ようになっている。
The supercooling heat exchanger (25) is of a liquid-filled type, and the cooling capacity is controlled by adjusting the liquid level of the liquid refrigerant.

【0023】そして、上記低熱源側熱交換器(13)と
過冷却生成熱交換器(25)とで熱交換部(81)が構
成され、該熱交換部(81)は、冷凍回路である主冷媒
回路(E)に接続され、蓄熱運転時に冷媒との熱交換に
より蓄冷材(W)を過冷却する蒸発器としての過冷却生
成熱交換器(25)と、蓄熱冷房運転時に冷媒との熱交
換により蓄冷材(W)の冷熱を回収する凝縮器としての
低熱源側熱交換器(13)とに切換可能に構成されてい
る。
The low heat source side heat exchanger (13) and the supercooling heat exchanger (25) constitute a heat exchange section (81), and the heat exchange section (81) is a refrigeration circuit. A supercooling-generating heat exchanger (25), which is connected to the main refrigerant circuit (E) and supercools the cold storage material (W) by heat exchange with the refrigerant during the heat storage operation; It is configured to be switchable to a low-heat-source-side heat exchanger (13) as a condenser that recovers cold energy of the cold storage material (W) by heat exchange.

【0024】また、上記凍結進展防止部(31)は、過
冷却解消部(27)における過冷却状態の解消によって
生成した氷化物が循環路(29)の管壁に付着して凍結
が発生した場合に過冷却生成熱交換器(25)への凍結
進展を防止するようになっている。
Further, in the freezing progress preventing section (31), the frost generated by the elimination of the supercooled state in the subcooling elimination section (27) adheres to the pipe wall of the circulation path (29) and freezes. In such a case, the freezing of the supercooled heat exchanger (25) is prevented from progressing.

【0025】凍結進展防止部(31)への暖熱の供給を
目的として、第2圧縮機(11)の吐出側に流入端(4
1a)が、過冷却生成回路(F)の水側電動膨脹弁(3
9)より上流側に流出端(41b)がそれぞれ接続され
て第1バイパス路(41)が形成され、該第1バイパス
路(41)には流入端(41a)側より凍結進展防止部
(31)と冷媒冷却用電動膨脹弁(43)とが介設され
ている。
For the purpose of supplying warming heat to the freezing prevention unit (31), the inflow end (4) is connected to the discharge side of the second compressor (11).
1a) is a water-side electric expansion valve (3) of the supercool generation circuit (F).
9) The outflow ends (41b) are respectively connected to the upstream side to form a first bypass passage (41), and the first bypass passage (41) is provided with a freezing / extension preventing portion (31) from the inflow end (41a) side. ) And an electric expansion valve (43) for cooling the refrigerant.

【0026】さらに、過冷却解消部(27)への冷熱の
供給を目的として、第1バイパス路(41)の冷媒冷却
用電動膨脹弁(43)より下流側に流入端(45a)
が、過冷却生成回路(F)の過冷却生成熱交換器(2
5)より下流側に流出端(45b)がそれぞれ接続され
て第2バイパス路(45)が形成され、該第2バイパス
路(45)には過冷却解消部(27)が介設されてい
る。
Further, for the purpose of supplying cold heat to the subcooling elimination section (27), the inflow end (45a) of the first bypass passage (41) is located downstream of the refrigerant cooling electric expansion valve (43).
Is the supercooling generation heat exchanger (2) of the supercooling generation circuit (F).
5) The outflow ends (45b) are connected to the downstream side, respectively, to form a second bypass passage (45), and a subcooling eliminating section (27) is interposed in the second bypass passage (45). .

【0027】また、室外熱交換器(3)より下流側の高
熱源側回路(B)に、室外電動膨脹弁(4)と、室外熱
交換器(3)からの凝縮冷媒をガス冷媒と液冷媒とに分
離する気液分離器(61)とが順次介設されている。気
液分離器(61)のガス流出口(63)にはガス通路
(65)の一端が接続され、該ガス通路(65)の他端
が第2圧縮機(11)と低熱源側熱交換器(13)との
間の低熱源側回路(H)に接続されている。ガス通路
(65)には、第2圧縮機(11)からの高圧ガスの流
入防止のための逆止弁(73)が介設されている。
In the high heat source circuit (B) downstream of the outdoor heat exchanger (3), the outdoor electric expansion valve (4) and the condensed refrigerant from the outdoor heat exchanger (3) are mixed with gas refrigerant and liquid. A gas-liquid separator (61) for separating into a refrigerant is sequentially provided. One end of a gas passage (65) is connected to a gas outlet (63) of the gas-liquid separator (61), and the other end of the gas passage (65) is connected to the second compressor (11) with a low heat source side heat exchanger. The low heat source side circuit (H) is connected to the heat source (13). A check valve (73) for preventing the inflow of high-pressure gas from the second compressor (11) is provided in the gas passage (65).

【0028】また、気液分離器(61)と合流点(g)
との間に、蓄熱冷房運転時にガス通路(65)によるガ
ス抜きを可能にするためのキャピラリーチューブ(7
1)が設けられている。また、気液分離器(61)より
下流側の高熱源側回路(H)と接続部(g)付近の利用
側回路(C)との間を接続して逆止弁(74)が介設さ
れ、該逆止弁(74)は、暖房運転時にキャピラリーチ
ューブ(71)をバイパスして冷媒を気液分流器(6
1)に流通させるようになっている。
Further, a point of confluence (g) with the gas-liquid separator (61)
And a capillary tube (7) for allowing the gas passage (65) to release gas during the heat storage cooling operation.
1) is provided. In addition, a check valve (74) is interposed between the high heat source side circuit (H) downstream of the gas-liquid separator (61) and the utilization side circuit (C) near the connection part (g). The check valve (74) bypasses the capillary tube (71) during the heating operation and transfers the refrigerant to the gas-liquid distributor (6).
It is designed to be distributed in 1).

【0029】そして、各種運転モードに応じて、上記各
弁の切り換えあるいは開度の調節を行い、冷媒の循環経
路を切り換えるように構成されている。次に、上記空気
調和装置(N)の各運転モードにおける回路構成と冷媒
の循環動作について説明する。図1に示すように、通常
冷房運転時には、四路切換弁(2)を実線側に切り換
え、低熱源側電動膨脹弁(14)と、水側電動膨脹弁
(39)と、冷媒冷却用電動膨脹弁(43)と、ピーク
カット用電磁弁(19)とを閉制御する一方、室外電動
膨脹弁(4)と、室内電動膨脹弁(6),(6),…と
を開制御して、冷媒が主冷媒回路(E)のみを流れる運
転制御状態にする。第1圧縮機(1)および第2圧縮機
(11)の吐出冷媒は、室外熱交換器(3)で凝縮し、
室内電動膨脹弁(6),(6),…で減圧された後、室
内熱交換器(7),(7),…で蒸発して両圧縮機
(1),(11)に戻る。
Then, in accordance with the various operation modes, the valves are switched or the opening degree is adjusted to switch the refrigerant circulation path. Next, a circuit configuration and a refrigerant circulation operation in each operation mode of the air conditioner (N) will be described. As shown in FIG. 1, during the normal cooling operation, the four-way switching valve (2) is switched to the solid line side, and the low heat source side electric expansion valve (14), the water side electric expansion valve (39), and the refrigerant cooling electric expansion valve. While the expansion valve (43) and the peak cut solenoid valve (19) are controlled to be closed, the outdoor electric expansion valve (4) and the indoor electric expansion valves (6), (6),. Then, an operation control state is set in which the refrigerant flows only through the main refrigerant circuit (E). The refrigerant discharged from the first compressor (1) and the second compressor (11) is condensed in the outdoor heat exchanger (3),
After being decompressed by the indoor electric expansion valves (6), (6), ..., they are evaporated by the indoor heat exchangers (7), (7), ... and return to the compressors (1), (11).

【0030】暖房運転時には、四路切換弁(2)を破線
側に切り換え、低熱源電動膨脹弁(14)と、水側電動
膨脹弁(39)と、冷媒冷却用電動膨脹弁(43)と、
ピークカット用電磁弁(19)とを閉制御する一方、室
外電動膨脹弁(4)と、室内電動膨脹弁(6),
(6),…とを開制御して、冷媒が主冷媒回路(E)の
みを流れる運転制御状態にする。両圧縮機(1),(1
1)の吐出冷媒は、室内熱交換器(7),(7),…で
凝縮し、室外電動膨脹弁(4)で減圧された後、室外熱
交換器(3)で蒸発して両圧縮機(1),(11)に戻
る。
At the time of heating operation, the four-way switching valve (2) is switched to the broken line side, and the low heat source electric expansion valve (14), the water side electric expansion valve (39), and the refrigerant cooling electric expansion valve (43) are provided. ,
While closing the peak cut solenoid valve (19), the outdoor electric expansion valve (4), the indoor electric expansion valve (6),
(6), ... are controlled to be in an operation control state in which the refrigerant flows only through the main refrigerant circuit (E). Both compressors (1), (1
The refrigerant discharged in 1) is condensed in the indoor heat exchangers (7), (7),..., Decompressed by the outdoor electric expansion valve (4), and then evaporated in the outdoor heat exchanger (3) to compress both refrigerants. Return to machines (1) and (11).

【0031】蓄熱運転時には、四路切換弁(2)を実線
側に切り換え、室外電動膨脹弁(4)と、低熱源側電動
膨脹弁(14)と、水側電動膨脹弁(39)と、冷媒冷
却用電動膨脹弁(43)とを開制御する一方、室内電動
膨脹弁(6),(6),…と、ピークカット用電磁弁
(19)とを閉制御して、高熱源側回路(B)と、低熱
源側回路(H)と、過冷却生成回路(F)と、第1バイ
パス路(41)と、第2バイパス路(45)とが冷媒の
流通可能な状態になる一方、利用側回路(C)への冷媒
の流通が遮断される運転制御状態にする。第1圧縮機
(1)の吐出冷媒は、室外熱交換器(3)で凝縮し、過
冷却生成回路(F)に流れ、水側電動膨脹弁(39)で
減圧された後過冷却生成熱交換器(25)で蒸発し、高
熱源側回路(B)に再び流入して第1圧縮機(1)に戻
る。
In the heat storage operation, the four-way switching valve (2) is switched to the solid line side, and the outdoor electric expansion valve (4), the low heat source side electric expansion valve (14), the water side electric expansion valve (39), While the refrigerant cooling electric expansion valve (43) is controlled to be open, the indoor electric expansion valves (6), (6),... And the peak cut solenoid valve (19) are controlled to be closed, so that the high heat source side circuit is controlled. (B), the low heat source side circuit (H), the subcooling generation circuit (F), the first bypass path (41), and the second bypass path (45) while the refrigerant is in a state where it can be circulated. Then, the operation control state is set in which the circulation of the refrigerant to the use side circuit (C) is interrupted. Refrigerant discharged from the first compressor (1) is condensed in the outdoor heat exchanger (3), flows into the supercooling generation circuit (F), is depressurized by the water-side electric expansion valve (39), and is then cooled by the supercooling heat. It evaporates in the exchanger (25), flows again into the high heat source side circuit (B), and returns to the first compressor (1).

【0032】一方、第2圧縮機(11)の吐出冷媒は、
第1バイパス路(41)と低熱源側回路(H)とに分岐
する。第1バイパス路(41)に流れた冷媒は、凍結進
展防止部(31)で凝縮し、冷媒冷却用電動膨脹弁(4
3)で減圧されて冷媒温度が0℃より低温に冷却された
後、一部が第2バイパス路(45)に分岐して過冷却解
消部(27)で蒸発して過冷却生成回路(F)を経て第
2圧縮機(11)に戻る。冷媒の残部はそのまま第1バ
イパス路(41)を流れて過冷却生成回路(F)に合流
し、過冷却解消部(27)を経て第2圧縮機(11)に
戻る。
On the other hand, the refrigerant discharged from the second compressor (11)
It branches to a first bypass path (41) and a low heat source side circuit (H). The refrigerant flowing into the first bypass passage (41) is condensed in the freeze-prevention preventing section (31), and the refrigerant-cooled electric expansion valve (4) is condensed.
After the pressure is reduced in 3) and the refrigerant temperature is cooled to a temperature lower than 0 ° C., a part thereof branches to the second bypass passage (45) and evaporates in the subcooling elimination section (27) to evaporate. ), And returns to the second compressor (11). The remainder of the refrigerant flows through the first bypass path (41) as it is, joins the supercool generation circuit (F), and returns to the second compressor (11) via the supercool elimination section (27).

【0033】また、低熱源側回路(H)に流れた冷媒
は、低熱源側熱交換器(13)で凝縮し、分岐部(3
7)で高熱源側回路(B)からの液冷媒と合流して過冷
却生成回路(F)に流れ、過冷却解消部(27)を経て
第2圧縮機(11)に戻る。
The refrigerant flowing to the low heat source side circuit (H) is condensed in the low heat source side heat exchanger (13), and is condensed in the branch (3).
At 7), the refrigerant merges with the liquid refrigerant from the high heat source side circuit (B), flows into the supercool generation circuit (F), and returns to the second compressor (11) via the supercool elimination section (27).

【0034】上記冷媒流通状態において、冷媒は、低熱
源側熱交換器(13)で蓄冷材(W)を予熱して蓄冷材
(W)中に氷化物が混在している場合には該氷化物を融
解し、過冷却生成熱交換器(25)で循環路(29)を
流通する蓄冷材(W)を過冷却し、凍結進展防止部(3
1)で循環路(29)の管壁を加温して凍結の進展を防
止し、過冷却解消部(27)で蓄冷材(W)の過冷却状
態を解消して氷化を開始させてスラリー状の氷化物を生
成する。そして、氷化物は蓄氷槽(21)に貯溜されて
冷熱が蓄えられる。
In the refrigerant flowing state, the refrigerant preheats the cold storage material (W) in the low heat source side heat exchanger (13), and when the ice material is mixed in the cold storage material (W), the cold storage material The supercooled material (W) flowing through the circulation path (29) is supercooled by the supercooling generation heat exchanger (25),
In 1), the pipe wall of the circulation path (29) is heated to prevent the progress of freezing, and the supercooling elimination section (27) eliminates the supercooled state of the cold storage material (W) to start icing. Produces slurry ice. The iced material is stored in an ice storage tank (21) to store cold heat.

【0035】蓄熱冷房運転時には、四路切換弁(2)が
実線側に切り換えられ、水側電動膨脹弁(39)と、冷
媒冷却用電動膨脹弁(43)と、ピークカット用電磁弁
(19)とを閉制御する一方、室外電動膨脹弁(4)
と、室内電動膨脹弁(6),(6),…と、低熱源側電
動膨脹弁(14)とを開制御して、高熱源側回路(B)
と低熱源側回路(H)とに分流する冷媒が利用側回路
(C)に合流して流れる運転制御状態にする。高熱源側
回路(B)における第1圧縮機(1)の吐出冷媒は、室
外熱交換器(3)で凝縮され、室外電動膨脹弁(4)で
低熱源側回路(H)の液管圧力にまで減圧される一方、
低熱源側回路(H)における第2圧縮機(11)の吐出
冷媒は、低熱源側熱交換器(13)で凝縮され、両凝縮
冷媒は主冷媒回路(E)の接続部(g)で合流して利用
側回路(C)に流れ、室内電動膨脹弁(6),(6),
…で減圧され、室内熱交換器(7),(7),…で蒸発
した後高熱源側回路(B)に流入し、両圧縮機(1),
(11)に戻る。
During the heat storage cooling operation, the four-way switching valve (2) is switched to the solid line side, and the water side electric expansion valve (39), the refrigerant cooling electric expansion valve (43), and the peak cut solenoid valve (19) are used. ) And the outdoor electric expansion valve (4)
, The indoor electric expansion valves (6), (6),... And the low heat source side electric expansion valve (14) are opened to control the high heat source side circuit (B).
And the low heat source side circuit (H) is brought into the operation control state in which the refrigerant diverted to the utilization side circuit (C) flows together. Refrigerant discharged from the first compressor (1) in the high heat source side circuit (B) is condensed in the outdoor heat exchanger (3), and the liquid pressure of the low heat source side circuit (H) is passed through the outdoor electric expansion valve (4). While the pressure is reduced to
Refrigerant discharged from the second compressor (11) in the low heat source side circuit (H) is condensed in the low heat source side heat exchanger (13), and both condensed refrigerants are connected in the connection part (g) of the main refrigerant circuit (E). Merge and flow to the use side circuit (C), and the indoor electric expansion valves (6), (6),
, And evaporates in the indoor heat exchangers (7), (7),..., Flows into the high heat source side circuit (B),
Return to (11).

【0036】キャピラリーチューブ(71)が高熱源側
回路(B)の液管の圧力を減圧することにより、ガス通
路(65)を介して高熱源側回路(B)のフラッシュガ
スがガス抜きされ、低熱源側熱交換器(13)の凝縮温
度が低温度の設定値に保持される。しかも、第2圧縮機
(11)の吐出側にガス抜きするので、冷媒循環量が減
少することなく冷房運転が行われる。
When the capillary tube (71) reduces the pressure of the liquid pipe of the high heat source side circuit (B), the flash gas of the high heat source side circuit (B) is vented through the gas passage (65). The condensing temperature of the low heat source side heat exchanger (13) is maintained at a low temperature set value. In addition, since the gas is vented to the discharge side of the second compressor (11), the cooling operation is performed without reducing the refrigerant circulation amount.

【0037】さらに、上記蓄熱冷房運転の一態様とし
て、電力使用量がピークに達する日中においては、蓄熱
だけを利用する蓄熱専用冷房運転を行う。つまり、上記
蓄熱冷房運転時において、室外電動膨脹弁(4)を閉制
御して高熱源側回路(B)を遮断する一方、ピークカッ
ト用電磁弁(19)を開制御して第1圧縮機(1)から
の冷媒を低熱源側回路(H)に流通させる運転制御状態
にする。両圧縮機(1),(11)の吐出冷媒は、低熱
源側熱交換器(13)だけで凝縮されるので、日中の圧
縮機の容量を減少することができ、電力使用量の低減と
安定した冷房運転が可能になる。
Further, as one mode of the heat storage cooling operation, during the daytime when the electric power consumption reaches a peak, a heat storage only cooling operation using only heat storage is performed. That is, during the thermal storage cooling operation, the outdoor electric expansion valve (4) is controlled to close to shut off the high heat source side circuit (B), while the peak cut solenoid valve (19) is controlled to open to control the first compressor. An operation control state in which the refrigerant from (1) is circulated to the low heat source side circuit (H). Since the refrigerant discharged from both compressors (1) and (11) is condensed only in the low heat source side heat exchanger (13), the capacity of the compressor during the day can be reduced, and the power consumption is reduced. And stable cooling operation becomes possible.

【0038】次に、請求項1に係る発明の特徴として、
図2および図3に示すように、蓄氷槽(21)は平面視
正方形状の容器に形成され、側壁に流入口(85)が底
壁に流出口(87)がそれぞれ形成されている。
Next, as a feature of the invention according to claim 1,
As shown in FIGS. 2 and 3, the ice storage tank (21) is formed in a container having a square shape in plan view, and an inlet (85) is formed on a side wall and an outlet (87) is formed on a bottom wall.

【0039】上記流入口(85)には、上記循環路(2
9)に連接された流入管(91)が接続され、該流入管
(91)は蓄氷槽(21)内の中央部の正方形中心にま
で延設され、図4に示すように、先端部が湾曲形成され
て上方に開口した開口部(93)に形成されている。該
開口部(93)は、液状の蓄冷材(W)の貯溜空間(液
空間)(S)を形成する噴流を生起するように構成され
ている。
The circulation port (2) is connected to the inflow port (85).
An inflow pipe (91) connected to 9) is connected, and the inflow pipe (91) extends to the center of the square in the center of the ice storage tank (21), and as shown in FIG. Are formed in an opening (93) which is curved and opened upward. The opening portion (93) is configured to generate a jet forming a storage space (liquid space) (S) for the liquid cold storage material (W).

【0040】次に、上記流入管(91)の作動について
説明する。蓄熱運転時に、過冷却生成熱交換器(25)
に冷媒が流通して蒸発器として機能し、過冷却生成熱交
換器(25)で過冷却された蓄冷材(W)が、過冷却状
態を解消されて氷化し、氷化物が混在する蓄冷材(W)
が循環路(29)を流通して流入管(91)より蓄氷槽
(21)に流入し、蓄氷槽(21)内に氷化物が貯溜さ
れる。
Next, the operation of the inflow pipe (91) will be described. At the time of heat storage operation, supercool generation heat exchanger (25)
The regenerator material (W) supercooled by the supercooling-generating heat exchanger (25) with the refrigerant circulating through the supercooling generation heat exchanger (25) is freed from the supercooled state and becomes iced. (W)
Flows through the circulation path (29), flows into the ice storage tank (21) from the inflow pipe (91), and iced matter is stored in the ice storage tank (21).

【0041】流入管(91)は、図5に示すように、液
空間(S)を形成する噴流を生起するので、噴流の流入
流域に氷化物が蓄積していても噴流によって流入流域外
に押し退けられ、流入管(91)内に氷化物が侵入して
詰まることがない。
Since the inflow pipe (91) generates a jet forming the liquid space (S) as shown in FIG. 5, even if iced matter accumulates in the inflow area of the jet, it flows out of the inflow area by the jet. It is displaced and iced material does not enter the inflow pipe (91) and clog it.

【0042】また、蓄熱冷房運転時には、低熱源側熱交
換器(13)に冷媒が流通して凝縮器として機能し、低
熱源側熱交換器(13)で冷媒との熱交換により温度上
昇した蓄冷材(W)が蓄氷槽(21)に流入する。一
方、図6に示すように、流入管(91)からの噴流が液
空間(S)を形成するので、IPFが大きい運転開始時
においても蓄冷材の流入が確保される。また、温かい噴
流が液中の氷化物の蓄積層に噴き付けるので、噴流の勢
いによって氷化物の融解が促進されて効率のよい蓄熱回
収が行われる。
During the heat storage cooling operation, the refrigerant flows through the low heat source side heat exchanger (13) and functions as a condenser, and the temperature rises due to heat exchange with the refrigerant in the low heat source side heat exchanger (13). The cold storage material (W) flows into the ice storage tank (21). On the other hand, as shown in FIG. 6, since the jet from the inflow pipe (91) forms the liquid space (S), the inflow of the cold storage material is ensured even at the start of operation with a large IPF. In addition, since the warm jet jets onto the accumulation layer of the iced substance in the liquid, melting of the iced substance is promoted by the force of the jet, and efficient heat storage and recovery is performed.

【0043】本実施例によれば、流入管(91)が液空
間(S)を形成する噴流を生起するので、流入管(9
1)の詰まりを防止することができ、蓄冷材(W)中に
流入管(91)が開口していても常に蓄氷槽(21)へ
の氷化物の流入を確保することができる。したがって、
所定容積の貯溜容量に対して上部空間をできるだけ小さ
くして蓄氷槽(21)を小容量化する場合にも流入管
(91)の詰まりによるIPFの低下を防止することが
できる。
According to the present embodiment, since the inflow pipe (91) generates a jet forming the liquid space (S), the inflow pipe (9) is formed.
1) can be prevented, and even if the inflow pipe (91) is opened in the cold storage material (W), it is possible to always ensure the flow of iced material into the ice storage tank (21). Therefore,
Even when the upper space is made as small as possible with respect to the storage capacity of the predetermined volume to reduce the capacity of the ice storage tank (21), it is possible to prevent a decrease in IPF due to clogging of the inflow pipe (91).

【0044】また、熱交換部(81)により製氷回路
(Y)が蓄熱回収可能な場合においても、流入管(9
1)からの噴流が氷化物を流入流域外に移動させると共
に氷化物を融解しながら液空間(S)を形成するので、
効率のよい蓄熱回収を行うことができる。
Also, when the ice making circuit (Y) can store and recover heat by the heat exchanging section (81), the inflow pipe (9)
Since the jet from 1) moves the iced substance out of the inflow area and forms a liquid space (S) while melting the iced substance,
Efficient heat storage recovery can be performed.

【0045】また、流入管(91)の開口部(93)は
蓄氷槽(21)の正方形中心に配置されているので、図
6に示すように、氷化物の蓄積層の中央部に液空間
(S)を形成することができ、流入流域外への円滑な氷
化物の移動と、噴流による氷化物の融解促進とが可能に
なると共に、蓄冷材の流入を単一の開口部(93)で行
うことができて噴流を得るための液圧を容易に確保する
ことができる。
Since the opening (93) of the inflow pipe (91) is arranged at the center of the square of the ice storage tank (21), as shown in FIG. A space (S) can be formed, which allows smooth movement of the iced material to the outside of the inflow area, promotes melting of the iced material by the jet, and allows the inflow of the cold storage material into a single opening (93). ) Can easily secure the hydraulic pressure for obtaining the jet.

【0046】また、流入管(91)の開口部(93)は
上方に向かって開口形成されているので、蓄氷槽(2
1)の上部から形成されていく氷化物の蓄積層に直接噴
流を当てることができ、流入流域外への氷化物の移動と
氷化物の融解とを効果的に行うことができる。
The opening (93) of the inflow pipe (91) is formed so as to open upward, so that the ice storage tank (2) is formed.
The jet can be directly applied to the iced accumulation layer formed from the upper part of 1), and the movement of the iced out of the inflow area and the melting of the iced can be effectively performed.

【0047】次に、図7は本発明の第2実施例を示す。
本実施例では、流入管(91)は、開口部(93)が蓄
冷材(W)の噴流速度を増加する絞り部(97)に構成
されている。
Next, FIG. 7 shows a second embodiment of the present invention.
In this embodiment, the inflow pipe (91) is formed as a throttle (97) whose opening (93) increases the jet velocity of the cold storage material (W).

【0048】したがって、液空間(S)が確実に形成さ
れ、蓄熱運転時と蓄熱冷房運転時とにおける流入管(9
1)の詰まり防止と、蓄熱冷房運転時における氷化物の
融解促進とをより効果的に行うことができる。
Therefore, the liquid space (S) is reliably formed, and the inflow pipe (9) is operated during the heat storage operation and the heat storage cooling operation.
The prevention of clogging of 1) and the promotion of melting of iced products during the heat storage cooling operation can be performed more effectively.

【0049】次に、図8および図9は本発明の第3実施
例を示す。本実施例では、蓄氷槽(21)が、第1実施
例の正方形と同面積の正方形区画が2個集合した平面視
長方形状の容器に形成され、流入管(91)の開口部
(93)を複数個形成するものである。
Next, FIGS. 8 and 9 show a third embodiment of the present invention. In this embodiment, the ice storage tank (21) is formed in a rectangular container in plan view in which two square sections having the same area as the square of the first embodiment are assembled, and the opening (93) of the inflow pipe (91) is formed. ) Are formed.

【0050】具体的には、蓄氷槽(21)の短辺側の側
壁より流入管(91)が蓄氷槽(21)内に延設され、
上記各正方形中心に流入管(91)の開口部(93)が
形成されている。
Specifically, an inflow pipe (91) extends from the side wall on the short side of the ice storage tank (21) into the ice storage tank (21),
An opening (93) of the inflow pipe (91) is formed at the center of each square.

【0051】したがって、平面視長方形状の容器につい
て、最小限の個数の開口部(93)で、流入流域外への
円滑な氷化物の移動と、噴流による氷化物の融解促進と
が可能になると共に、蓄冷材の流入を単一の開口部(9
3)で行うことができて噴流を得るための液圧を容易に
確保することができる。
Therefore, for a container having a rectangular shape in a plan view, it is possible to smoothly move the iced substance out of the inflow area and to promote the melting of the iced substance by the jet flow with the minimum number of openings (93). At the same time, the inflow of cold storage material is
The liquid pressure for obtaining the jet can be easily ensured by the method 3).

【0052】次に、図10は第3実施例の変形例を示
す。本変形例は、2本の流出管を蓄氷槽(21)に配設
し、平面視長方形形状の蓄氷槽(21)を第1実施例の
正方形と同面積の正方形区画6個の区画集合と想定し
て、各流入管(91)はそれぞれ3個の正方形中心に開
口部(93)が形成された形態に構成されている。
Next, FIG. 10 shows a modification of the third embodiment. In this modification, two outflow pipes are arranged in an ice storage tank (21), and an ice storage tank (21) having a rectangular shape in plan view is divided into six square sections having the same area as the square of the first embodiment. Assuming a set, each inflow pipe (91) is configured to have an opening (93) formed at the center of each of three squares.

【0053】本変形例によっても、上記第2実施例と同
様の作用効果を発揮することができる。
According to this modification, the same operation and effect as those of the second embodiment can be exhibited.

【0054】なお、第1実施例の熱交換部(81)は、
1台の熱交換器を、冷凍回路に接続し、蓄熱運転時に冷
媒との熱交換により蓄冷材(W)を過冷却する蒸発器
と、蓄熱冷房運転時に冷媒との熱交換により蓄冷材
(W)の冷熱を回収する凝縮器とに切換可能に構成して
もよい。
The heat exchange part (81) of the first embodiment is
One heat exchanger is connected to a refrigeration circuit, and an evaporator for supercooling the cold storage material (W) by heat exchange with the refrigerant during the heat storage operation, and a cold storage material (W) by heat exchange with the refrigerant during the heat storage cooling operation. ) May be configured to be switchable to a condenser for recovering cold heat.

【0055】また、蓄氷槽(21)の形状は、上記形状
以外、例えば、平面視円形形状であってもよい。
The shape of the ice storage tank (21) may be other than the above-mentioned shape, for example, a circular shape in plan view.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の空気調和装置の配管系統
の回路図である。
FIG. 1 is a circuit diagram of a piping system of an air conditioner according to a first embodiment of the present invention.

【図2】本発明の第1実施例の蓄氷槽の平面図である。FIG. 2 is a plan view of the ice storage tank according to the first embodiment of the present invention.

【図3】本発明の第1実施例の蓄氷槽の断面図である。FIG. 3 is a sectional view of the ice storage tank according to the first embodiment of the present invention.

【図4】本発明の第1実施例の流入管の開口部の拡大断
面図である。
FIG. 4 is an enlarged sectional view of an opening of the inflow pipe according to the first embodiment of the present invention.

【図5】本発明の第1実施例において、蓄熱最終段階の
蓄熱運転時における液空間の形成を示す蓄氷槽の断面図
である。
FIG. 5 is a cross-sectional view of the ice storage tank showing the formation of a liquid space during the heat storage operation in the final stage of heat storage in the first embodiment of the present invention.

【図6】本発明の第1実施例において、蓄熱冷房運転開
始当初における液空間の形成を示す蓄氷槽の断面図であ
る。
FIG. 6 is a cross-sectional view of the ice storage tank showing the formation of the liquid space at the beginning of the thermal storage cooling operation in the first embodiment of the present invention.

【図7】本発明の第2実施例の流入管の絞り部の拡大断
面図である。
FIG. 7 is an enlarged sectional view of a throttle portion of an inflow pipe according to a second embodiment of the present invention.

【図8】本発明の第3実施例の蓄氷槽の平面図である。FIG. 8 is a plan view of an ice storage tank according to a third embodiment of the present invention.

【図9】本発明の第3実施例の蓄氷槽の断面図である。FIG. 9 is a sectional view of an ice storage tank according to a third embodiment of the present invention.

【図10】本発明の第3実施例の変形例の蓄氷槽の平面
図である。
FIG. 10 is a plan view of an ice storage tank according to a modification of the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

13 低熱源側熱交換器(熱交換部) 21 蓄氷槽 25 過冷却生成熱交換器(冷却手段、熱交換部) 81 熱交換部 85 流入口 87 流出口 91 流入管 93 開口部 97 絞り部 S 液状の蓄冷材の貯溜空間(液空間) Y 製氷回路 W 蓄冷材 13 Low heat source side heat exchanger (Heat exchange part) 21 Ice storage tank 25 Supercool generation heat exchanger (Cooling means, Heat exchange part) 81 Heat exchange part 85 Inlet 87 Outlet 91 Inlet pipe 93 Opening 97 Narrowing part S Storage space for liquid cold storage material (liquid space) Y Ice making circuit W Cold storage material

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−98095(JP,A) 特開 平4−3867(JP,A) 特開 昭61−295442(JP,A) (58)調査した分野(Int.Cl.6,DB名) F24F 5/00 102────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-98095 (JP, A) JP-A-4-3867 (JP, A) JP-A-61-295442 (JP, A) (58) Field (Int. Cl. 6 , DB name) F24F 5/00 102

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 スラリー状に氷化された蓄冷材(W)を
貯溜するための蓄氷槽(21)と、蓄冷材(W)を過冷
却するための冷却手段(25)と、該蓄氷槽(21)と
該冷却手段(25)との間に設けられて該蓄冷材(W)
の過冷却状態を解消する過冷却解消部(27)とが蓄冷
材(W)の循環可能に接続されて製氷回路(Y)が構成
され、過冷却された蓄冷材(W)の過冷却状態を解消し
て生成した氷化物を上記蓄氷槽(21)に貯溜する製氷
装置において、 上記蓄氷槽(21)には、上記製氷回路(Y)から蓄冷
材(W)が流入する流入口(85)が形成されると共
に、上記製氷回路(Y)に蓄冷材(W)を流出させる流
出口(87)が形成される一方、 上記蓄氷槽(21)内には、上記流入口(85)に接続
される一方、該蓄氷槽(21)の内底部付近から上方に
向かって蓄冷材(W)中に開口する開口部(93)を備
え、スラリー状に氷化した蓄冷材(W)を該開口部(9
3)から放出して液状の蓄冷材(W)の貯留空間(S)
を形成する噴流を生起する流入管(91)が設けられて
いることを特徴とする製氷装置。
1. A蓄氷tank for reserving slurry to be Korika the cold accumulating material of (W) and (21), and cooling means for the regenerator material (W) is supercooled (25), accumulating With ice tank (21)
The cold storage material (W) provided between the cooling means (25);
The supercooling elimination section (27) for eliminating the supercooling state of the cooling medium (W) is connected to the cooling medium (W) in a circulating manner to form an ice making circuit (Y). An ice making device for storing iced matter generated by eliminating the above in the ice storage tank (21), wherein the ice storage tank (21) has an inlet through which a cold storage material (W) flows from the ice making circuit (Y). (85) is formed, and an outlet (87) through which the cold storage material (W) flows out of the ice making circuit (Y) is formed. On the other hand, in the ice storage tank (21), the inlet ( while that will be connected to 85), upwardly from the vicinity of the inner bottom portion of the accumulating ice bath (21)
It has an opening (93) that opens into the cold storage material (W).
Then, the cold storage material (W) iced into a slurry is added to the opening (9).
3) Storage space (S) for liquid cool storage material (W) released from
An ice making device characterized by being provided with an inflow pipe (91) for generating a jet forming a jet.
JP4183403A 1992-07-10 1992-07-10 Ice making equipment Expired - Lifetime JP2806155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4183403A JP2806155B2 (en) 1992-07-10 1992-07-10 Ice making equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4183403A JP2806155B2 (en) 1992-07-10 1992-07-10 Ice making equipment

Publications (2)

Publication Number Publication Date
JPH0626672A JPH0626672A (en) 1994-02-04
JP2806155B2 true JP2806155B2 (en) 1998-09-30

Family

ID=16135172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4183403A Expired - Lifetime JP2806155B2 (en) 1992-07-10 1992-07-10 Ice making equipment

Country Status (1)

Country Link
JP (1) JP2806155B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108826547B (en) * 2018-07-23 2023-08-11 天津大学建筑设计规划研究总院有限公司 Direct cooling ice cold-storage air conditioning system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295442A (en) * 1985-06-21 1986-12-26 Mitsui Eng & Shipbuild Co Ltd Refrigerant supplier in heat-accumulating type room cooling device
JP2727754B2 (en) * 1990-04-20 1998-03-18 ダイキン工業株式会社 Ice making equipment
JPH07113471B2 (en) * 1990-08-11 1995-12-06 ダイキン工業株式会社 Ice heat storage device

Also Published As

Publication number Publication date
JPH0626672A (en) 1994-02-04

Similar Documents

Publication Publication Date Title
EP2211127A1 (en) Heat pump type air conditioner
JP2002061992A (en) Air conditioner
JP2001263848A (en) Air conditioner
JP2806155B2 (en) Ice making equipment
JP2007212020A (en) Oil separator and refrigerating device
CN209165862U (en) Circulation system for air conditioner and air conditioner
JP3814877B2 (en) Thermal storage air conditioner
KR100345579B1 (en) The combined Compact Refrigerative / Regenerative Heat-Pump System
JP2727754B2 (en) Ice making equipment
JP2924460B2 (en) Air conditioner
JPH09310894A (en) Ice heat accumulator
JP2795070B2 (en) Ice making equipment
CN109341160A (en) Circulation system for air conditioner and air conditioner
JP2946889B2 (en) Ice making equipment
JPH05133635A (en) Cold accumulation type air conditioning apparatus
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
CN212870024U (en) Air conditioner
JP2800573B2 (en) Air conditioner
JP3008925B2 (en) Refrigeration equipment
KR100727126B1 (en) Thermal storage airconditioner
JP2000046379A (en) Ice thermal storage apparatus
JP3102042B2 (en) Ice making equipment
JPH05340653A (en) Ice making device
JP3297151B2 (en) Ice storage device
JPH0810098B2 (en) Ice making equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980623