JPS63217171A - Ice machine for accumulating heat - Google Patents

Ice machine for accumulating heat

Info

Publication number
JPS63217171A
JPS63217171A JP4777087A JP4777087A JPS63217171A JP S63217171 A JPS63217171 A JP S63217171A JP 4777087 A JP4777087 A JP 4777087A JP 4777087 A JP4777087 A JP 4777087A JP S63217171 A JPS63217171 A JP S63217171A
Authority
JP
Japan
Prior art keywords
water
ice
heat storage
zone
forced cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4777087A
Other languages
Japanese (ja)
Other versions
JPH0621752B2 (en
Inventor
孝夫 岡田
小此木 時雄
利雄 林
栄 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP62047770A priority Critical patent/JPH0621752B2/en
Publication of JPS63217171A publication Critical patent/JPS63217171A/en
Publication of JPH0621752B2 publication Critical patent/JPH0621752B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空調用水蓄熱を行う場合の製氷装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ice making device for storing heat of air conditioning water.

〔従来の技術並びに問題点〕[Conventional technology and problems]

氷蓄熱空調システムにおける氷製造法は、大別すれば1
間接熱交換力式と直接熱交換方式が従来より知られてい
る。間接熱交換方式は、製氷用伝熱管(熱交換器)を用
いる方法であり、伝熱管内(外)に低温の冷媒(ブライ
ン、フレオン等)を流し、管外(内)に氷を生成する方
法である。他方の直接熱交換方式は、冷媒ガスを水中に
直接吹き込む方式である。
Ice production methods in ice storage air conditioning systems can be roughly divided into 1.
Indirect heat exchange force type and direct heat exchange type are conventionally known. The indirect heat exchange method uses heat exchanger tubes (heat exchangers) for ice making, in which a low-temperature refrigerant (brine, Freon, etc.) is passed inside (outside) the heat exchanger tubes, and ice is generated outside (inside) the tubes. It's a method. The other direct heat exchange method is a method in which refrigerant gas is blown directly into water.

伝熱管による間接方式では、被冷却液が水の場合、生成
した氷は管壁に着氷して生長する。この場合、氷の熱伝
導率は悪いので着氷の厚みが増すほど氷の生長速度が遅
くなるという欠点がある。
In the indirect method using heat exchanger tubes, when the liquid to be cooled is water, the ice that is generated grows by forming ice on the tube walls. In this case, since the thermal conductivity of ice is poor, there is a drawback that as the thickness of the ice increases, the growth rate of the ice becomes slower.

氷の生長を促進するためには冷媒温度も着氷の厚みが増
すほど下げる必要があり1 このために冷凍機の成績係
数(COP)が下がる欠点をもつ。また。
In order to promote ice growth, it is necessary to lower the refrigerant temperature as the thickness of the ice increases.1 This has the disadvantage of lowering the coefficient of performance (COP) of the refrigerator. Also.

水槽内での氷の充填率(IPF)を大きくするには伝熱
管のピンチを細かくすることが必要となり、ひいては水
中に浸漬する伝熱管の相対容積が増大することになり、
氷蓄熱のための有効容積の減少を来たすことにもなる。
In order to increase the ice filling factor (IPF) in the water tank, it is necessary to make the pinch of the heat transfer tube smaller, which in turn increases the relative volume of the heat transfer tube immersed in water.
This also results in a reduction in the effective volume for ice heat storage.

したがって蓄熱効率は普通の蓄熱水槽(冷水蓄熱)に比
べて格段に良くなるというわけでもない。
Therefore, the heat storage efficiency is not significantly better than that of a normal heat storage tank (cold water heat storage).

このため、伝熱管方式ではあるが、管壁に着氷させない
方式として、被冷却液にエチレングリコール等の不凍液
を混ぜる方式が最近注目されている。この方式では伝熱
面に着氷することなくシャーベット状の氷が被冷却液の
液中に生成する。このため、氷の充填率([PF)を3
0〜60%にまで高めることができる。しかし、氷の生
成に伴って被冷却液中のエチレングリコール濃度が高く
なるので冷媒温度はこれに伴って−10〜−20℃程度
へと徐々に下げなければならない。このため、冷凍機の
成績係数(COP)が低下するという問題がある。さら
に、伝熱管表面は例えば鏡面仕上げを施したような滑ら
かなものを使用しなければ管壁に着氷するので、熱交換
器は自ずと真価なものになる。
For this reason, although it is a heat transfer tube method, a method of mixing antifreeze such as ethylene glycol with the liquid to be cooled has recently been attracting attention as a method of preventing ice from forming on the tube walls. In this method, sherbet-like ice is formed in the liquid to be cooled without forming ice on the heat transfer surface. For this reason, the ice filling factor ([PF)] is set to 3.
It can be increased to 0-60%. However, since the ethylene glycol concentration in the liquid to be cooled increases with the formation of ice, the refrigerant temperature must be gradually lowered to about -10 to -20°C. Therefore, there is a problem that the coefficient of performance (COP) of the refrigerator decreases. Furthermore, if the heat exchanger tube surfaces are not smooth, such as those with a mirror finish, ice will form on the tube walls, which naturally makes the heat exchanger more valuable.

一方、直接熱交換方式では、冷媒温度は0℃近い温度で
使用できるので、冷凍機の成績係数は上がる。また、金
属の伝熱面を持たないので着氷による氷塊の発−生はな
く、従って水充填率は50〜60%程度となる。し6)
シ、冷媒ガス中に水が入り。
On the other hand, in the direct heat exchange method, the refrigerant temperature can be used at a temperature close to 0° C., so the coefficient of performance of the refrigerator increases. Furthermore, since it does not have a metal heat transfer surface, there is no formation of ice blocks due to icing, and therefore the water filling rate is approximately 50 to 60%. 6)
Water has entered the refrigerant gas.

フロンと水とが反応して腐食性の塩素ガスを発生すると
いう問題が生ずる。
A problem arises in that fluorocarbons and water react to generate corrosive chlorine gas.

本発明は、かような問題点をもつ従来の製氷方式に代わ
る新規な蓄熱用装置の開発を目的としてなされたもので
ある。
The present invention has been made with the aim of developing a new heat storage device to replace the conventional ice making system which has the above-mentioned problems.

〔発明の構成〕[Structure of the invention]

前記の目的を達成せんとする本発明の要旨とするところ
は、蓄熱水槽内の水の一部を槽外に設置した流体通路内
を連続的に流したうえ再び蓄熱水槽内に戻す流体循環路
を形成し、この流体通路内においてそこを連続的に通過
する水を0℃以下で一4℃以上の温度にまで過冷却する
強制冷却帯域を設け、この強制冷却帯域を出て蓄熱水槽
に至るまでの流れ経路において過冷却水から氷粒が析出
するに必要な時間と衝撃を付与するための氷析出帯域を
設けてなる蓄熱用製氷装置である。
The gist of the present invention, which aims to achieve the above-mentioned object, is to provide a fluid circulation path in which a part of the water in a heat storage tank is continuously passed through a fluid passage installed outside the tank, and then returned back into the heat storage tank. A forced cooling zone is provided in which the water that continuously passes through the fluid passage is supercooled from below 0°C to a temperature of 14°C or above, and it exits this forced cooling zone and reaches the heat storage water tank. This ice-making device for heat storage is provided with an ice-precipitation zone for applying the time and impact necessary for ice grains to precipitate from supercooled water in the flow path.

すなわち本発明は、水の連続流れの過程で水温を零度以
下にまで過冷却することにより過冷却水の連続流れを作
り、この過冷却水の連続流れを蓄熱水槽に戻す過程で衝
撃を付与して氷粒を析出させてまたは析出させつつ蓄熱
水槽に戻すという原理によってシャーベット状(スノー
ジャム状)アイスを蓄熱水槽内に生成させるものであり
、伝熱面で着氷させないで連続製氷させる点に特徴があ
る。過冷却水の連続流れを形成するには、その流体通路
として一端に水導入口を他端に流体流出口を存する樋状
の通路を使用し、その流体流出口よりも所定の距離をお
いた上流側の樋両壁に冷凍機ユニットの蒸発器を配置す
ることによって行うのが装置構成も簡単であり便宜であ
る。氷析出は強制冷却帯域を通過したあと1強制冷却を
行なわないで過冷却水を水路中に流したあと、衝撃を付
与することによって行う。この衝撃エネルギーとしては
水流のもつ運動エネルギーを利用するのが便宜である。
That is, the present invention creates a continuous flow of supercooled water by supercooling the water temperature to below zero degrees during the continuous flow of water, and applies an impact during the process of returning this continuous flow of supercooled water to the heat storage water tank. Sherbet-like (snow jam-like) ice is produced in the heat storage tank by the principle of precipitating ice particles or returning them to the heat storage tank while being precipitated. It has characteristics. In order to form a continuous flow of supercooled water, a gutter-like passageway having a water inlet at one end and a fluid outlet at the other end is used as the fluid passage, and the passage is placed a predetermined distance from the fluid outlet. The device configuration is simple and convenient by arranging the evaporator of the refrigerator unit on both walls of the gutter on the upstream side. Ice precipitation is performed by flowing supercooled water into a water channel without performing forced cooling after passing through a forced cooling zone, and then applying an impact. It is convenient to use the kinetic energy of water flow as this impact energy.

また、超音波を投射するのも有益である。It is also useful to project ultrasound.

以下に図面の実施例に従って本発明の製氷装置を具体的
に説明する。
EMBODIMENT OF THE INVENTION The ice making apparatus of this invention is demonstrated concretely below according to the Example of a drawing.

〔実施例〕〔Example〕

第1図は本発明の蓄熱用製氷装置の全体構成を示したも
のであり、1は蓄熱水槽、2は槽外に設置した流体通路
、3は蓄熱水槽l内の水を流体通路2に送り込むポンプ
を示している。本発明装置では、蓄熱水槽l内の水の一
部をポンプ3によって゛槽外に設置した流体通路2内を
連続的に流したうえ再び蓄熱水槽l内に落下させる流体
循環路を形成すると共に、この流体通路2内においてそ
こを連続的に通過する水・を0℃以下で一4℃以上の温
度にまで過冷却する強制冷却帯域4を設け、この強制冷
却帯域4を出て蓄熱水槽1に至るまでの流れ経路におい
て過冷却水を相変化させることなくそのまま流す過冷却
水流出帯域5を流体通路2内に設けると共にこの流体通
路2の流体流出口6に過冷却水衝突帯域7を設ける。こ
の過冷却水衝突帯域8を通過し蓄熱水槽1に落下する間
に過冷却水から氷が析出する。
Fig. 1 shows the overall configuration of the heat storage ice making apparatus of the present invention, in which 1 is a heat storage water tank, 2 is a fluid passage installed outside the tank, and 3 is a water passage for sending water in the heat storage water tank l into the fluid passage 2. Showing the pump. In the device of the present invention, a fluid circulation path is formed in which a part of the water in the heat storage water tank l is caused to flow continuously through the fluid passage 2 installed outside the tank by a pump 3, and then falls back into the heat storage water tank l. At the same time, a forced cooling zone 4 is provided in the fluid passage 2 in which the water that continuously passes there is supercooled from below 0°C to a temperature of 14°C or above, and the water exits the forced cooling zone 4 and flows into a heat storage water tank. A supercooled water outflow zone 5 is provided in the fluid passage 2 to allow the supercooled water to flow as it is without undergoing a phase change in the flow path up to the point 1, and a supercooled water collision zone 7 is provided at the fluid outlet 6 of the fluid passage 2. establish. Ice is deposited from the supercooled water while passing through the supercooled water collision zone 8 and falling into the heat storage water tank 1 .

図示の実施例において、流体通路2は一端に水導入口8
を他端に流体流出口6を有する槌形状を有し、これを水
導入口8から流体流出口6に向けてゆるやかな下り勾配
をもって設置することにより、その中を重力によって自
然に水が流れる通路に形成したものである。そして、水
導入口8と流体流出口6の間において、水の流れの順に
、整流帯域92強制冷却帯域4.過冷却水流出帯域5お
よび過冷却水衝突帯域7を形成する。
In the illustrated embodiment, the fluid passageway 2 has a water inlet 8 at one end.
has a mallet shape with a fluid outlet 6 at the other end, and is installed with a gentle downward slope from the water inlet 8 to the fluid outlet 6, allowing water to flow naturally through it by gravity. It was formed in the passageway. Between the water inlet 8 and the fluid outlet 6, the rectifying zone 92, forced cooling zone 4, . A supercooled water outflow zone 5 and a supercooled water collision zone 7 are formed.

整流帯域9は強制冷却帯域4に入る水流を一様流れに整
流する帯域である。強制冷却帯域4は通路の両側壁また
は両側壁と底面に冷凍機ユニットの蒸発器11を配置し
て構成される。図において12は圧縮機、 13は凝縮
器、14は膨張弁または絞り用の細径管を示しており、
蒸発器11との間に冷媒が循環する冷凍サイクルを形成
している。すなわち圧縮[12で圧縮した高圧冷媒は凝
縮器13で凝縮して冷却水に放熱し、その液冷媒は膨張
弁または細径管14で絞られたうえ蒸発器11で膨張ガ
ス化して通路内の連続法、れの水から抜熱し、圧縮機1
2に戻る。この冷凍機ユニットを適正に稼動することに
より1強制冷却帯域4を流れる水を一4℃以上O℃以下
の温度に過冷却する。
The rectification zone 9 is a zone that rectifies the water flow entering the forced cooling zone 4 into a uniform flow. The forced cooling zone 4 is constructed by arranging an evaporator 11 of a refrigerator unit on both side walls of the passageway or on both side walls and the bottom surface. In the figure, 12 is a compressor, 13 is a condenser, and 14 is an expansion valve or a small diameter tube for throttling.
A refrigeration cycle in which refrigerant circulates between the evaporator 11 and the evaporator 11 is formed. That is, the high-pressure refrigerant compressed in the compression [12] is condensed in the condenser 13 and radiates heat to the cooling water, and the liquid refrigerant is throttled in the expansion valve or small-diameter pipe 14, expanded and gasified in the evaporator 11, and then released into the passage. Continuous method, heat is removed from the water, compressor 1
Return to 2. By operating this refrigerator unit properly, the water flowing through one forced cooling zone 4 is supercooled to a temperature of 14° C. or more and 0° C. or less.

この強制冷却帯域4によって過冷却された水は水−氷の
相変化を起こすことなくそのまま流出帯域5を静かにな
かれたうえ、過冷却水衝突帯域7で氷の析出核を発生し
成長しつつ蓄熱水槽1に落下する。また蓄熱水槽1にお
いても氷の析出と成長が起きることもある。
The water supercooled by this forced cooling zone 4 quietly leaves the outflow zone 5 without causing a water-ice phase change, and also generates ice precipitation nuclei and grows in the supercooled water collision zone 7. It falls into the heat storage water tank 1. In addition, precipitation and growth of ice may occur in the heat storage water tank 1 as well.

第2図は、流体通路2の全体を図示の都合上途中で分割
して示しているが、流体通路2は水導入口8から流体流
出口6に至るまで連続しており。
Although FIG. 2 shows the entire fluid passage 2 divided in the middle for convenience of illustration, the fluid passage 2 is continuous from the water inlet 8 to the fluid outlet 6.

前記のようにゆるやかな下り勾配をもたせて設置される
樋状体である。
As mentioned above, it is a gutter-like body installed with a gentle downward slope.

この樋の上流側では、水導入口6から所定の距離をもっ
た整流帯3Ii9を有する。水導入口6の近傍に堰16
を設けたり、またその後に必要に応じて整流板(図示せ
ず]を設けたりして1次の強制冷却帯域4に入る前の水
流を一様流れに整流する。
On the upstream side of this gutter, there is a rectification zone 3Ii9 that is a predetermined distance from the water inlet 6. Weir 16 near water inlet 6
A rectifying plate (not shown) may be provided thereafter as necessary to rectify the water flow before entering the primary forced cooling zone 4 into a uniform flow.

強制冷却帯域4には1図示の例では樋の両側壁17a、
 17bに接してこの帯域の長さ分の蒸発器11a。
The forced cooling zone 4 includes one side wall 17a of the gutter in the illustrated example;
evaporator 11a for the length of this zone in contact with 17b;

11bが配置されている。蒸発器11a、 llbは中
空の細長いボックスであり、その一端に接続された細径
管14a、14bを経て液冷媒(第1図の凝縮器13で
凝縮した液冷媒)がこのボックス内に導入される。
11b is arranged. The evaporators 11a and llb are hollow, elongated boxes, into which liquid refrigerant (liquid refrigerant condensed in the condenser 13 in FIG. 1) is introduced through small diameter pipes 14a and 14b connected to one end of the evaporators 11a and llb. Ru.

またボックスの他端には前記の圧1!g112に通ずる
ガス冷媒管路+8a、 18bが接続される。細径管1
4a。
Also, at the other end of the box, the pressure 1! Gas refrigerant pipes +8a and 18b leading to g112 are connected. Small diameter tube 1
4a.

14bは直膨型熱交換器と同様の絞り弁の役割を果たし
、液冷媒はここで絞られてボックス内で気化し、ガス冷
媒管路18a、18bを経て圧縮機12に吸引される。
14b plays the role of a throttle valve similar to a direct expansion type heat exchanger, and the liquid refrigerant is throttled here, vaporized in the box, and sucked into the compressor 12 through gas refrigerant pipes 18a and 18b.

このようにして構成される強制冷却帯域4の全長にわた
って、蒸発器11a、 llbと接する両側壁17a、
17b以外は断熱材19で囲われており、またこの断熱
材19は後続の過冷却水の流出帯域5でも用いられてい
る。整流帯域9で整流された水がこの強制冷却帯域4を
連続的に通過する間に蒸発器11a、 llbによって
0℃以下に冷却されるのであるが、蒸発器11a、ll
bの冷媒温度が〜7℃より低くならないように冷凍機ユ
ニットを稼動し且つ水の流量を適切に調節することによ
って、伝熱面である両側壁17a、17bには着氷させ
ることなく次の過冷却水流出帯域5に流出させることが
できる。
Over the entire length of the forced cooling zone 4 configured in this way, both side walls 17a, which are in contact with the evaporators 11a, llb,
The parts other than 17b are surrounded by a heat insulating material 19, and this insulating material 19 is also used in the subsequent supercooled water outflow zone 5. While the water rectified in the rectification zone 9 continuously passes through this forced cooling zone 4, it is cooled to below 0°C by the evaporators 11a and llb.
By operating the refrigerator unit and appropriately adjusting the flow rate of water so that the temperature of the refrigerant at point b does not fall below ~7°C, the following temperature can be achieved without causing ice to form on both side walls 17a and 17b, which are heat transfer surfaces. The supercooled water can flow out into the supercooled water outflow zone 5 .

強制冷却帯域4に引き続く過冷却水流出帯域5は1強制
冷却帯域4を出た過冷却水の流れをそのまま樋内を所定
の時間のあいだ流す帯域であり。
A supercooled water outflow zone 5 following the forced cooling zone 4 is a zone in which the flow of supercooled water that has left the forced cooling zone 4 is allowed to flow through the gutter for a predetermined period of time.

第3図の断面図で示すように断熱材19で囲われた単な
る流体通路である。過冷却水衝突帯域7は流れてくる過
冷却水に衝撃を与える帯域であり1この衝撃を付与する
のに図示の例では流れのもつ運動工5ネルギーを利用し
ている。すなわち、流体流出口6から落下する前に分流
と合流を行わせる衝突Im横を設ける。第4図はこの分
流と合流を行わせる部分の断面を示したものであるが、
樋の底板に二つの落下口21と22を設け、この落下口
21と22に分流して落下する二つの流れをノズル状の
流体流出口6の前方で合流させる構成を示している。
As shown in the cross-sectional view of FIG. 3, it is simply a fluid passage surrounded by a heat insulating material 19. The supercooled water collision zone 7 is a zone that applies an impact to the flowing supercooled water, and in the illustrated example, the kinetic energy of the flow is used to apply this impact. That is, before falling from the fluid outlet 6, a collision Im side is provided to cause the flow to separate and merge. Figure 4 shows a cross section of the part where this branching and merging takes place.
Two drop ports 21 and 22 are provided on the bottom plate of the gutter, and the two streams that separate from the drop ports 21 and 22 and fall are combined in front of a nozzle-shaped fluid outlet 6.

すなわち、樋の最後部の壁20・の直前において樋底部
に複数個の落下口21.22を設けると共に、各落下口
21 、22から落下する分流を互いに衝突させる合流
部23を設け、この合流部23で合流した流れを流体流
出口6から落下させるのである。この合流部23を流出
ロアの近傍に設けることによって、流出ロアが生成した
氷で閉塞するような事態は回避される。以上の構成によ
り、流体流出口6から流出するさいには氷の結晶が発生
してスラリー状となって蓄熱水槽1に落下し、蓄熱水槽
1には流動性のよいシャーベット状の氷が累積または成
長することになり2本発明装置の稼動を続けるとこれが
蓄積して氷蓄熱が達成される。
That is, a plurality of drop ports 21, 22 are provided at the bottom of the gutter immediately before the rearmost wall 20 of the gutter, and a merging portion 23 is provided to cause the branch streams falling from each of the drop ports 21 and 22 to collide with each other. The flows that merge at the part 23 are allowed to fall from the fluid outlet 6. By providing this merging portion 23 near the outflow lower, a situation where the outflow lower is blocked by generated ice can be avoided. With the above configuration, when the fluid flows out from the fluid outlet 6, ice crystals are generated and fall in the form of slurry into the heat storage water tank 1. In the heat storage water tank 1, sherbet-like ice with good fluidity accumulates or As the device of the present invention continues to operate, this will accumulate and ice heat storage will be achieved.

なお、氷の析出を促進させるために、過冷却水衝突帯域
7を流れる過冷却水に対して、さらには蓄熱水槽に落下
する途中または蓄熱水槽に落下した後の過冷却水に対し
て超音波等の外的エネルギーを付与することもを益であ
る。
In addition, in order to promote the precipitation of ice, ultrasonic waves are applied to the supercooled water flowing through the supercooled water collision zone 7, and also to the supercooled water during or after falling into the heat storage water tank. It is also beneficial to provide external energy such as

〔作用効果〕 本発明袋装置は、水の連続流れ過程において強制冷却帯
域を通過したあとの非冷却ゾーンで氷を生成させるもの
であるから伝熱面に着氷させずに製氷ができる。また、
不凍液などを使用せずとも真水から製氷ができる。そし
て生成する水は微細な結晶粒からなるものであり、蓄熱
水槽内にはシャーベット状の状態で氷蓄熱ができ、水充
填率は60%以上に高めることができる。また9強制冷
却帯域では冷媒温度は一7℃以上でよく (但し0℃以
下)冷凍機の成績係数は従来方式に比べて著しく高くな
る。加えて本発明装置は構成が単純であるから制御など
が目視観察しながら容易に行えると共に操作が簡単であ
り、且つ材料面でも極めて安価に製造できる。このよう
なことから5既存の蓄熱水槽を氷蓄熱槽に改変すること
も非常に容易である。
[Operations and Effects] The bag device of the present invention generates ice in the non-cooling zone after passing through the forced cooling zone in the continuous flow process of water, so ice can be made without ice forming on the heat transfer surface. Also,
Ice can be made from fresh water without using antifreeze. The generated water is composed of fine crystal grains, and ice can be stored in the heat storage water tank in a sherbet-like state, and the water filling rate can be increased to 60% or more. In addition, in the 9 forced cooling zone, the refrigerant temperature only needs to be above -7°C (but below 0°C), and the coefficient of performance of the refrigerator will be significantly higher than that of conventional systems. In addition, since the device of the present invention has a simple configuration, control and the like can be easily performed through visual observation, the operation is simple, and the device can be manufactured at extremely low cost in terms of materials. For this reason, it is very easy to convert an existing heat storage water tank into an ice heat storage tank.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の全体を示す機器配置系統図、第2
図は第1図の流体通路の全体を2分割して示した斜視図
、第3図は第2図のm−m線矢視拡大断面図、第4図は
第2図のIV−rV線矢視拡大断面図である。 l・・蓄熱水槽、  2・・流体通路、  3・・ポン
プ、  4・・強制冷却帯域、  5・・過冷却水流出
帯域、  6・・流体流出口、  7・・過冷却水衝突
帯域、  8・・水導入口、  9・・整流帯域、11
・・蒸発器、12・・圧縮機、  13・・凝縮器、 
 14・・膨張弁または細径管、  19・・断熱材、
  2L22・・分流落下口、23・・合流部。
Fig. 1 is an equipment layout system diagram showing the entire device of the present invention;
The figure is a perspective view showing the entire fluid passage in Fig. 1 divided into two parts, Fig. 3 is an enlarged sectional view taken along the line mm in Fig. 2, and Fig. 4 is an enlarged sectional view taken along the line IV-rV in Fig. 2. It is an enlarged cross-sectional view in the direction of arrows. 1. Heat storage water tank, 2. Fluid passage, 3. Pump, 4. Forced cooling zone, 5. Supercooled water outflow zone, 6. Fluid outlet, 7. Supercooled water collision zone, 8 ... Water inlet, 9 ... Rectification band, 11
...Evaporator, 12..Compressor, 13..Condenser,
14... Expansion valve or small diameter pipe, 19... Insulation material,
2L22...Diversion outlet, 23...Confluence part.

Claims (2)

【特許請求の範囲】[Claims] (1)蓄熱水槽内の水の一部を槽外に設置した流体通路
内を連続的に流したうえ再び蓄熱水槽内に戻す流体循環
路を形成し、 該流体通路内において、そこを連続的に通過する水を0
℃以下で−4℃以上の温度にまで過冷却する強制冷却帯
域を設け、 この強制冷却帯域を出て蓄熱水槽に至るまでの流れ経路
において、該過冷却水から氷粒が析出するに必要な時間
と衝撃を付与する氷析出帯域を設けてなる蓄熱用製氷装
置。
(1) Form a fluid circulation path in which a part of the water in the heat storage water tank is continuously passed through a fluid passage installed outside the tank, and then returned to the heat storage water tank. 0 water passing through
A forced cooling zone is provided that supercools from below ℃ to a temperature of -4℃ or higher, and in the flow path from this forced cooling zone to the heat storage water tank, there is a A heat storage ice making device that is equipped with an ice precipitation zone that applies time and impact.
(2)流体通路は一端に水導入口を他端に流体流出口を
有する樋状の通路であり、該強制冷却帯域は流体流出口
よりも所定の距離をおいた上流側に設けられ、該強制冷
却帯域はこの樋の両壁に冷凍機ユニットの蒸発器を配置
してなる特許請求の範囲第1項記載の蓄熱用製氷装置。
(2) The fluid passage is a gutter-like passage having a water inlet at one end and a fluid outlet at the other end, and the forced cooling zone is provided upstream from the fluid outlet at a predetermined distance. 2. The heat storage ice making device according to claim 1, wherein the forced cooling zone has an evaporator of a refrigerator unit arranged on both walls of the gutter.
JP62047770A 1987-03-04 1987-03-04 Ice storage device for heat storage Expired - Fee Related JPH0621752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62047770A JPH0621752B2 (en) 1987-03-04 1987-03-04 Ice storage device for heat storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62047770A JPH0621752B2 (en) 1987-03-04 1987-03-04 Ice storage device for heat storage

Publications (2)

Publication Number Publication Date
JPS63217171A true JPS63217171A (en) 1988-09-09
JPH0621752B2 JPH0621752B2 (en) 1994-03-23

Family

ID=12784613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62047770A Expired - Fee Related JPH0621752B2 (en) 1987-03-04 1987-03-04 Ice storage device for heat storage

Country Status (1)

Country Link
JP (1) JPH0621752B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297872A (en) * 1988-10-01 1990-04-10 Toyo Eng Corp Method and device for eliminating overcooling in heat accumulating system of ice
JP2011099607A (en) * 2009-11-05 2011-05-19 Kowa:Kk Supercooled water producing device
JP2014020596A (en) * 2012-07-12 2014-02-03 Hirosaki Univ Ice slurry manufacturing device and ice slurry manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2767525C1 (en) * 2021-07-13 2022-03-17 Федеральное государственное бюджетное научное учреждение «Федеральный научный агроинженерный центр ВИМ» (ФГБНУ ФНАЦ ВИМ) Ice generator on flat heat exchanger with electrophysical effect

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314063A (en) * 1986-06-30 1988-01-21 新菱冷熱工業株式会社 Supercooling type ice heat accumulator and supercooling water production heat exchanger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314063A (en) * 1986-06-30 1988-01-21 新菱冷熱工業株式会社 Supercooling type ice heat accumulator and supercooling water production heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297872A (en) * 1988-10-01 1990-04-10 Toyo Eng Corp Method and device for eliminating overcooling in heat accumulating system of ice
JP2011099607A (en) * 2009-11-05 2011-05-19 Kowa:Kk Supercooled water producing device
JP2014020596A (en) * 2012-07-12 2014-02-03 Hirosaki Univ Ice slurry manufacturing device and ice slurry manufacturing method

Also Published As

Publication number Publication date
JPH0621752B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
CA2044825C (en) Full-range, high efficiency liquid chiller
JPS63217171A (en) Ice machine for accumulating heat
US2220726A (en) Refrigerating apparatus
CN104315635B (en) Medium- and small-sized high-temperature-difference double-working-condition dynamic ice-slurry cold storage air conditioner
JP2946889B2 (en) Ice making equipment
JP2727754B2 (en) Ice making equipment
JPH0615942B2 (en) Ice storage device for heat storage
JPH065536Y2 (en) Device for releasing supercooled water
JPH07248168A (en) Icemaker
JPH0438176Y2 (en)
KR102660791B1 (en) Ice making apparatus using waste ice water
JP2982742B2 (en) Ice making equipment
US3037360A (en) Production of cold refrigerant gas
JPH0561539B2 (en)
JPH0794939B2 (en) Ice storage method for heat storage
JP2806155B2 (en) Ice making equipment
JPS647306B2 (en)
JPH05340653A (en) Ice making device
JP3215775B2 (en) Ice storage device
JP2755775B2 (en) Subcooler
JP3160338B2 (en) Super cooling water production equipment
JPH03236574A (en) Ice making device for heat accumulation
JPH06193920A (en) Supercooling type ice heat storage system
JPH07113471B2 (en) Ice heat storage device
JP3006138B2 (en) Ice making equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees