JP2000046433A - Air conditioning apparatus equipped with ice heat storage tank - Google Patents

Air conditioning apparatus equipped with ice heat storage tank

Info

Publication number
JP2000046433A
JP2000046433A JP10216208A JP21620898A JP2000046433A JP 2000046433 A JP2000046433 A JP 2000046433A JP 10216208 A JP10216208 A JP 10216208A JP 21620898 A JP21620898 A JP 21620898A JP 2000046433 A JP2000046433 A JP 2000046433A
Authority
JP
Japan
Prior art keywords
ice
heat storage
storage tank
heat exchanger
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10216208A
Other languages
Japanese (ja)
Other versions
JP3802237B2 (en
Inventor
Hirokazu Izaki
博和 井崎
Yoshiaki Kurosawa
美暁 黒澤
Osamu Kuwabara
修 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP21620898A priority Critical patent/JP3802237B2/en
Publication of JP2000046433A publication Critical patent/JP2000046433A/en
Application granted granted Critical
Publication of JP3802237B2 publication Critical patent/JP3802237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To dispense with a liquid pump for sending under pressure a liquid refrigerant in a coil of an ice heat storage unit to a use side heat exchanger and to avoid surely the cavitation apt to occur in the liquid pump. SOLUTION: In an air conditioning apparatus 20 which has a heat source side unit 21 equipped with a compressor 28 and a heat source side heat exchanger 30 an ice heat storage unit 22 having a coil 34 disposed in a submerged state in an ice heat storage tank 35 and a use side unit 23 equipped with a use side heat exchanger 32 and is equipped with the ice heat storage tank enabling execution of an ice making operation and a cooling operation, surge tanks 43A and 43B which can reserve a refrigerant are disposed in a parallel state between the coil 34 in the ice heat storage tank 35 and the use side heat exchanger 32. A liquid refrigerant condensed in the coil 34 is reserved in the tanks 43A and 43B and this reserved liquid refrigerant is made sendable under pressure to the use side heat exchanger by a high-pressure gas refrigerant supplied alternately into the tanks.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、氷蓄熱槽を備えた
空気調和装置に係り、氷蓄熱ユニットに蓄熱された冷熱
を放熱して放冷冷房運転を実施する氷蓄熱槽を備えた空
気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner having an ice heat storage tank, and more particularly to an air conditioner having an ice heat storage tank for performing cooling and cooling operation by radiating cold stored in an ice heat storage unit. Related to the device.

【0002】[0002]

【従来の技術】一般に、図3に示すように、圧縮機1、
熱源側熱交換器2、四方弁3及び電動膨張弁4を備えた
熱源側ユニット5と、氷蓄熱槽6内にコイル7が水没状
態で配設されてコイル7外周に氷が形成可能な氷蓄熱ユ
ニット8と、利用側熱交換器9を備えた利用側ユニット
10とを有し、製氷運転、放冷冷房運転、通常冷房運転
を実施可能とする空気調和装置11が知られている。
2. Description of the Related Art Generally, as shown in FIG.
A heat source side unit 5 including a heat source side heat exchanger 2, a four-way valve 3 and an electric expansion valve 4, and an ice capable of forming ice on the outer periphery of the coil 7 with a coil 7 disposed in a submerged state in an ice heat storage tank 6. An air conditioner 11 having a heat storage unit 8 and a use side unit 10 including a use side heat exchanger 9 and capable of performing an ice making operation, a cooling / cooling operation, and a normal cooling operation is known.

【0003】製氷運転は、圧縮機1からのガス冷媒が熱
源側熱交換器2を経て液冷媒となり、その後に電動膨張
弁4を通り、氷蓄熱槽6内のコイル7に流入して蒸発
し、この氷蓄熱槽6内で製氷動作が実施された後、ガス
冷媒が圧縮機1へ戻されて実施される。
[0003] In the ice making operation, the gas refrigerant from the compressor 1 passes through the heat source side heat exchanger 2 to become a liquid refrigerant, and then flows through the electric expansion valve 4 into the coil 7 in the ice heat storage tank 6 to evaporate. After the ice making operation is performed in the ice heat storage tank 6, the gas refrigerant is returned to the compressor 1 for execution.

【0004】放冷冷房運転は、熱源側ユニット5の圧縮
機1を停止させ、氷蓄熱ユニット8に設置されて冷媒を
圧送する液ポンプ又はガスポンプなどの循環ポンプ12
(図3では液冷媒を圧送する液ポンプ)を稼働させるこ
とによりなされている。つまり、循環ポンプ12の稼働
により、氷蓄熱ユニット8における氷蓄熱槽6のコイル
7内で、氷に蓄熱された冷熱を吸収して凝縮した液冷媒
が利用側熱交換器9へ圧送され、この利用側熱交換器9
において液冷媒が蒸発して、この蒸発潜熱と氷の冷熱の
放熱とにより放冷冷房運転が実施される。
In the cooling / cooling operation, the compressor 1 of the heat source side unit 5 is stopped, and a circulating pump 12 such as a liquid pump or a gas pump installed in the ice heat storage unit 8 for pumping the refrigerant.
(In FIG. 3, the liquid pump for pumping the liquid refrigerant is operated). That is, by the operation of the circulation pump 12, the liquid refrigerant that has absorbed and condensed the cold stored in the ice in the coil 7 of the ice heat storage tank 6 of the ice heat storage unit 8 is pumped to the use-side heat exchanger 9, User side heat exchanger 9
, The liquid refrigerant evaporates, and the cooling / cooling operation is performed by the latent heat of evaporation and the heat radiation of the cold heat of ice.

【0005】通常冷房運転は、圧縮機1から熱源側熱交
換器2へ導かれて液冷媒となった冷媒を、氷蓄熱槽6の
コイル7内へ流すことなく、利用側熱交換器9へ供給し
て液冷媒を蒸発し、この蒸発潜熱により実施される。
In the normal cooling operation, the refrigerant that has been guided from the compressor 1 to the heat source side heat exchanger 2 and becomes a liquid refrigerant flows to the use side heat exchanger 9 without flowing into the coil 7 of the ice heat storage tank 6. The liquid refrigerant is supplied to evaporate the liquid refrigerant, and the operation is performed by the latent heat of evaporation.

【0006】[0006]

【発明が解決しようとする課題】ところで、上述の放冷
冷房運転では、特に循環ポンプ12が液ポンプの場合
に、この循環ポンプ12にキャビテーションが発生する
おそれがある。更に、冷媒の種類に対応した仕様の液ポ
ンプが必要となる。
In the cooling / cooling operation described above, cavitation may occur in the circulation pump 12, particularly when the circulation pump 12 is a liquid pump. Further, a liquid pump having a specification corresponding to the type of the refrigerant is required.

【0007】本発明の課題は、上述の事情を考慮してな
されたものであり、信頼性を向上させることができる氷
蓄熱槽を備えた空気調和装置を提供することにある。
[0007] An object of the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an air conditioner provided with an ice heat storage tank capable of improving reliability.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明は、
圧縮機及び熱源側熱交換器を備えた熱源側ユニットと、
氷蓄熱槽内にコイルが水没状態で配設されてこのコイル
外周に氷が形成可能な氷蓄熱ユニットと、利用側熱交換
器を備えた利用側ユニットとを有し、製氷運転、冷房運
転を実施可能とする氷蓄熱槽を備えた空気調和装置にお
いて、上記氷蓄熱槽内の上記コイルと上記利用側熱交換
器との間に、冷媒を貯溜可能な複数のタンクが並列状態
で配設され、上記コイル内で凝縮した液冷媒が上記タン
ク内に貯溜されて、これらのタンク内へ交互に供給され
る高圧ガス冷媒により上記利用側熱交換器へ圧送可能に
構成されたことを特徴とするものである。
According to the first aspect of the present invention,
A heat source side unit including a compressor and a heat source side heat exchanger,
An ice heat storage unit in which a coil is disposed in a submerged state in an ice heat storage tank and ice can be formed on the outer periphery of the coil, and a use-side unit having a use-side heat exchanger, and perform an ice making operation and a cooling operation. In an air conditioner having an ice heat storage tank to be enabled, a plurality of tanks capable of storing a refrigerant are arranged in parallel between the coil and the use side heat exchanger in the ice heat storage tank. The liquid refrigerant condensed in the coil is stored in the tank, and is configured to be capable of being pumped to the use-side heat exchanger by a high-pressure gas refrigerant supplied alternately into these tanks. Things.

【0009】請求項2記載の発明は、請求項1に記載の
発明において、上記複数のタンクへ交互に供給される高
圧ガス冷媒は、熱源側ユニットの圧縮機の停止時におけ
る当該圧縮機と熱源側熱交換器との間の高圧ガス冷媒で
あることを特徴とするものである。
According to a second aspect of the present invention, in the first aspect of the present invention, the high-pressure gas refrigerant alternately supplied to the plurality of tanks is connected to the heat source side unit when the compressor is stopped. It is a high-pressure gas refrigerant between the side heat exchanger.

【0010】請求項3記載の発明は、請求項1に記載の
発明において、上記複数のタンクへ交互に供給される高
圧ガス冷媒は、熱源側ユニットの圧縮機よりも容量の小
さな小容量圧縮機から供給される高圧ガス冷媒であるこ
とを特徴とするものである。
According to a third aspect of the present invention, in the first aspect of the present invention, the high-pressure gas refrigerant alternately supplied to the plurality of tanks has a smaller capacity than the compressor of the heat source side unit. Characterized in that it is a high-pressure gas refrigerant supplied from the company.

【0011】請求項1に記載の発明には、次の作用があ
る。氷蓄熱ユニットのコイル内において氷の冷熱により
凝縮された液冷媒が複数のタンク内に貯溜され、これら
の液冷媒が、タンク内へ交互に供給される高圧ガス冷媒
により利用側熱交換器へ圧送可能に構成されたことか
ら、氷蓄熱ユニットのコイル内における液冷媒を利用側
熱交換器へ圧送する液ポンプが不要となり、従って、こ
の液ポンプに発生する虞のあるキャビテーションを確実
に回避でき、信頼性を向上させることができる。
The first aspect of the invention has the following operation. Liquid refrigerant condensed by the cold heat of ice in the coil of the ice heat storage unit is stored in a plurality of tanks, and these liquid refrigerants are pumped to the use side heat exchanger by high-pressure gas refrigerant supplied alternately into the tanks. Since it is configured to be possible, a liquid pump for pumping the liquid refrigerant in the coil of the ice heat storage unit to the use side heat exchanger becomes unnecessary, and therefore, cavitation that may occur in this liquid pump can be reliably avoided, Reliability can be improved.

【0012】請求項2に記載の発明には、次の作用があ
る。熱源側ユニットの圧縮機の停止時における当該圧縮
機と熱源側熱交換器との間の高圧ガス冷媒を複数のタン
クへ交互に供給することから、この圧縮機を駆動させ
ず、ほとんど無動力で、氷蓄熱ユニットのコイル内にお
ける過冷却状態の液冷媒を利用側熱交換器へ圧送させる
ことができる。
The second aspect of the invention has the following operation. Since the high-pressure gas refrigerant between the compressor and the heat-source-side heat exchanger is alternately supplied to the plurality of tanks when the compressor of the heat-source-side unit is stopped, the compressor is not driven and almost no power is used. The supercooled liquid refrigerant in the coil of the ice heat storage unit can be pumped to the use side heat exchanger.

【0013】請求項3に記載の発明には、次の作用があ
る。
The third aspect of the invention has the following operation.

【0014】熱源側ユニットの圧縮機よりも容量の小さ
な小容量圧縮機から供給される高圧ガス冷媒を複数のタ
ンクへ交互に供給することから、この小容量圧縮機は汎
用の圧縮機であれば良く、冷媒の種類に応じてその仕様
を変更する必要がないので、部品の共用化を図ることが
でき、コストを低減できる。
Since the high-pressure gas refrigerant supplied from the small-capacity compressor having a smaller capacity than the compressor of the heat source side unit is alternately supplied to a plurality of tanks, this small-capacity compressor is a general-purpose compressor. Since there is no need to change the specification according to the type of the refrigerant, parts can be shared and the cost can be reduced.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】[A]第一の実施の形態 図1は、本発明に係る氷蓄熱槽を備えた空気調和装置の
第一の実施の形態を示す管路図である。
[A] First Embodiment FIG. 1 is a pipeline diagram showing a first embodiment of an air conditioner having an ice heat storage tank according to the present invention.

【0017】この図1に示す空気調和装置20は、熱源
側ユニット21、氷蓄熱ユニット22及び利用側ユニッ
ト23を有して構成される。熱源側ユニット21の冷媒
配管24が、氷蓄熱ユニット22の冷媒配管25、26
を介して利用側ユニット23の冷媒配管27に接続され
る。
The air conditioner 20 shown in FIG. 1 includes a heat source side unit 21, an ice heat storage unit 22, and a use side unit 23. The refrigerant pipes 24 of the heat source side unit 21 are connected to the refrigerant pipes 25, 26 of the ice heat storage unit 22.
Is connected to the refrigerant pipe 27 of the use-side unit 23 via the.

【0018】熱源側ユニット21は、冷媒配管24に圧
縮機28、四方弁29、熱源側熱交換器30及び電動膨
張弁31が順次接続されて構成される。また、利用側ユ
ニット23は、冷媒配管27に利用側熱交換器32及び
電動膨張弁33が配設されて構成され、この電動膨張弁
33は、空調負荷に応じて開度が調整される。
The heat source side unit 21 is configured by connecting a compressor 28, a four-way valve 29, a heat source side heat exchanger 30 and an electric expansion valve 31 to a refrigerant pipe 24 in order. Further, the use side unit 23 is configured such that the use side heat exchanger 32 and the electric expansion valve 33 are disposed in the refrigerant pipe 27, and the degree of opening of the electric expansion valve 33 is adjusted according to the air conditioning load.

【0019】氷蓄熱ユニット22は、コイル34を収容
した氷蓄熱槽35を備えると共に、冷媒配管25に第1
開閉弁36が、冷媒配管26に第2開閉弁37がそれぞ
れ配設される。更に、冷媒配管25には、第1開閉弁3
6の配設位置よりも利用側ユニット23側に、接続配管
38を介してコイル34の一端が接続され、この接続配
管38に電動膨張弁39が配設される。また、コイル3
4の他端は、第3開閉弁40を備えた接続配管41を介
して、冷媒配管26における第2開閉弁37配設位置の
利用側ユニット23側に接続される。
The ice heat storage unit 22 includes an ice heat storage tank 35 accommodating a coil 34,
An on-off valve 36 is provided, and a second on-off valve 37 is provided on the refrigerant pipe 26. Further, the first on-off valve 3 is connected to the refrigerant pipe 25.
One end of the coil 34 is connected to the use side unit 23 side from the disposition position 6 via a connection pipe 38, and an electric expansion valve 39 is disposed on the connection pipe 38. In addition, coil 3
The other end of 4 is connected via a connection pipe 41 provided with a third on-off valve 40 to the use side unit 23 side of the refrigerant pipe 26 where the second on-off valve 37 is provided.

【0020】氷蓄熱槽35には水が充満され、コイル3
4はこの氷蓄熱槽35内に水没状態で配設される。この
コイル34内には、空気調和装置20の製氷運転時に熱
源側熱交換器30から液冷媒が流入して蒸発し、これに
より、コイル34の外周に氷が付着して形成される。
The ice heat storage tank 35 is filled with water, and the coil 3
4 is provided in the ice heat storage tank 35 in a state of being submerged. During the ice making operation of the air conditioner 20, the liquid refrigerant flows from the heat source side heat exchanger 30 and evaporates in the coil 34, whereby ice adheres to the outer periphery of the coil 34 and is formed.

【0021】上記接続配管38には、電動膨張弁39と
コイル34との間に、二股に分岐する分岐配管42を介
して2個のサージタンク43A及び43Bが並列状態で
接続される。これらのサージタンク43A、43Bが合
流配管44を介して、冷媒配管25における第1開閉弁
36配設位置と接続配管38接続位置との間に接続され
る。これにより、サージタンク43A及び43Bは、氷
蓄熱槽35内のコイル34と利用側熱交換器32との間
に配設されて、氷蓄熱槽35内の氷に蓄熱された冷熱に
より凝縮された液冷媒が貯留可能に設けられる。
Two surge tanks 43A and 43B are connected in parallel to the connection pipe 38 between a motor-operated expansion valve 39 and the coil 34 via a branch pipe 42 that branches into two branches. These surge tanks 43 </ b> A and 43 </ b> B are connected via a merging pipe 44 between the position where the first on-off valve 36 is disposed in the refrigerant pipe 25 and the position where the connection pipe 38 is connected. Thereby, the surge tanks 43A and 43B are disposed between the coil 34 in the ice heat storage tank 35 and the use side heat exchanger 32, and are condensed by the cold stored in the ice in the ice heat storage tank 35. A liquid refrigerant is provided so as to be able to be stored.

【0022】分岐配管42には、サージタンク43A、
43Bの流入側に流入側逆止弁45A、45Bが、ま
た、合流配管44には、サージタンク43A、43Bの
流出側に流出側逆止弁46A、46Bがそれぞれ配設さ
れている。これらの流入側逆止弁45A、45Bは、氷
蓄熱槽35のコイル34からサージタンク43A、43
Bへのみ流れる冷媒の流れを許容し、流出側逆止弁46
A、46Bは、サージタンク43A、43Bから利用側
熱交換器32側へのみ流れる冷媒の流れを許容する。
The branch pipe 42 has a surge tank 43A,
Inflow side check valves 45A and 45B are provided on the inflow side of 43B, and outflow side check valves 46A and 46B are provided on the merging pipe 44 on the outflow side of the surge tanks 43A and 43B, respectively. These inflow side check valves 45A, 45B are connected to the surge tanks 43A, 43A from the coil 34 of the ice heat storage tank 35.
B, and allows the flow of the refrigerant flowing only to
A and 46B allow the flow of the refrigerant flowing only from the surge tanks 43A and 43B to the use-side heat exchanger 32 side.

【0023】サージタンク43A、43Bは、熱源側ユ
ニット21の冷媒配管24における四方弁29と熱源側
熱交換器30との間に、分岐配管47を介して接続され
る。この分岐配管47には、サージタンク43Aに接続
される分岐部48Aに第1タンク開閉弁49が、また、
サージタンク43Bに接続される分岐部48Bに第2タ
ンク開閉弁50がそれぞれ配設される。
The surge tanks 43A and 43B are connected through a branch pipe 47 between the four-way valve 29 and the heat source side heat exchanger 30 in the refrigerant pipe 24 of the heat source side unit 21. In the branch pipe 47, a first tank opening / closing valve 49 is provided at a branch portion 48A connected to the surge tank 43A.
The second tank opening / closing valves 50 are respectively provided in the branch portions 48B connected to the surge tank 43B.

【0024】これらの第1タンク開閉弁49、第2タン
ク開閉弁50が選択的に開閉されることにより、圧縮機
28の停止時におけるこの圧縮機28と熱源側熱交換器
30との間の高圧ガス冷媒が、サージタンク43A、4
3B内に交互に供給可能に構成される。これにより、サ
ージタンク43A、43B内に貯留された液冷媒が利用
側熱交換器32へ圧送可能に設けられる。
The first tank on-off valve 49 and the second tank on-off valve 50 are selectively opened and closed, so that the compressor 28 and the heat source side heat exchanger 30 can be connected when the compressor 28 is stopped. The high-pressure gas refrigerant is supplied to the surge tank 43A, 4
3B. Thus, the liquid refrigerant stored in the surge tanks 43 </ b> A and 43 </ b> B is provided to be able to be pressure-fed to the use-side heat exchanger 32.

【0025】次に、空気調和装置20の製氷運転、放冷
冷房運転、通常冷房運転を説明する。
Next, the ice making operation, the cooling / cooling operation, and the normal cooling operation of the air conditioner 20 will be described.

【0026】[A−1]製氷運転 空気調和装置20の製氷運転は、例えば、夜間10時か
ら翌朝8時までの電力料金の安い時間帯に、熱源側熱交
換器30からの液冷媒を氷蓄熱槽35のコイル34内へ
供給し、氷蓄熱槽35内に氷を作る運転である。
[A-1] Ice Making Operation The ice making operation of the air conditioner 20 is performed, for example, by using the liquid refrigerant from the heat source side heat exchanger 30 during the period of low electricity rates from 10:00 at night to 8:00 in the next morning. This is an operation of supplying ice into the coil 34 of the heat storage tank 35 and forming ice in the ice heat storage tank 35.

【0027】この場合には、電動膨張弁33、第1タン
ク開閉弁49及び第2タンク開閉弁50が閉弁され、第
1開閉弁36、第2開閉弁37、第3開閉弁40及び電
動膨張弁39が開弁操作される。
In this case, the electric expansion valve 33, the first tank opening / closing valve 49 and the second tank opening / closing valve 50 are closed, and the first opening / closing valve 36, the second opening / closing valve 37, the third opening / closing valve 40 and the electric The expansion valve 39 is opened.

【0028】この状態で、熱源側ユニット21の圧縮機
28が稼働されると、この圧縮機28から吐出されたガ
ス冷媒は、熱源側熱交換器30にて凝縮され、電動膨張
弁31及び39を経て減圧され、氷蓄熱槽35のコイル
34内へ流入する。このコイル34内に流入した冷媒は
蒸発して、コイル34の外周に氷を付着した状態で形成
する。その後、コイル34内のガス冷媒は接続配管41
及び冷媒配管26を経て四方弁29へ至り、圧縮機28
に戻される。
In this state, when the compressor 28 of the heat source side unit 21 is operated, the gas refrigerant discharged from the compressor 28 is condensed in the heat source side heat exchanger 30 and the electric expansion valves 31 and 39 , And flows into the coil 34 of the ice heat storage tank 35. The refrigerant that has flowed into the coil 34 evaporates and forms with ice adhered to the outer periphery of the coil 34. Thereafter, the gas refrigerant in the coil 34 is connected to the connection pipe 41.
And a refrigerant pipe 26 to a four-way valve 29, and a compressor 28
Is returned to.

【0029】[A−2]放冷冷房運転 空気調和装置20の放冷冷房運転は、例えば、昼間気温
が上昇する時間帯に、氷蓄熱槽35のコイル34内で氷
の冷熱により液化されてサージタンク43A、43B内
に貯留された液冷媒を、このサージタンク43A、43
Bから利用側熱交換器32へ圧送することにより実施さ
れる。
[A-2] Cooling / cooling operation In the cooling / cooling operation of the air conditioner 20, for example, during the daytime when the temperature rises, the air is liquefied by the cold heat of the ice in the coil 34 of the ice storage tank 35. The liquid refrigerant stored in the surge tanks 43A, 43B is transferred to the surge tanks 43A, 43B.
This is performed by pumping from B to the use side heat exchanger 32.

【0030】この場合には、第1開閉弁36、第2開閉
弁37及び電動膨張弁39が閉弁され、電動膨張弁33
及び第3開閉弁40が開弁操作される。また、熱源側ユ
ニット21の圧縮機28は、製氷運転終了後の停止状態
にある。
In this case, the first on-off valve 36, the second on-off valve 37 and the electric expansion valve 39 are closed, and the electric expansion valve 33
And the third on-off valve 40 is operated to open. Further, the compressor 28 of the heat source side unit 21 is in a stopped state after the ice making operation is completed.

【0031】この状態で、第1タンク開閉弁49、第2
タンク開閉弁50を選択的に開閉操作する。例えば、第
1タンク開閉弁49を開操作すると(第2タンク開閉弁
50は閉状態)、熱源側ユニット21の圧縮機28と熱
源側熱交換器30との間の高圧ガス冷媒が、第1タンク
開閉弁49を経てサージタンク43A内へ流入する。こ
れにより、このサージタンク43A内の貯留液冷媒が流
出側逆止弁46A、合流配管44、冷媒配管25及び2
7を経て利用側熱交換器32内へ流入する。サージタン
ク43A内に貯留した液冷媒は、氷蓄熱槽35のコイル
34内を通り、氷蓄熱槽35内の氷に蓄熱された冷熱に
より凝縮された液冷媒であるため、利用側熱交換器32
内で蒸発することにより、上記氷の冷熱の放熱(放冷)
と蒸発潜熱とにより室内を効率的に冷却する。
In this state, the first tank on-off valve 49 and the second
The tank opening / closing valve 50 is selectively opened / closed. For example, when the first tank opening / closing valve 49 is opened (the second tank opening / closing valve 50 is closed), the high-pressure gaseous refrigerant between the compressor 28 of the heat source unit 21 and the heat source side heat exchanger 30 becomes the first gas. It flows into the surge tank 43A via the tank opening / closing valve 49. As a result, the liquid refrigerant stored in the surge tank 43A is discharged to the outflow-side check valve 46A, the merging pipe 44, the refrigerant pipes 25 and 2
Through 7, it flows into the use side heat exchanger 32. Since the liquid refrigerant stored in the surge tank 43A passes through the coil 34 of the ice heat storage tank 35 and is condensed by the cold stored in the ice in the ice heat storage tank 35, the use-side heat exchanger 32
By evaporating inside, the heat of the cold of the ice is released (cooling)
And the latent heat of evaporation cools the room efficiently.

【0032】利用側熱交換器32にて蒸発したガス冷媒
は、接続配管41及び第3開閉弁40を経て氷蓄熱槽3
5のコイル34内へ流入し、上述の如く、氷蓄熱槽35
内の氷により液冷媒となって、流入側逆止弁45Bを経
てサージタンク43B内へ流入する。
The gas refrigerant evaporated in the use-side heat exchanger 32 passes through the connection pipe 41 and the third on-off valve 40 and is stored in the ice heat storage tank 3.
5 and into the ice heat storage tank 35 as described above.
The liquid in the tank becomes liquid refrigerant due to the ice therein, and flows into the surge tank 43B via the inflow-side check valve 45B.

【0033】この時、サージタンク43A内が高圧であ
るため、氷蓄熱槽35のコイル34内の液冷媒は、サー
ジタンク43A内へ流れることなくサージタンク43B
内へ流れる。同様に、サージタンク43B内がサージタ
ンク43Aに比べて低圧であるため、サージタンク43
B内の貯留冷媒が流出側逆止弁46Bを経て利用側熱交
換器32側へ流出することもない。
At this time, since the inside of the surge tank 43A is at a high pressure, the liquid refrigerant in the coil 34 of the ice heat storage tank 35 does not flow into the surge tank 43A without flowing into the surge tank 43B.
Flows inside. Similarly, since the pressure inside the surge tank 43B is lower than that of the surge tank 43A,
The stored refrigerant in B does not flow out to the use-side heat exchanger 32 via the outflow-side check valve 46B.

【0034】サージタンク43A内の貯留冷媒が所定値
以下まで低下した時点で第1タンク開閉弁49を閉弁状
態とし、第2タンク開閉弁50を開弁操作させる。する
と、サージタンク43B内に貯留された液冷媒が、流出
側逆止弁46B、合流配管44、冷媒配管25、27及
び電動膨張弁33を経て利用側熱交換器32へ流入し蒸
発して、前述と同様に、放冷及び蒸発潜熱により室内を
効率的に冷房する。この利用側熱交換器32からのガス
冷媒は、接続配管41及び第3開閉弁40を経て氷蓄熱
槽35のコイル34内で氷の冷熱により凝縮され、分岐
配管42及び流入側逆止弁45Aを経てサージタンク4
3A内へ流入する。
When the amount of the refrigerant stored in the surge tank 43A drops below a predetermined value, the first tank opening / closing valve 49 is closed, and the second tank opening / closing valve 50 is opened. Then, the liquid refrigerant stored in the surge tank 43B flows into the use side heat exchanger 32 via the outflow check valve 46B, the merge pipe 44, the refrigerant pipes 25 and 27, and the electric expansion valve 33, and evaporates. As described above, the room is efficiently cooled by cooling and latent heat of evaporation. The gas refrigerant from the use side heat exchanger 32 is condensed by the cold heat of the ice in the coil 34 of the ice heat storage tank 35 via the connection pipe 41 and the third on-off valve 40, and is branched into the branch pipe 42 and the inflow side check valve 45A. Through surge tank 4
It flows into 3A.

【0035】サージタンク43B内の液冷媒が所定値以
下まで低下した時点で、第2タンク開閉弁50を閉弁
し、第1タンク開閉弁49を開弁操作して、上述の動作
を繰り返す。この放冷冷房運転実施時には、一般に外気
温度が高温であるため、熱源側熱交換器30内の冷媒温
度が高く、熱源側ユニット21において圧縮機28と熱
源側熱交換器30との間に高圧ガス冷媒が長時間維持さ
れて、上述の放冷冷房運転が継続される。
When the liquid refrigerant in the surge tank 43B drops below a predetermined value, the second tank opening / closing valve 50 is closed and the first tank opening / closing valve 49 is opened, and the above-described operation is repeated. During the cooling / cooling operation, since the outside air temperature is generally high, the refrigerant temperature in the heat source side heat exchanger 30 is high, and the high pressure between the compressor 28 and the heat source side heat exchanger 30 in the heat source side unit 21. The gas refrigerant is maintained for a long time, and the above cooling / cooling operation is continued.

【0036】しかし、上述の放冷冷房運転中に、氷蓄熱
ユニット22内で冷媒量が増加した場合には、この放冷
冷房運転状態において、第1開閉弁36を閉弁状態とし
たままで第2開閉弁37を開弁操作し、四方弁29を冷
房位置に設定して圧縮機28を稼働させ、ポンプダウン
を実施する。これにより、氷蓄熱ユニット22内の余剰
の冷媒が回収され、熱源側ユニット21における圧縮機
28と熱源側熱交換器30との間に高圧ガス冷媒が確保
されて、上述の放冷冷房運転が再び継続される。
However, if the amount of refrigerant in the ice heat storage unit 22 increases during the cooling / cooling operation, the first on-off valve 36 is kept closed in the cooling / cooling operation state. The second on-off valve 37 is opened, the four-way valve 29 is set to the cooling position, the compressor 28 is operated, and the pump is down. As a result, excess refrigerant in the ice heat storage unit 22 is recovered, high-pressure gas refrigerant is secured between the compressor 28 and the heat source side heat exchanger 30 in the heat source side unit 21, and the above-described cooling / cooling operation is performed. It will be continued again.

【0037】[A−3]通常冷房運転 空気調和装置20の通常冷房運転は、氷蓄熱槽35内の
氷に蓄熱された冷熱を利用しないで実施される冷房運転
であり、第1タンク開閉弁49、第2タンク開閉弁5
0、電動膨張弁39及び第3開閉弁40が閉弁され、第
1開閉弁36、第2開閉弁37並びに電動膨張弁31及
び33が開弁操作される。
[A-3] Normal Cooling Operation The normal cooling operation of the air conditioner 20 is a cooling operation that is performed without using the cold heat stored in the ice in the ice heat storage tank 35. 49, second tank on-off valve 5
0, the electric expansion valve 39 and the third on-off valve 40 are closed, and the first on-off valve 36, the second on-off valve 37, and the electric expansion valves 31 and 33 are opened.

【0038】この状態で、圧縮機28が稼働されると、
この圧縮機28から吐出されたガス冷媒は、熱源側熱交
換器30にて凝縮され、電動膨張弁31、冷媒配管25
及び電動膨張弁33を経て利用側熱交換器32へ流入
し、この利用側熱交換器32にて蒸発して、蒸発潜熱に
より室内を冷房した後、冷媒配管26及び四方弁29を
経て圧縮機28へ戻される。
In this state, when the compressor 28 is operated,
The gas refrigerant discharged from the compressor 28 is condensed in the heat source side heat exchanger 30, and the electric expansion valve 31, the refrigerant pipe 25
After flowing into the use-side heat exchanger 32 through the electric expansion valve 33 and evaporating in the use-side heat exchanger 32 to cool the room by the latent heat of evaporation, the compressor passes through the refrigerant pipe 26 and the four-way valve 29. Returned to 28.

【0039】上記実施の形態の空気調和装置20は、上
述のように構成されたことから、次の効果及びを奏
する。
The air conditioner 20 of the above embodiment has the following effects because it is configured as described above.

【0040】氷蓄熱槽35のコイル34内において氷
の冷熱により凝縮した液冷媒がサージタンク43A、4
3B内に貯留され、これらの液冷媒が、サージタンク4
3A、43B内へ交互に供給される高圧ガス冷媒により
利用側ユニット23へ圧送可能に構成されたことから、
氷蓄熱槽35のコイル34内における液冷媒を利用側ユ
ニット23へ圧送する液ポンプなどの循環ポンプが不要
となり、従って、この液ポンプに発生する恐れのあるキ
ャビテーションを確実に回避でき、信頼性を向上させる
ことができる。
The liquid refrigerant condensed by the cold heat of the ice in the coil 34 of the ice heat storage tank 35 is supplied to the surge tanks 43A and 43A.
3B, these liquid refrigerants are stored in the surge tank 4
3A and 43B, the high-pressure gas refrigerant alternately supplied into the units 3A and 43B allows the pressure to be sent to the use-side unit 23.
A circulating pump such as a liquid pump for pumping the liquid refrigerant in the coil 34 of the ice heat storage tank 35 to the use-side unit 23 is not required. Therefore, cavitation that may occur in the liquid pump can be reliably avoided, and reliability is reduced. Can be improved.

【0041】熱源側ユニット21の圧縮機28停止時
における圧縮機28と熱源側熱交換器30との間の高圧
ガス冷媒を、第1タンク開閉弁49、第2タンク開閉弁
50を交互に開閉操作して分岐配管47を介しサージタ
ンク43A、43B内へ交互に供給することから、圧縮
機28を駆動させず、ほとんど無動力で、氷蓄熱槽35
のコイル34内における液冷媒を利用側熱交換器32へ
圧送させることができる。
When the compressor 28 of the heat source side unit 21 is stopped, the high pressure gas refrigerant between the compressor 28 and the heat source side heat exchanger 30 opens and closes the first tank opening and closing valve 49 and the second tank opening and closing valve 50 alternately. Since the compressor 28 is operated and supplied alternately into the surge tanks 43A and 43B via the branch pipe 47, the compressor 28 is not driven, and almost no power is used.
The liquid refrigerant in the coil 34 can be pressure-fed to the use-side heat exchanger 32.

【0042】[B]第二の実施の形態 図2は、本発明に係る氷蓄熱槽を備えた空気調和装置の
第二の実施の形態を示す管路図である。この第二の実施
の形態において、前記第一の実施の形態と同様な部分
は、同一の符号を付すことにより説明を省略する。
[B] Second Embodiment FIG. 2 is a pipeline diagram showing an air conditioner having an ice heat storage tank according to a second embodiment of the present invention. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.

【0043】この第二の実施の形態の空気調和装置60
は、前記空気調和装置20の分岐配管47、第1タンク
開閉弁49及び第2タンク開閉弁50が削除され、代わ
りに小容量圧縮機61及び四方弁62が、第1配管6
3、第2配管64、第3配管65及び第4配管66に配
設されたものである。第1配管63、第2配管64、第
3配管65及び第4配管66は、それぞれの一端が四方
弁62の各ポートに接続されると共に、第1配管63、
第2配管64の他端が小容量圧縮機61の吐出口と吸込
口にそれぞれ接続される。また、第3配管65、第4配
管66の他端がサージタンク43A、43Bにそれぞれ
接続される。
The air conditioner 60 of the second embodiment
The branch pipe 47, the first tank on-off valve 49, and the second tank on-off valve 50 of the air conditioner 20 are deleted, and the small capacity compressor 61 and the four-way valve 62 are replaced with the first pipe 6
3, the second pipe 64, the third pipe 65, and the fourth pipe 66. One end of each of the first pipe 63, the second pipe 64, the third pipe 65, and the fourth pipe 66 is connected to each port of the four-way valve 62, and the first pipe 63,
The other end of the second pipe 64 is connected to the discharge port and the suction port of the small capacity compressor 61, respectively. The other ends of the third pipe 65 and the fourth pipe 66 are connected to the surge tanks 43A and 43B, respectively.

【0044】四方弁62の切り換え操作により、第1配
管63及び第3配管65の連通並びに第2配管64及び
第4配管66の連通と、第1配管63及び第4配管66
の連通並びに第2配管64及び第3配管65の連通と
が、選択的に切り換わる。また、上記小容量圧縮機61
は、熱源側ユニット21における圧縮機28よりも小さ
な容量(1/10〜1/20)の圧縮機であり、空気調
和装置60の放冷冷房運転時にのみ稼働される。この小
容量圧縮機61から吐出される冷媒は、熱源側ユニット
21の圧縮機28から吐出される冷媒と同一組成であ
る。
By the switching operation of the four-way valve 62, the communication between the first pipe 63 and the third pipe 65, the communication between the second pipe 64 and the fourth pipe 66, and the communication between the first pipe 63 and the fourth pipe 66 are performed.
And the communication between the second pipe 64 and the third pipe 65 are selectively switched. In addition, the small capacity compressor 61
Is a compressor having a smaller capacity (1/10 to 1/20) than the compressor 28 in the heat source side unit 21 and is operated only during the cooling and cooling operation of the air conditioner 60. The refrigerant discharged from the small capacity compressor 61 has the same composition as the refrigerant discharged from the compressor 28 of the heat source side unit 21.

【0045】更に、前記空気調和装置20の流入側逆止
弁45A、45B、流出側逆止弁46A、46Bは、そ
れぞれ流入側開閉弁67A、67B、流出側開閉弁68
A、68Bに置き換えられて構成される。
Further, the inflow-side check valves 45A and 45B and the outflow-side check valves 46A and 46B of the air conditioner 20 are provided with inflow-side on-off valves 67A and 67B and outflow-side on-off valve 68, respectively.
A, 68B.

【0046】製氷運転及び通常冷房運転時には、流入側
開閉弁67A及び67B、並びに流出側開閉弁68A及
び68Bが全て閉弁操作され、且つ小容量圧縮機61が
停止する。
During the ice making operation and the normal cooling operation, the inflow-side on-off valves 67A and 67B and the outflow-side on-off valves 68A and 68B are all closed, and the small capacity compressor 61 is stopped.

【0047】放冷冷房運転時には、流入側開閉弁67A
及び流出側開閉弁68Bと、流入側開閉弁67B及び流
出側開閉弁68Aとが交互に開閉操作され、小容量圧縮
機61が稼働する。四方弁62が第1配管63及び第3
配管65を連通させ、第2配管64及び第4配管66を
連通させる状態に切り換えられ、更に、流入側開閉弁6
7B及び流出側開閉弁68Aが開弁操作され、流入側開
閉弁67A及び流出側開閉弁68Bが閉弁操作されてい
るときには、小容量圧縮機61にて吐出された高圧ガス
冷媒は、第1配管63、四方弁62及び第3配管65を
経てサージタンク43A内へ流入する。これにより、こ
のサージタンク43A内に貯留され、且つ氷蓄熱槽35
の氷の冷熱により凝縮した液冷媒が、流出側開閉弁68
A、合流配管44及び冷媒配管25などを経て利用側熱
交換器32へ圧送され、この利用側熱交換器32にて蒸
発して室内が放冷冷房される。利用側熱交換器32にて
蒸発してガス冷媒は、接続配管41及び第3開閉弁40
を通って氷蓄熱槽35のコイル34内へ至り、氷の冷熱
により液冷媒となって、流入側開閉弁67Bを経てサー
ジタンク43B内へ貯留される。
During the cooling / cooling operation, the inflow-side on-off valve 67A
The outlet-side on-off valve 68B and the inlet-side on-off valve 67B and the outlet-side on-off valve 68A are alternately opened and closed to operate the small capacity compressor 61. The four-way valve 62 includes the first pipe 63 and the third pipe 63.
The state is switched to a state in which the pipe 65 is communicated, and the second pipe 64 and the fourth pipe 66 are communicated.
7B and the outflow-side on-off valve 68A are operated to open, and the inflow-side on-off valve 67A and the outflow-side on-off valve 68B are operated to close. It flows into the surge tank 43A via the pipe 63, the four-way valve 62, and the third pipe 65. Thereby, it is stored in the surge tank 43A and the ice heat storage tank 35A.
The liquid refrigerant condensed by the cold heat of the ice of
A, it is pressure-fed to the use side heat exchanger 32 through the merging pipe 44 and the refrigerant pipe 25, etc., evaporates in the use side heat exchanger 32, and the room is cooled and cooled. The gas refrigerant that evaporates in the use-side heat exchanger 32 is connected to the connection pipe 41 and the third on-off valve 40.
Through the coil 34 of the ice heat storage tank 35, becomes a liquid refrigerant by the cold heat of the ice, and is stored in the surge tank 43B via the inflow-side on-off valve 67B.

【0048】サージタンク43A内の液冷媒が所定値以
下まで低下したときに、四方弁62を切り換えて第1配
管63及び第4配管66を連通状態とし、第2配管64
及び第3配管65を連通状態とし、更に、流入側開閉弁
67A及び流出側開閉弁68Bを開弁操作し、流入側開
閉弁67B及び流出側開閉弁68Aを閉弁操作すると、
小容量圧縮機61にて吐出された高圧ガス冷媒は、第1
配管63、四方弁62及び第4配管66を経てサージタ
ンク43B内へ流入する。これにより、サージタンク4
3B内に貯留された液冷媒が、流出側開閉弁68B、合
流配管44及び冷媒配管25等を経て利用側熱交換器3
2へ圧送され、この利用側熱交換器32にて蒸発して室
内が放冷冷房される。利用側熱交換器32にて蒸発した
ガス冷媒は、氷蓄熱槽35のコイル34内を通って氷の
冷熱により凝縮され、流入側開閉弁67Aを経てサージ
タンク43A内に貯留される。
When the liquid refrigerant in the surge tank 43A drops below a predetermined value, the four-way valve 62 is switched so that the first pipe 63 and the fourth pipe 66 are in communication with each other, and the second pipe 64
When the third piping 65 is in a communicating state, the inflow-side on-off valve 67A and the outflow-side on-off valve 68B are opened, and the inflow-side on-off valve 67B and the outflow-side on-off valve 68A are closed.
The high-pressure gas refrigerant discharged from the small capacity compressor 61 is
The gas flows into the surge tank 43B via the pipe 63, the four-way valve 62, and the fourth pipe 66. Thereby, the surge tank 4
The liquid refrigerant stored in the third heat exchanger 3B passes through the outflow opening / closing valve 68B, the merging pipe 44, the refrigerant pipe 25, and the like.
2 and evaporates in the use side heat exchanger 32 to cool and cool the room. The gas refrigerant evaporated in the use side heat exchanger 32 passes through the coil 34 of the ice heat storage tank 35, is condensed by the cold heat of the ice, and is stored in the surge tank 43A via the inflow side on-off valve 67A.

【0049】サージタンク43B内の液冷媒が所定値以
下まで低下したときに四方弁62を切り換えて、上述の
操作を繰り返し放冷冷房運転を継続させる。
When the liquid refrigerant in the surge tank 43B drops below a predetermined value, the four-way valve 62 is switched, and the above operation is repeated to continue the cooling / cooling operation.

【0050】従って、この第二の実施の形態の空気調和
装置60においても、前記実施の形態の効果と同様の
効果を奏する他、次の効果を奏する。
Therefore, the air conditioner 60 according to the second embodiment has the following effects in addition to the effects similar to the effects of the above embodiment.

【0051】熱源側ユニット21の圧縮機28よりも
容量の小さな小容量圧縮機61から供給される高圧ガス
冷媒を、四方弁62の切り換え操作によりサージタンク
43A、43B内へ交互に供給することから、小容量圧
縮機61は汎用の圧縮機であればよく、冷媒の種類に応
じてその仕様を変更する必要がないので、部品の共用化
を図ることができ、コストを低減できる。
The high-pressure gas refrigerant supplied from the small capacity compressor 61 having a smaller capacity than the compressor 28 of the heat source side unit 21 is alternately supplied into the surge tanks 43A and 43B by switching the four-way valve 62. The small-capacity compressor 61 may be a general-purpose compressor, and it is not necessary to change its specifications according to the type of refrigerant, so that parts can be shared and costs can be reduced.

【0052】以上、一実施の形態に基づいて本発明を説
明したが、本発明はこれに限定されるものではない。
Although the present invention has been described based on one embodiment, the present invention is not limited to this.

【0053】例えば、第一の実施の形態の空気調和装置
20において、流入側逆止弁45A、45B、流出側逆
止弁46A、46Bは、それぞれ、第二の実施の形態の
空気調和装置60における流入側開閉弁67A、67
B、流出側開閉弁68A、68Bであってもよく、更
に、空気調和装置60の流入側開閉弁67A、67B、
流出側開閉弁68A、68Bは、それぞれ、空気調和装
置20の流入側逆止弁45A、45B、流出側逆止弁4
6A、46Bであってもよい。また、サージタンク43
A、43Bは3以上あってもよい。
For example, in the air conditioner 20 of the first embodiment, the inflow side check valves 45A and 45B and the outflow side check valves 46A and 46B are respectively connected to the air conditioner 60 of the second embodiment. Inlet side on-off valve 67A, 67
B, outflow-side on-off valves 68A, 68B, and further, inflow-side on-off valves 67A, 67B,
The outflow side on-off valves 68A and 68B are respectively the inflow side check valves 45A and 45B and the outflow side check valve 4 of the air conditioner 20.
6A and 46B. In addition, surge tank 43
A and 43B may be three or more.

【0054】[0054]

【発明の効果】以上のように、本発明に係る氷蓄熱槽を
備えた空気調和装置によれば、氷蓄熱槽内のコイルと利
用側熱交換器との間に、冷媒を貯留可能な複数のタンク
が並列状態で配設され、上記コイル内の液冷媒が上記タ
ンク内に貯留されて、これらのタンク内へ交互に供給さ
れる高圧ガス冷媒により利用側熱交換器へ圧送可能に構
成されたことから、氷蓄熱ユニットのコイル内における
液冷媒を利用側熱交換器へ圧送する液ポンプが不要とな
り、液ポンプに発生するおそれのあるキャビテーション
を確実に回避できるので、信頼性を向上させることがで
きる。
As described above, according to the air conditioner including the ice heat storage tank according to the present invention, a plurality of refrigerants capable of storing the refrigerant can be provided between the coil in the ice heat storage tank and the use side heat exchanger. Are arranged in parallel, the liquid refrigerant in the coil is stored in the tank, and can be pressure-fed to the use-side heat exchanger by high-pressure gas refrigerant supplied alternately into these tanks. This eliminates the need for a liquid pump for pumping the liquid refrigerant in the coil of the ice heat storage unit to the use-side heat exchanger, and can reliably avoid cavitation that may occur in the liquid pump, thereby improving reliability. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る氷蓄熱槽を備えた空気調和装置の
第一の実施の形態を示す管路図である。
FIG. 1 is a pipeline diagram showing a first embodiment of an air conditioner including an ice heat storage tank according to the present invention.

【図2】本発明に係る氷蓄熱槽を備えた空気調和装置の
第二の実施の形態を示す管路図である。
FIG. 2 is a pipeline diagram showing a second embodiment of an air conditioner including an ice heat storage tank according to the present invention.

【図3】従来の氷蓄熱槽を備えた空気調和装置を示す管
路図である。
FIG. 3 is a pipeline diagram showing an air conditioner provided with a conventional ice heat storage tank.

【符号の説明】[Explanation of symbols]

20 空気調和装置 21 熱源側ユニット 22 氷蓄熱ユニット 23 利用側ユニット 28 圧縮機 29 四方弁 32 利用側熱交換器 34 コイル 35 氷蓄熱槽 43A、43B サージタンク 49 第1タンク開閉弁 50 第2タンク開閉弁 60 空気調和装置 61 小容量圧縮機 62 四方弁 Reference Signs List 20 air conditioner 21 heat source side unit 22 ice heat storage unit 23 user side unit 28 compressor 29 four-way valve 32 user side heat exchanger 34 coil 35 ice heat storage tank 43A, 43B surge tank 49 first tank opening / closing valve 50 second tank opening / closing Valve 60 Air conditioner 61 Small capacity compressor 62 Four-way valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桑原 修 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 3L092 TA20 UA00 UA02 UA34 VA07 WA15  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Osamu Kuwahara, Inventor 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. (Reference) 3L092 TA20 UA00 UA02 UA34 VA07 WA15

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機及び熱源側熱交換器を備えた熱源
側ユニットと、氷蓄熱槽内にコイルが水没状態で配設さ
れてこのコイル外周に氷が形成可能な氷蓄熱ユニット
と、利用側熱交換器を備えた利用側ユニットとを有し、
製氷運転、冷房運転を実施可能とする氷蓄熱槽を備えた
空気調和装置において、 上記氷蓄熱槽内の上記コイルと上記利用側熱交換器との
間に、冷媒を貯溜可能な複数のタンクが並列状態で配設
され、上記コイル内で凝縮した液冷媒が上記タンク内に
貯溜されて、これらのタンク内へ交互に供給される高圧
ガス冷媒により上記利用側熱交換器へ圧送可能に構成さ
れたことを特徴とする氷蓄熱槽を備えた空気調和装置。
1. A heat source unit including a compressor and a heat source side heat exchanger, an ice heat storage unit having a coil disposed in a submerged state in an ice heat storage tank and capable of forming ice on the outer periphery of the coil, A use side unit having a side heat exchanger,
In an air conditioner including an ice heat storage tank capable of performing an ice making operation and a cooling operation, a plurality of tanks capable of storing a refrigerant are provided between the coil and the use side heat exchanger in the ice heat storage tank. The liquid refrigerant condensed in the coil is disposed in a parallel state, is stored in the tank, and is configured to be capable of being pumped to the use side heat exchanger by a high-pressure gas refrigerant supplied alternately into these tanks. An air conditioner equipped with an ice heat storage tank.
【請求項2】 上記複数のタンクへ交互に供給される高
圧ガス冷媒は、熱源側ユニットの圧縮機の停止時におけ
る当該圧縮機と熱源側熱交換器との間の高圧ガス冷媒で
あることを特徴とする請求項1に記載の氷蓄熱槽を備え
た空気調和装置。
2. The high-pressure gas refrigerant alternately supplied to the plurality of tanks is a high-pressure gas refrigerant between the compressor and the heat source side heat exchanger when the compressor of the heat source side unit is stopped. An air conditioner comprising the ice heat storage tank according to claim 1.
【請求項3】 上記複数のタンクへ交互に供給される高
圧ガス冷媒は、熱源側ユニットの圧縮機よりも容量の小
さな小容量圧縮機から供給される高圧ガス冷媒であるこ
とを特徴とする請求項1に記載の氷蓄熱槽を備えた空気
調和装置。
3. The high-pressure gas refrigerant alternately supplied to the plurality of tanks is a high-pressure gas refrigerant supplied from a small-capacity compressor having a smaller capacity than a compressor of the heat source side unit. Item 2. An air conditioner comprising the ice heat storage tank according to Item 1.
JP21620898A 1998-07-30 1998-07-30 Air conditioner with ice storage tank Expired - Fee Related JP3802237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21620898A JP3802237B2 (en) 1998-07-30 1998-07-30 Air conditioner with ice storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21620898A JP3802237B2 (en) 1998-07-30 1998-07-30 Air conditioner with ice storage tank

Publications (2)

Publication Number Publication Date
JP2000046433A true JP2000046433A (en) 2000-02-18
JP3802237B2 JP3802237B2 (en) 2006-07-26

Family

ID=16684978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21620898A Expired - Fee Related JP3802237B2 (en) 1998-07-30 1998-07-30 Air conditioner with ice storage tank

Country Status (1)

Country Link
JP (1) JP3802237B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104279657A (en) * 2013-07-11 2015-01-14 东莞市微电环保科技有限公司 Ice storage air-conditioning system
CN107120764A (en) * 2017-06-20 2017-09-01 天津城建大学 The optimization method of ice-chilling air conditioning system and its control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104279657A (en) * 2013-07-11 2015-01-14 东莞市微电环保科技有限公司 Ice storage air-conditioning system
CN107120764A (en) * 2017-06-20 2017-09-01 天津城建大学 The optimization method of ice-chilling air conditioning system and its control method
CN107120764B (en) * 2017-06-20 2022-11-01 天津城建大学 Ice storage air conditioning system and optimization method of control method thereof

Also Published As

Publication number Publication date
JP3802237B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JP5121922B2 (en) Air conditioning and hot water supply complex system
EP2527751B1 (en) Air conditioning-hot water supply combined system
US5575159A (en) Heat energy transfer system
RU2419038C2 (en) Ice storage device, air conditioning system with this device and procedure for control of said system
JP3609096B2 (en) Combined cooling system for water cooling and heat storage
JPH06300381A (en) Heat storage type air conditioning apparatus and defrosting method
JPH0634169A (en) Air conditioning device
WO2014155993A1 (en) Hot-water supply device
WO2017175299A1 (en) Refrigeration cycle device
JP2011247476A (en) Refrigerating cycle with refrigerant pipe for defrosting operation
JP2000046433A (en) Air conditioning apparatus equipped with ice heat storage tank
JPH0791776A (en) Cooler
JP2002162128A (en) Hot water and refrigerant heating air conditioner
JP2006038290A (en) Air conditioner
JP3802238B2 (en) Air conditioner with ice storage tank
JP3790206B2 (en) Air conditioner
JP2006342994A (en) Ice heat storage air conditioner
JP2000249374A (en) Air-conditioning device with ice heat-storing tank
JP2005042980A (en) Heat accumulating type air conditioner
JP3920540B2 (en) Air conditioner
JPH0275842A (en) Heat storage type heat pump device
JP3806520B2 (en) Air conditioner with ice storage tank
JP3778740B2 (en) Operation method of air conditioner equipped with heat storage unit
JP3863670B2 (en) Air conditioner with ice storage tank
JP3639422B2 (en) Air conditioner with ice heat storage unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060427

LAPS Cancellation because of no payment of annual fees