JPH07113471B2 - Ice heat storage device - Google Patents

Ice heat storage device

Info

Publication number
JPH07113471B2
JPH07113471B2 JP2212746A JP21274690A JPH07113471B2 JP H07113471 B2 JPH07113471 B2 JP H07113471B2 JP 2212746 A JP2212746 A JP 2212746A JP 21274690 A JP21274690 A JP 21274690A JP H07113471 B2 JPH07113471 B2 JP H07113471B2
Authority
JP
Japan
Prior art keywords
ice
heat
heat exchanger
downstream end
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2212746A
Other languages
Japanese (ja)
Other versions
JPH0498095A (en
Inventor
優司 仲沢
浩幸 山下
邦和 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2212746A priority Critical patent/JPH07113471B2/en
Publication of JPH0498095A publication Critical patent/JPH0498095A/en
Publication of JPH07113471B2 publication Critical patent/JPH07113471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、水や水溶液等からなる蓄冷材の過冷却状態
を解消してスラリー状の氷を生成し、この氷を蓄熱槽に
蓄えるようにした氷蓄熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention eliminates a supercooled state of a regenerator material such as water or an aqueous solution to produce ice in the form of slurry and stores the ice in a heat storage tank. The present invention relates to an ice heat storage device.

(従来の技術) 従来より、冷凍装置により蓄冷材としての水や水溶液を
過冷却状態に冷却するとともに、この過冷却状態を解消
してスラリー状の氷を生成し、この氷を蓄熱槽に蓄えて
おき、使用時にはこのスラリー状の氷を空気調和機等の
熱交換器に供給するようにした氷蓄熱装置はよく知られ
ている。このような氷蓄熱装置として、従来、米国特許
4671077号や特開昭63−217171号公報には、蓄熱槽の上
方に過冷却生成用熱交換器の蓄冷材出口部をその下流端
開口と蓄熱槽内の液面との間に一定の間隙があくように
配置し、この下流端開口から過冷却状態の蓄冷材を蓄熱
槽内に流下させるようにしたものが開示されている。
(Prior Art) Conventionally, water or an aqueous solution as a regenerator is cooled to a supercooled state by a refrigerating device, and the supercooled state is canceled to produce slurry ice, which is stored in a heat storage tank. It is well known that an ice heat storage device that supplies the slurry ice to a heat exchanger such as an air conditioner at the time of use. As such an ice heat storage device, a conventional US patent
In Japanese Patent No. 4671077 and Japanese Patent Laid-Open No. 63-217171, a cool storage material outlet portion of a heat exchanger for supercooling generation is provided above a heat storage tank with a constant gap between the downstream end opening and the liquid surface in the heat storage tank. It is disclosed that the regenerator material is arranged so as to meet the requirement, and the regenerator material in a supercooled state flows down from the downstream end opening into the heat accumulator.

(発明が解決しようとする課題) このように熱交換器出口部の下流端開口と蓄熱槽の液面
との間には間隙があると、過冷却状態の解消は蓄熱槽内
で起こり、出口部にスラリー状の氷が付着してそれが熱
交換器の伝熱管まで成長するのを防ぐことができ、伝熱
管の閉塞や破損を防止することができる。
(Problems to be solved by the invention) When there is a gap between the downstream end opening of the heat exchanger outlet and the liquid surface of the heat storage tank, the supercooled state is eliminated in the heat storage tank and the outlet It is possible to prevent slurry-like ice from adhering to the part and to grow it up to the heat transfer tube of the heat exchanger, and to prevent the heat transfer tube from being blocked or damaged.

ところが、反面では、熱交換器出口部と蓄熱槽との位置
関係が固定され、設計上の自由度が低いとともに、上記
熱交換器出口部の下流端開口と蓄熱槽の液面との間の間
隙の分だけ余分な空間が必要となり、装置が大型化する
のは避けられない。
However, on the other hand, the positional relationship between the heat exchanger outlet and the heat storage tank is fixed, and the degree of freedom in design is low, and the downstream end opening of the heat exchanger outlet and the liquid surface of the heat storage tank are It is inevitable that the device becomes large in size because an extra space is required for the gap.

本発明は斯かる諸点に鑑みてなされたもので、その目的
とするところは、過冷却生成用熱交換器の蓄冷材出口部
の配置及び構造を改良することで、熱交換器受出口部へ
の氷の付着を抑えて熱交換器の閉塞や破損を防ぎつつ、
装置設計の自由度の増大及び装置のコンパクト化を図る
ことにある。
The present invention has been made in view of the above points, and an object thereof is to improve the arrangement and structure of the cool storage material outlet of the heat exchanger for supercooling generation to improve the heat exchanger receiving and outlet portions. While suppressing the adhesion of ice on the heat exchanger to prevent clogging and damage to the heat exchanger,
It is to increase the degree of freedom in device design and to make the device compact.

(課題を解決するための手段) この目的を達成するために、請求項(1)の発明では、
熱交換器の蓄冷材出口部を過冷却解消槽内の蓄冷材に下
流端開口が蓄冷材液面下に位置するように浸漬し、その
出口部に可撓性を有する部分を設ける。
(Means for Solving the Problem) In order to achieve this object, in the invention of claim (1),
The outlet of the regenerator material of the heat exchanger is immersed in the regenerator material in the supercooling elimination tank so that the downstream end opening is located below the liquid surface of the regenerator material, and a flexible portion is provided at the outlet portion.

すなわち、この発明は、第1図に示すように、過冷却生
成用熱交換器(11)で冷却材との熱交換により水や水溶
液等の蓄冷材を過冷却状態に冷却するとともに、上記蓄
冷材の過冷却状態を解消して生成されるスラリー状の氷
を蓄熱槽(1)に蓄えるようにした氷蓄熱装置が前提で
ある。そして、上記蓄冷材の過冷却状態を解消する過冷
却解消槽(4)を設け、上記熱交換器(11)の蓄冷材出
口部(12)の少なくとも下流端部分は可撓性を有する部
分とし、該出口部(12)の下流端部分を上記過冷却解消
槽(4)内の蓄冷材液面下に位置させる。
That is, as shown in FIG. 1, the present invention cools a cold storage material such as water or an aqueous solution to a supercooled state by heat exchange with the cooling material in a supercooling generation heat exchanger (11) and It is premised on an ice heat storage device in which a slurry-like ice generated by removing the supercooled state of the material is stored in the heat storage tank (1). Then, a subcooling elimination tank (4) for eliminating the supercooled state of the regenerator material is provided, and at least the downstream end portion of the regenerator material outlet portion (12) of the heat exchanger (11) is a flexible portion. The downstream end portion of the outlet portion (12) is located below the liquid surface of the regenerator material in the subcooling elimination tank (4).

請求項(2)の発明では、熱交換器出口部を蓄熱槽自体
の蓄冷材に浸漬して、この蓄熱槽(1)で蓄冷材の過冷
却状態を解消するようにする。
In the invention of claim (2), the outlet of the heat exchanger is immersed in the regenerator material of the regenerator tank itself, and the supercooled state of the regenerator material is eliminated in this regenerator tank (1).

すなわち、この発明は、第3図に示す如く、蓄熱槽
(1)で蓄冷材の過冷却状態を解消してスラリー状の氷
を生成し、この氷の蓄熱槽(1)に蓄えるようにした氷
蓄熱装置において、熱交換器(11)の蓄冷材出口部(1
2)の少なくとも下流端部分を可撓性を有する部分と
し、該出口部(12)の下流端部分を上記過冷却解消槽
(4)内の蓄冷材液面下に位置させたことを特徴とす
る。
That is, according to the present invention, as shown in FIG. 3, the heat storage tank (1) eliminates the supercooled state of the cold storage material to generate ice in the form of slurry, and the ice is stored in the heat storage tank (1). In the ice heat storage device, the cold storage material outlet (1) of the heat exchanger (11)
At least the downstream end portion of 2) is a flexible portion, and the downstream end portion of the outlet portion (12) is located below the liquid surface of the regenerator material in the subcooling elimination tank (4). To do.

請求項(3)の発明では、請求項(1)又は(2)の発
明において、熱交換器(11)の蓄冷材出口部(12)の少
なくとも下流端部分を氷との付着力が小さい材料で形成
する。
According to the invention of claim (3), in the invention of claim (1) or (2), at least the downstream end portion of the cool storage material outlet portion (12) of the heat exchanger (11) has a small adhesive force with ice. To form.

請求項(4)の発明では、第2図に示す如く、熱交換器
(11)の蓄冷材出口部(12)の下流端部分に他の部分よ
りも通路断面積の小さい小径部(12a)を設ける。
In the invention of claim (4), as shown in FIG. 2, a small diameter portion (12a) having a smaller passage cross-sectional area than other portions is provided at the downstream end portion of the cold storage material outlet portion (12) of the heat exchanger (11). To provide.

請求項(5)の発明では、熱交換器の出口部を氷が付着
し難い温度に維持して、氷が熱交換器側に成長しないよ
うにする。すなわち、この発明は、第1図又は第3図に
示すように、熱交換器(11)の蓄冷材出口部(12)を蓄
冷材の凝固点温度よりも僅かに高い温度に保持する保温
手段(13)を配設する。
In the invention of claim (5), the temperature of the outlet of the heat exchanger is maintained at a temperature at which ice is unlikely to adhere, so that ice does not grow on the heat exchanger side. That is, according to the present invention, as shown in FIG. 1 or FIG. 3, the heat retaining means for maintaining the cool storage material outlet portion (12) of the heat exchanger (11) at a temperature slightly higher than the freezing point temperature of the cool storage material ( 13) is installed.

さらに、請求項(6)の発明では、過冷却生成用熱交換
器(11)は、冷却材が断続して流入するように構成され
るものとする。
Further, in the invention of claim (6), the heat exchanger (11) for supercooling generation is configured to intermittently flow in the coolant.

(作用) 上記の構成により、請求項(1)又は(2)の発明で
は、熱交換器(11)の蓄冷材出口部(12)における下流
端部分が過冷却解消槽(4)又は蓄熱槽(1)内の蓄冷
材に浸漬されることとなり、熱交換器(11)と解消槽
(4)又は蓄熱槽(1)との位置関係が限定されず、設
計の自由度を増すことができる。また、従来のような解
消槽(4)又は蓄熱槽(1)の蓄冷材液面から出口部
(12)に至るまでの間隙が不要であり、この分、装置を
コンパクトにすることができる。
(Operation) With the above configuration, in the invention of claim (1) or (2), the downstream end portion of the cool storage material outlet portion (12) of the heat exchanger (11) is the supercooling elimination tank (4) or the heat storage tank. Since it is immersed in the cold storage material in (1), the positional relationship between the heat exchanger (11) and the elimination tank (4) or the heat storage tank (1) is not limited, and the degree of freedom in design can be increased. . Further, there is no need for a gap from the liquid surface of the regenerator material in the solution tank (4) or the heat storage tank (1) to the outlet portion (12) as in the conventional case, and the device can be made compact by this amount.

そして、蓄冷材出口部(12)の下流端開口が蓄冷材の液
面よりも下方に位置しているので、この蓄冷材出口部
(12)にスラリー状の氷が付着する虞れがあるが、これ
らの発明では、出口部(12)の少なくとも下流端部が可
撓性を有しているので、出口部(12)に氷が付着するの
は抑制され、しかも仮に付着したとしても出口部(12)
の変形により容易に剥がれ落ちることとなり、氷が上流
側に成長して熱交換器(11)の伝熱管に凍結したり破損
したりすることはない。
Since the downstream end opening of the cold storage material outlet portion (12) is located below the liquid surface of the cold storage material, there is a risk that slurry-like ice will adhere to the cold storage material outlet portion (12). In these inventions, since at least the downstream end portion of the outlet portion (12) has flexibility, adhesion of ice to the outlet portion (12) is suppressed, and even if it adheres, the outlet portion (12) (12)
The ice will not be easily peeled off due to the deformation of ice, and ice will not grow on the upstream side to freeze or break the heat transfer tube of the heat exchanger (11).

請求項(3)の発明では、蓄冷材出口部(12)の少なく
とも下流端部が氷との付着力の小さい材料で形成されて
いるので、その下流端部へ氷が付着し難くなり、氷の付
着が有効に抑制できる。
In the invention of claim (3), at least the downstream end of the cold storage material outlet portion (12) is formed of a material having a small adhesive force with ice, so that it becomes difficult for ice to adhere to the downstream end portion, Can be effectively suppressed.

請求項(4)の発明では、熱交換器(11)の蓄冷材出口
部(12)の下流端部に他の部分よりも通路断面積の小さ
い小径部(12a)が設けられているので、その小径部(1
2a)を通る蓄冷材の流速が速くなり、氷の付着がさらに
有効に防止される。
In the invention of claim (4), since the heat exchanger (11) is provided with the small diameter portion (12a) having a smaller passage cross-sectional area than the other portion at the downstream end portion of the cool storage material outlet portion (12), The small diameter part (1
The flow velocity of the regenerator material passing through 2a) is increased, and ice adhesion is prevented more effectively.

請求項(5)の発明では、保温手段(13)により、出口
部(12)の内壁面は蓄冷材の凝固点温度よりも僅かに高
い温度に保持される。このため、出口部(12)に氷が付
着し難くなり、氷が熱交換器(11)側に成長することも
ない。
In the invention of claim (5), the inner wall surface of the outlet portion (12) is maintained at a temperature slightly higher than the freezing point temperature of the regenerator material by the heat retaining means (13). Therefore, it becomes difficult for ice to adhere to the outlet portion (12), and ice does not grow on the heat exchanger (11) side.

請求項(6)の発明では、過冷却生成用熱交換器(11)
に冷却材が断続して流入するので、一時的に昇温した蓄
冷材が出口部(12)を通ることとなり、出口部(12)の
氷の付着を防止できる。
In the invention of claim (6), the heat exchanger (11) for generating subcooling
Since the cooling material intermittently flows into the cold storage material, the temporarily stored cold storage material passes through the outlet portion (12), and the adhesion of ice at the outlet portion (12) can be prevented.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Hereinafter, the Example of this invention is described based on drawing.

第1図は本発明の一実施例を示し、(1)は蓄冷材とし
ての水を蓄えるための上方に開放された蓄熱槽で、この
蓄熱槽(1)の底壁には排水口(2)が開口され、該排
水口(2)には第1配管(16)が接続され、この第1配
管(16)は、水を過冷却状態に冷却する冷凍装置(7)
に接続されている。(3)は蓄熱槽(1)の内底部に配
設されたフィルタである。
FIG. 1 shows an embodiment of the present invention, in which (1) is a heat storage tank opened upward for storing water as a cold storage material, and a drain port (2) is provided on the bottom wall of the heat storage tank (1). ) Is opened, and a first pipe (16) is connected to the drain port (2), and the first pipe (16) cools water to a subcooled state (7).
It is connected to the. (3) is a filter disposed on the inner bottom of the heat storage tank (1).

また、(4)は上記蓄熱槽(1)とは別個に設置され上
方に開放された過冷却解消槽で、ここで上記冷凍装置
(7)からの過冷却水の過冷却状態を解消してスラリー
状の氷を生成する。過冷却解消槽(4)の内底面には超
音波発振器(5)の出力により振動する振動子(5)が
取り付けられており、運転の初期に、発振器(5)から
の超音波により過冷却水に衝撃を与え、その衝撃により
過冷却水の過冷却状態を解消してスラリー状の氷を生成
するとともに、この後は生成された氷を核としてスラリ
ー状の氷を連続して生成するようにしている。
Further, (4) is a subcooling elimination tank which is installed separately from the heat storage tank (1) and is opened upward. Here, the subcooling state of the supercooled water from the refrigeration system (7) is eliminated. It produces slurry ice. A vibrator (5) vibrating by the output of the ultrasonic oscillator (5) is attached to the inner bottom surface of the supercooling elimination tank (4), and supercooling is performed by ultrasonic waves from the oscillator (5) at the initial stage of operation. A shock is given to the water, and the shock causes the supercooled state of the supercooled water to be removed to generate ice in the form of slurry, and after that, the ice formed is used as a core to continuously form ice in the form of slurry. I have to.

過冷却解消槽(4)の底壁には排出口(6)が開口さ
れ、該排出口(6)には第2配管(17)が接続され、こ
の第2配管(17)の下流端は上記蓄熱槽(1)内の水面
下に開口している。上記第1配管(16)には循環用の第
1ポンプ(20)が、また第2配管(17)には同第2ポン
プ(21)がそれぞれ配設されており、両ポンプ(20),
(21)の作動により蓄熱槽(1)内の水を冷凍装置
(7)との間で循環させるようにしている。
A discharge port (6) is opened in the bottom wall of the supercooling elimination tank (4), a second pipe (17) is connected to the discharge port (6), and the downstream end of the second pipe (17) is It opens below the water surface in the heat storage tank (1). The first pipe (16) is provided with a first pump (20) for circulation, and the second pipe (17) is provided with the second pump (21). Both pumps (20),
The water in the heat storage tank (1) is circulated between the refrigerating apparatus (7) by the operation of (21).

上記冷凍装置(7)は、ガス冷媒(冷却材)を圧縮する
圧縮機(8)と、該圧縮機(8)で圧縮されたガス冷媒
を凝縮液化する凝縮器(9)と、この液冷媒を減圧する
減圧機構(10)と、この減圧された液冷媒を蒸発させる
蒸発器(11)とを閉じサイクルに接続してなり、上記蒸
発器(11)が過冷却生成用熱交換器を構成している。こ
の蒸発器(11)の水入口に上記第1配管(16)の下流端
が接続されており、蒸発器(11)での冷媒の蒸発熱によ
り水を冷却して過冷却状態にする。
The refrigeration system (7) includes a compressor (8) for compressing a gas refrigerant (coolant), a condenser (9) for condensing and liquefying the gas refrigerant compressed by the compressor (8), and the liquid refrigerant. A decompression mechanism (10) for decompressing and a vaporizer (11) for vaporizing the decompressed liquid refrigerant are closed and connected in a cycle, and the vaporizer (11) constitutes a heat exchanger for supercooling generation. is doing. The water inlet of the evaporator (11) is connected to the downstream end of the first pipe (16), and the heat of evaporation of the refrigerant in the evaporator (11) cools the water to bring it into a supercooled state.

上記蒸発器(11)の水出口には蓄冷材出口部としての出
口配管(12)の上端が取り付けられている。この出口配
管(12)は、全体が可撓性を有する薄肉のシリコンチュ
ーブで構成されている。このシリコンチューブは、金属
等のように表面に酸化被膜がないので、氷との付着力が
小さい。そして、出口配管(12)の下端つまり下流端開
口は上記過冷却解消槽(4)内に溜まる水の水面下に位
置している。
An upper end of an outlet pipe (12) as a cool storage material outlet is attached to the water outlet of the evaporator (11). The outlet pipe (12) is entirely made of a thin silicon tube having flexibility. Since this silicon tube does not have an oxide film on its surface unlike metal or the like, its adhesion to ice is small. The lower end of the outlet pipe (12), that is, the downstream end opening is located below the water surface of the water accumulated in the subcooling elimination tank (4).

また、上記出口配管(12)には、出口配管(12)の内壁
面を水の凝固点温度よりも僅かに高い温度に保持する保
温手段(13)が配設されている。この保温手段(13)
は、出口配管(12)において空気に晒されている部分の
周りに同心状に取り付けられたチューブ(14)を有し、
このチューブ(14)と出口配管(12)との間には環状通
路(15)が密閉形成されている。この環状通路(15)の
上部には第3配管(18)の一端が接続され、この第3配
管(18)の他端は上記蒸発器(11)と第1ポンプ(20)
との間の第1配管(16)に接続されている。一方、環状
通路(15)の下部には第4配管(19)の一端が接続さ
れ、この第4配管(19)の他端は上記蓄熱槽(1)内の
水面下に開口している。また、上記第3配管(18)の途
中には開閉バルブ(22)と、その下流側にヒータ(23
a)を内蔵した加熱装置(23)とが配設されており、開
閉バルブ(22)の開弁時、蓄熱槽(1)内の水を加熱装
置(23)で加熱するとともに、その水を環状通路(15)
に流すことにより、出口配管(12)の内壁面を水の凝固
点温度よりも僅かに高い温度に保持するようにしてい
る。
Further, the outlet pipe (12) is provided with a heat retaining means (13) for keeping the inner wall surface of the outlet pipe (12) at a temperature slightly higher than the freezing point temperature of water. This heat retention means (13)
Has a tube (14) mounted concentrically around a portion of the outlet pipe (12) exposed to air,
An annular passage (15) is hermetically formed between the tube (14) and the outlet pipe (12). One end of a third pipe (18) is connected to the upper part of the annular passage (15), and the other end of the third pipe (18) is connected to the evaporator (11) and the first pump (20).
Is connected to the first pipe (16) between. On the other hand, one end of the fourth pipe (19) is connected to the lower part of the annular passage (15), and the other end of the fourth pipe (19) is opened below the water surface in the heat storage tank (1). Further, an opening / closing valve (22) is provided in the middle of the third pipe (18) and a heater (23
and a heating device (23) having a built-in a) is provided. When the opening / closing valve (22) is opened, the water in the heat storage tank (1) is heated by the heating device (23) and Circular passage (15)
The inner wall surface of the outlet pipe (12) is kept at a temperature slightly higher than the freezing point temperature of water by flowing it into the.

次に、上記実施例の使用について説明する。The use of the above embodiment will now be described.

第1ポンプ(20)の作動により、蓄熱槽(1)内の水は
第1配管(16)を経て蒸発器(11)に流れ、この蒸発器
(11)により冷却されて過冷却水となる。この過冷却水
は出口配管(12)を通って過冷却解消槽(4)に流下
し、該解消槽(4)で超音波発振器(5)による衝撃に
より過冷却状態が解消されスラリー状の氷が生成され
る。このスラリー状の氷は第2ポンプ(21)により第2
配管(17)を通って蓄熱槽(1)に戻されて該蓄熱槽
(1)に蓄えられる。また、上記過冷却解消槽(4)で
超音波発振器(5)により一旦スラリー状の氷が生成さ
れると、その後は、該氷を核として水の過冷却状態が解
消され、スラリー状の氷が連続的に生成される。
By the operation of the first pump (20), the water in the heat storage tank (1) flows to the evaporator (11) through the first pipe (16) and is cooled by the evaporator (11) to become supercooled water. . The supercooled water flows down through the outlet pipe (12) into the supercooling elimination tank (4), and the supercooled state is eliminated by the impact of the ultrasonic oscillator (5) in the elimination tank (4), and the ice in the slurry state is removed. Is generated. This slurry ice is secondly fed by the second pump (21).
It is returned to the heat storage tank (1) through the pipe (17) and stored in the heat storage tank (1). Further, once the slurry-like ice is generated by the ultrasonic oscillator (5) in the supercooling elimination tank (4), the supercooled state of water is eliminated by using the ice as a nucleus, and the slurry-like ice is removed. Are continuously generated.

この実施例では、上記出口配管(12)の下端(下流端開
口)が過冷却解消槽(4)内の水面下に位置しているの
で、同出口配管(12)の下端を水面上方に所定距離あけ
て配置する場合のように蒸発器(11)と解消槽(4)と
の位置関係は限定されず、設計の自由度を増すことがで
きる。しかも、解消槽(4)の水面と出口配管(12)の
下端との間の間隙が不要であり、氷蓄熱装置の大きさを
コンパクトにすることができる。
In this embodiment, since the lower end (downstream end opening) of the outlet pipe (12) is located below the water surface in the subcooling elimination tank (4), the lower end of the outlet pipe (12) is set above the water surface. The positional relationship between the evaporator (11) and the elimination tank (4) is not limited as in the case of arranging them at a distance, and the degree of freedom in design can be increased. Moreover, there is no need for a gap between the water surface of the dissolution tank (4) and the lower end of the outlet pipe (12), and the size of the ice heat storage device can be made compact.

また、上記出口配管(12)が氷との付着力の小さい薄肉
シリコンチューブで構成されているので、出口配管(1
2)の下流端開口が解消槽(4)内の水面よりも下方に
位置しているにも拘らず、出口配管(12)に氷が付着す
るのは抑制される。また、出口配管(12)は可撓性を有
するので、仮にその下流端部に氷が付着したとしても、
それに伴い下流端部の通路断面積が小さくなって水圧が
上昇すると、出口配管(12)の下流端部が図で仮想線に
示すように彎曲変形し、その変形により氷が容易に出口
配管(12)から剥がれ落ちることとなる。よって、氷が
出口配管(12)の下流端部から上流側に成長して蒸発器
(11)内の伝熱管が凍結したり破損したりすることはな
い。
Moreover, since the outlet pipe (12) is made of a thin-walled silicon tube having a small adhesion to ice, the outlet pipe (1
Although the downstream end opening of 2) is located below the water surface in the solution tank (4), ice adhesion to the outlet pipe (12) is suppressed. Further, since the outlet pipe (12) has flexibility, even if ice adheres to the downstream end of the outlet pipe (12),
Along with this, when the passage cross-sectional area of the downstream end portion becomes smaller and the water pressure rises, the downstream end portion of the outlet pipe (12) is bent and deformed as shown by the phantom line in the figure, and the deformation easily causes the ice to exit the outlet pipe ( It will come off from 12). Therefore, ice does not grow from the downstream end of the outlet pipe (12) to the upstream side and the heat transfer pipe in the evaporator (11) is not frozen or damaged.

また、必要なときには、保温手段(13)のバルブ(22)
を開き、加熱装置(23)により加熱された水を出口配管
(12)周りの環状通路(15)に流すことにより、出口配
管(12)をその内部の水の凝固点温度よりも僅かに高い
温度に保持する。この状態では、凝固点温度以上に保持
された出口配管(12)に氷が付着し難くなり、上記の効
果をより確実に得ることができる。
Also, when necessary, the valve (22) of the heat retention means (13)
Open and the water heated by the heating device (23) flows through the annular passage (15) around the outlet pipe (12), so that the outlet pipe (12) has a temperature slightly higher than the freezing point temperature of the water inside it. Hold on. In this state, ice hardly adheres to the outlet pipe (12) maintained at the freezing point temperature or higher, and the above effect can be more reliably obtained.

尚、蓄熱槽(1)内の水を加熱装置(23)で加熱するこ
となる直接環状通路(15)に流すようにすることもでき
る。
Incidentally, the water in the heat storage tank (1) can be made to flow directly into the annular passage (15) which is heated by the heating device (23).

また、保温手段としては、出口配管(12)の周りをニク
ロム線等のヒータ線で螺旋状に覆い、このヒータ線に通
電して加熱することで、出口配管(12)内の水を保温す
るようにした構造も採用できる。
As the heat retaining means, the outlet pipe (12) is spirally covered with a heater wire such as a nichrome wire, and the heater wire is energized to heat the water in the outlet pipe (12). The structure like this can also be adopted.

また、上記実施例の構成において、第2図に示すよう
に、出口配管(12)の下端部(下流端部)に通路断面積
が他の部分よりも小さい小径部(12a)を設けてもよ
い。こうすることで、その小径部(12a)を通る水の流
速が速くなり、出口配管(12)に対する氷の付着をさら
に効果的に防止することができる。
Further, in the configuration of the above embodiment, as shown in FIG. 2, a small diameter portion (12a) having a passage cross-sectional area smaller than that of the other portion may be provided at the lower end portion (downstream end portion) of the outlet pipe (12). Good. By doing so, the flow velocity of the water passing through the small diameter portion (12a) becomes faster, and the adhesion of ice to the outlet pipe (12) can be prevented more effectively.

(他の実施例) 第3図は他の実施例を示し(尚、第1図と同じ部分につ
いては同じ符号を付してその詳細な説明は省略する)、
過冷却解消槽(4)を省いたものである。
(Other Embodiments) FIG. 3 shows another embodiment (note that the same parts as those in FIG. 1 are designated by the same reference numerals and detailed description thereof will be omitted).
The supercooling elimination tank (4) is omitted.

すなわち、この実施例では、上記実施例における過冷却
解消槽(4)でなく、蒸発器(11)に接続された出口配
管(12)の下流端部は直接蓄熱槽(1)内の水に浸漬さ
れていて、その出口配管(12)の下流端開口は蓄熱槽
(1)の水面下に位置している。従って、この実施例で
も、上記実施例と同様の作用効果を奏することができ
る。
That is, in this embodiment, the downstream end of the outlet pipe (12) connected to the evaporator (11) is directly connected to the water in the heat storage tank (1) instead of the subcooling elimination tank (4) in the above embodiment. It is dipped and the downstream end opening of its outlet pipe (12) is located below the water surface of the heat storage tank (1). Therefore, also in this embodiment, it is possible to achieve the same effects as those of the above embodiment.

尚、以上の各実施例において、冷凍装置(7)の圧縮機
(8)を間欠運転して、蒸発器(11)に対し冷媒が断続
して流入するようにしてもよい。このように蒸発器(1
1)に冷媒が断続して流入すると、蒸発器(11)を通る
水が一時的に昇温し、この昇温した水が出口配管(12)
を通るので、出口配管(12)への氷の付着を有効に防止
できる。
In each of the above embodiments, the compressor (8) of the refrigeration system (7) may be intermittently operated so that the refrigerant intermittently flows into the evaporator (11). Thus the evaporator (1
When the refrigerant intermittently flows into 1), the temperature of the water passing through the evaporator (11) rises temporarily, and the temperature of this raised water rises to the outlet pipe (12).
Since it passes through, it is possible to effectively prevent ice from adhering to the outlet pipe (12).

また、以上の各実施例では、蒸発器(11)の出口配管
(12)の全体を、可撓性を有しかつ氷との付着力が小さ
い薄肉シリコンチューブで構成したが、出口配管(12)
のうち、過冷却解消槽(4)又は蓄熱槽(1)内の水に
浸漬される下流端部のみを同材料で構成してもよい。
Further, in each of the above embodiments, the entire outlet pipe (12) of the evaporator (11) is made of a thin-walled silicon tube which is flexible and has a small adhesive force with ice. )
Of these, only the downstream end portion immersed in water in the supercooling elimination tank (4) or the heat storage tank (1) may be made of the same material.

また、各実施例では、冷凍装置(4)の蒸発器(11)で
の冷媒の蒸発熱により水を過冷却状態に冷却するように
しているが、低温のブラインとの熱交換器での熱交換に
より水を過冷却状態に冷却するようにしてもよい。ま
た、蓄冷材として水に代えて水溶液を使用することもで
きる。
Further, in each of the embodiments, the water is cooled to the supercooled state by the heat of vaporization of the refrigerant in the evaporator (11) of the refrigeration system (4), but the heat in the heat exchanger with the low temperature brine is The water may be cooled to a supercooled state by replacement. Further, an aqueous solution may be used instead of water as the cold storage material.

過冷却生成用熱交換器は、上記各実施例の如き二重管式
のものに限定されず、安定的に過冷却の生成が可能であ
れば、どのような形態のものでも使用できる。例えば、
蓄冷材流通用の伝熱管の周りに冷却材流通用の配管を螺
旋状に巻回配置した構造の熱交換器でもよい。
The heat exchanger for generating subcooling is not limited to the double-tube type heat exchanger as in each of the above-mentioned embodiments, and any form can be used as long as it can stably generate supercooling. For example,
A heat exchanger having a structure in which a pipe for circulating the coolant is spirally wound around the heat transfer pipe for circulating the cold storage medium may be used.

また、出口配管(12)を氷との付着力が小さいシリコン
チューブで構成するほか、比較的伝熱性能が高く、かつ
可撓性を有する合成樹脂製の管材で構成するとともに、
その内部にヒータ線を埋設することにより、出口配管
(12)を積極的に温度保持するようにしてもよい。ま
た、上記特性を有する樹脂製の短い管材をその上下両側
から金属製の管材で挟んで1連に接合し、下側(下流出
口側)の金属製管材にヒータ線を絶縁状態で埋設してな
る出口配管を形成することもできる。この場合、装置の
停止時にもヒータ線に通電することで、凍結の防止を簡
易に図ることができる。
In addition, the outlet pipe (12) is made of a silicon tube having a small adhesion to ice, and is made of a synthetic resin pipe material having relatively high heat transfer performance and flexibility,
The outlet pipe (12) may be positively maintained at a temperature by embedding a heater wire therein. In addition, a short pipe made of resin having the above-mentioned characteristics is sandwiched between the upper and lower sides of the pipe by metal pipes and joined in a row, and the heater wire is embedded in the lower metal pipe (downstream outlet side) in an insulated state. It is also possible to form an outlet pipe consisting of In this case, it is possible to easily prevent freezing by energizing the heater wire even when the apparatus is stopped.

(発明の効果) 以上説明したように、請求項(1)又は(2)の発明に
よると、冷凍手段における過冷却生成用熱交換器の蓄冷
材出口部の少なくとも下流端に可撓性を有する部分を設
けた上で、その下流端部を過冷却解消槽又は蓄熱槽内の
蓄冷材液面に浸漬するように配置したので、その浸漬に
伴う出口部下流端への氷の付着を有効に抑制して熱交換
器の凍結や破損等を防止しながら、熱交換器と解消槽又
は蓄熱槽との位置関係の限定を解除し、装置設計の自由
度を増大させるとともに、装置をコンパクトにすること
ができる。
(Effects of the Invention) As described above, according to the invention of claim (1) or (2), at least the downstream end of the cool storage material outlet of the heat exchanger for subcooling generation in the refrigeration means has flexibility. After the portion is provided, the downstream end portion is arranged so as to be immersed in the liquid surface of the regenerator material in the subcooling elimination tank or the heat storage tank, so that the adhesion of ice to the outlet end downstream end due to the immersion becomes effective. While restraining and preventing freezing and damage of the heat exchanger, limit the positional relationship between the heat exchanger and the elimination tank or heat storage tank to increase the degree of freedom in equipment design and make the equipment compact. be able to.

請求項(3)の発明では、上記過冷却生成用熱交換器の
出口部下流端部をシリコンチューブ等、氷との付着力の
小さい材料で形成した。また、請求項(4)の発明で
は、同熱交換器の出口部下流端部を限定して小径にし
て、出口部を通る蓄冷材の流速を速めるようにした。さ
らに、請求項(5)の発明では、出口部の内壁面温度を
蓄冷材の凝固点温度よりも僅かに高い温度に保持するよ
うにした。また、請求項(6)の発明では、過冷却生成
用熱交換器に冷却材を断続して流入させ、一時的に昇温
した蓄冷材が出口部を通るようにした。従って、これら
の発明によれば、熱交換器の蓄冷材出口部への氷の付着
をさらに効果的に防止することができる。
In the invention of claim (3), the downstream end of the outlet of the heat exchanger for supercooling generation is formed of a material such as a silicon tube having a small adhesion to ice. Further, in the invention of claim (4), the outlet downstream end of the heat exchanger is limited to have a small diameter to accelerate the flow velocity of the regenerator material passing through the outlet. Further, in the invention of claim (5), the inner wall surface temperature of the outlet portion is kept at a temperature slightly higher than the freezing point temperature of the regenerator material. Further, in the invention of claim (6), the coolant is intermittently introduced into the heat exchanger for supercooling generation, and the regenerator material whose temperature has been temporarily raised passes through the outlet portion. Therefore, according to these inventions, it is possible to more effectively prevent ice from adhering to the cold storage material outlet of the heat exchanger.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は本発明の一実施例を示し、第1図は
氷蓄熱装置の全体構成を概略的に示す配管系統図、第2
図は出口配管の変形例を示す拡大断面図である。第3図
は他の実施例を示す第1図相当図である。 (1)……蓄熱槽 (4)……過冷却解消槽 (7)……冷凍装置 (11)……蒸発器(過冷却生成用熱交換器) (12)……出口配管(蓄冷材出口部) (13)……保温手段
1 and 2 show an embodiment of the present invention, and FIG. 1 is a piping system diagram schematically showing the whole structure of the ice heat storage device, and FIG.
The figure is an enlarged sectional view showing a modified example of the outlet pipe. FIG. 3 is a view corresponding to FIG. 1 showing another embodiment. (1) …… Heat storage tank (4) …… Supercooling elimination tank (7) …… Refrigeration system (11) …… Evaporator (heat exchanger for supercooling generation) (12) …… Outlet piping (cooling material outlet Part) (13) …… Heat insulation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】過冷却生成用熱交換器(11)で冷却材との
熱交換により水や水溶液等からなる蓄冷材を過冷却状態
に冷却するとともに、上記蓄冷材の過冷却状態を解消し
て生成されるスラリー状の氷を蓄熱槽(1)に蓄えるよ
うにした氷蓄熱装置において、 上記蓄冷材の過冷却状態を解消する過冷却解消槽(4)
が設けられ、 上記熱交換器(11)の蓄冷材出口部(12)の少なくとも
下流端部分は可撓性を有し、該出口部(12)の下流端部
分は上記過冷却解消槽(4)内の蓄冷材液面下に位置し
ていることを特徴とする氷蓄熱装置。
1. A supercooling generation heat exchanger (11) cools a cold storage material composed of water, an aqueous solution or the like to a supercooled state by heat exchange with the cooling material, and eliminates the supercooled state of the cold storage material. An ice heat storage device configured to store the slurry-like ice generated by the heat storage tank (1) in a supercooling elimination tank (4) for eliminating a supercooled state of the regenerator material.
Is provided, and at least the downstream end portion of the cold storage material outlet portion (12) of the heat exchanger (11) has flexibility, and the downstream end portion of the outlet portion (12) has the supercooling elimination tank (4). ), The ice heat storage device is located below the liquid surface of the cold storage material.
【請求項2】過冷却生成用熱交換器(11)で冷却材との
熱交換により水や水溶液等からなる蓄冷材を過冷却状態
に冷却するとともに、蓄熱槽(1)で上記蓄冷材の過冷
却状態を解消してスラリー状の氷を生成し、この氷を蓄
熱槽(1)に蓄えるようにした氷蓄熱装置において、 上記熱交換器(11)の蓄冷材出口部(12)の少なくとも
下流端部分は可撓性を有し、該出口部(12)の下流端部
分は上記蓄熱槽(1)内の蓄冷材液面下に位置している
ことを特徴とする氷蓄熱装置。
2. A subcooling generation heat exchanger (11) cools a regenerator material such as water or an aqueous solution to a supercooled state by exchanging heat with the coolant, and a regenerator tank (1) stores the regenerator material. In an ice heat storage device in which a supercooled state is eliminated to generate slurry ice and the ice is stored in a heat storage tank (1), at least the cold storage material outlet portion (12) of the heat exchanger (11) is provided. The ice heat storage device, wherein the downstream end portion has flexibility, and the downstream end portion of the outlet portion (12) is located below the liquid surface of the cold storage material in the heat storage tank (1).
【請求項3】熱交換器(11)の蓄冷材出口部(12)の少
なくとも下流端部分は、氷との付着力の小さい材料で形
成されていることを特徴とする請求項(1)又は(2)
記載の氷蓄熱装置。
3. The heat exchanger (11) according to claim 1, wherein at least a downstream end portion of the cold storage material outlet portion (12) is formed of a material having a small adhesive force with ice. (2)
The ice heat storage device described.
【請求項4】熱交換器(11)の蓄冷材出口部(12)の下
流端部には他の部分よりも通路断面積の小さい小径部
(12a)が設けられていることを特徴とする請求項
(1),(2)又は(3)記載の氷蓄熱装置。
4. A small diameter portion (12a) having a passage cross-sectional area smaller than that of other portions is provided at a downstream end portion of the cold storage material outlet portion (12) of the heat exchanger (11). The ice heat storage device according to claim (1), (2) or (3).
【請求項5】熱交換器(11)の蓄冷材出口部(12)を蓄
冷材の凝固点温度よりも僅かに高い温度に保持する保温
手段(13)が設けられていることを特徴とする請求項
(1),(2),(3)又は(4)記載の氷蓄熱装置。
5. A heat retaining means (13) for retaining the cold storage material outlet (12) of the heat exchanger (11) at a temperature slightly higher than the freezing point temperature of the cold storage material. The ice heat storage device according to item (1), (2), (3) or (4).
【請求項6】過冷却生成用熱交換器(11)は、冷却材が
断続して流入するように構成されていることを特徴とす
る請求項(1),(2),(3),(4)又は(5)記
載の氷蓄熱装置。
6. The subcooling generation heat exchanger (11) is characterized in that the coolant is intermittently introduced into the heat exchanger (11), (2), (3), The ice heat storage device according to (4) or (5).
JP2212746A 1990-08-11 1990-08-11 Ice heat storage device Expired - Fee Related JPH07113471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2212746A JPH07113471B2 (en) 1990-08-11 1990-08-11 Ice heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2212746A JPH07113471B2 (en) 1990-08-11 1990-08-11 Ice heat storage device

Publications (2)

Publication Number Publication Date
JPH0498095A JPH0498095A (en) 1992-03-30
JPH07113471B2 true JPH07113471B2 (en) 1995-12-06

Family

ID=16627740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2212746A Expired - Fee Related JPH07113471B2 (en) 1990-08-11 1990-08-11 Ice heat storage device

Country Status (1)

Country Link
JP (1) JPH07113471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243790A (en) * 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd Liquid cooling device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2806155B2 (en) * 1992-07-10 1998-09-30 ダイキン工業株式会社 Ice making equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243790A (en) * 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd Liquid cooling device

Also Published As

Publication number Publication date
JPH0498095A (en) 1992-03-30

Similar Documents

Publication Publication Date Title
US6898947B2 (en) Utilization of harvest and/or melt water from an ice machine for a refrigerant subcool/precool system and method therefor
EP1403598A1 (en) Heat pump
JPH07113471B2 (en) Ice heat storage device
JP6729269B2 (en) Refrigerator and its control method
KR200489423Y1 (en) Liquid Phase Beverage Supercooling Device
KR200493302Y1 (en) Liquid Phase Beverage Supercooling Device
JP2005098581A (en) Freezing circuit and cooling device using the freezing circuit
JPH08152162A (en) Internally melting type ice heat storage tank
JPH10325659A (en) Super-cooling type ice making device and super-cooling releasing device therefor
JPH0794938B2 (en) Ice storage method and equipment for heat storage
JP2982742B2 (en) Ice making equipment
JPS63217171A (en) Ice machine for accumulating heat
JP3790207B2 (en) Air conditioner
JPS63271074A (en) Ice making method and device for heat accumulation
JPH06213525A (en) Ice heat accumulator and air conditioner using the same
JP2508240B2 (en) Ice heat storage device and ice heat storage type air conditioner equipped with the ice heat storage device
JP3814570B2 (en) Air conditioner
JP3160338B2 (en) Super cooling water production equipment
JPH1047822A (en) Ice heat storage device
JP2755775B2 (en) Subcooler
KR20200080066A (en) Liquid Phase Beverage Supercooling Device
JPH07122524B2 (en) refrigerator
JPH0498094A (en) Ice heat accumulating device
JP2000046433A (en) Air conditioning apparatus equipped with ice heat storage tank
JP2000171110A (en) Cold accumulative cooling system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees