JP2005201546A - Freeze concentration system - Google Patents

Freeze concentration system Download PDF

Info

Publication number
JP2005201546A
JP2005201546A JP2004008556A JP2004008556A JP2005201546A JP 2005201546 A JP2005201546 A JP 2005201546A JP 2004008556 A JP2004008556 A JP 2004008556A JP 2004008556 A JP2004008556 A JP 2004008556A JP 2005201546 A JP2005201546 A JP 2005201546A
Authority
JP
Japan
Prior art keywords
raw water
cooler
tank
ice
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004008556A
Other languages
Japanese (ja)
Inventor
Michio Yanatori
梁取美智雄
Yoji Taguchi
田口洋治
Koji Matsubara
松原幸治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIIGATA TLO KK
Niigata TLO Corp
Original Assignee
NIIGATA TLO KK
Niigata TLO Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIIGATA TLO KK, Niigata TLO Corp filed Critical NIIGATA TLO KK
Priority to JP2004008556A priority Critical patent/JP2005201546A/en
Publication of JP2005201546A publication Critical patent/JP2005201546A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Non-Alcoholic Beverages (AREA)
  • Physical Water Treatments (AREA)
  • Dairy Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that a conventional freeze concentration system is large-scaled and its processing speed is low. <P>SOLUTION: A cooler 2 as a component of a freezer 200 is mounted on an upper part of a raw water tank 20 filled with the raw water 21, and a slider 444 with a grating 44-a is mounted between the raw water tank 20 and the cooler 2. The ice 22 produced in the cooler 2 is temporarily separated, and transferred to a recovering tank 40 through the grating 44-1 and the slider 44. On the other hand, the raw water 21 sprayed to the cooler 2 flows down in the cooler 2, and then returned to the raw water tank 20 through the grating 44-a. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、食塩水やブドウ糖液、あるいはジュースや牛乳、排液などのように水に溶解した水溶液、あるいは水に溶け合わない粒子を含んだ混合水(例えば微細なポリエチレン粒子を混合した水など)を、凍結濃縮現象を利用して希薄水と濃縮水とに分離するための構成に関する。   The present invention relates to an aqueous solution dissolved in water, such as saline solution, glucose solution, juice, milk, drainage solution, or mixed water containing particles that do not dissolve in water (for example, water mixed with fine polyethylene particles) ) Is separated into dilute water and concentrated water using the freeze concentration phenomenon.

凍結濃縮現象を利用して希薄水と濃縮水とに分離し、これを工業的に有効利用することに関しては下記の文献に記載されている。
「流下液膜式凍結濃縮装置」冷凍、78巻 第904号 (年2003年2月号)、P49〜P54
The use of the freeze concentration phenomenon to separate dilute water and concentrated water and industrially use them effectively is described in the following documents.
"Falling film type freeze concentrator" Freezing, Vol. 78, No. 904 (February 2003), P49-P54

従来の凍結濃縮システムは、パイプの周りに原水を厚く氷結をさせながら希薄水と濃縮水とに分離させるもので、濃縮分離に時間がかかるとともに、システム中において槽の数が多くなり、装置が大がかりとなっていた。これについて図7,図8を基にして、以下説明する。   The conventional freeze concentration system separates the raw water from the diluted water and the concentrated water while freezing the thick water around the pipe. It takes time for concentration and separation, and the number of tanks increases in the system. It was a big deal. This will be described below with reference to FIGS.

この従来の凍結濃縮システムはコイル状の製氷用冷却器2の周りに、原水21を流下液膜状に流してそれを凍結させ、厚く冷却器2の周りに結氷させながら原水を希薄な回収液41と、濃縮液21−aとに分離するもので、いわゆる流下液膜式のアイスオンコイル型凍結濃縮システムと称するものである。その主要構成は冷凍機1,受液槽20−a内にあるコイル状の製氷用冷却器2,熱交換器1−a、パイプ3,4、ポンプ5から成る冷凍装置100と、原水21を収納した原水槽20,ポンプ23、パイプ25、散水器26から成る原水循環部200と、回収液41を収納する回収槽40、放熱器45、熱交換器49と50、それらを熱的に結ぶパイプ46,47、ポンプ48から成る冷熱利用部300から構成されている。   In this conventional freeze concentration system, the raw water 21 is flowed around the coiled ice-making cooler 2 in the form of a falling liquid film to freeze it, and the raw water is diluted while thickly condensing around the cooler 2. 41 and concentrated liquid 21-a, which is called a falling liquid film type ice-on-coil freeze-concentrated system. The main components are a refrigerator 1, a coil-shaped ice-making cooler 2, a heat exchanger 1-a, pipes 3 and 4, a pump 5 in a receiving tank 20-a, and a raw water 21. The raw water circulation section 200 including the stored raw water tank 20, the pump 23, the pipe 25, and the sprinkler 26, the recovery tank 40 for storing the recovered liquid 41, the radiator 45, and the heat exchangers 49 and 50 are thermally connected. The cooling heat utilization unit 300 is composed of pipes 46 and 47 and a pump 48.

冷凍装置100部のパイプ3,4内には不凍液(エチレングリコールなど)が充填されていて、ポンプ5を駆動することにより、熱交換器1−aを介して、冷凍機1で発生した冷熱が、冷却器2内に供給される。一方原水槽20内の原水21は、ポンプ23を駆動することにより、パイプ24、バルブ37、パイプ25を介して散水器26からコイル状の冷却器2の外面に流下液膜状に流される。   The pipes 3 and 4 of the refrigeration apparatus 100 are filled with an antifreeze liquid (ethylene glycol or the like), and by driving the pump 5, cold heat generated in the refrigerator 1 is passed through the heat exchanger 1-a. , And supplied to the cooler 2. On the other hand, when the pump 23 is driven, the raw water 21 in the raw water tank 20 flows from the sprinkler 26 to the outer surface of the coil-shaped cooler 2 through the pipe 24, the valve 37, and the pipe 25.

図7は原水21を冷却器2の周りに流し始めた初期の状態を示している。このため冷却器2の周りには氷が成長していない。   FIG. 7 shows an initial state in which the raw water 21 starts to flow around the cooler 2. For this reason, no ice grows around the cooler 2.

図8は時間が経過して、冷却器2の周りに凍結体(氷など)22が、厚く氷結した状態を示したもので、この状態になると原水槽20内の原水21が少なくなっている。   FIG. 8 shows a state in which a frozen body (ice or the like) 22 is thickly frozen around the cooler 2 as time passes. In this state, the raw water 21 in the raw water tank 20 is reduced. .

凍結濃縮の操作は夜間電力などを利用して、夜間に原水槽20内の原水21をポンプ23を駆動して散水器26から冷却器2に流下させた後、受液槽20−aで受け、その後その下部に連なるパイプ53からバルブ57,パイプ55を介して原水槽20内に戻す。この際、回収槽40とパイプ53とを結ぶパイプ54間のバルブ56は閉じておく。   The operation of freeze concentration uses nighttime electric power or the like to drive the raw water 21 in the raw water tank 20 to the cooler 2 from the sprinkler 26 by driving the pump 23 at night, and then receives it in the liquid receiving tank 20-a. Thereafter, the pipe 53 connected to the lower part is returned to the raw water tank 20 through the valve 57 and the pipe 55. At this time, the valve 56 between the pipes 54 connecting the collection tank 40 and the pipes 53 is closed.

図8に示すように、凍結濃縮操作が終了すると冷却器2の周りには、原水21内に含有する溶質を分離して純水に近づいた凍結体22が厚く氷結する。このため、原水槽20内の液体21は濃縮液21−aとなる。この濃縮液21−aはパイプ30部のバルブ31を開いて外部に排出する。この濃縮液21−aは原水21が排液などの場合は、外部に排出して処理するものであるが、その量が濃縮されて少なくなるので処理量が削減でき、処理作業が容易であるという利点を生ずる。またジュース等の場合には濃縮されるため、付加価値が向上した品質の高い生産物として有効に利用される。   As shown in FIG. 8, when the freeze concentration operation is completed, a frozen body 22 that is separated from the solute contained in the raw water 21 and is close to pure water freezes thickly around the cooler 2. For this reason, the liquid 21 in the raw | natural water tank 20 turns into the concentrate 21-a. The concentrated liquid 21-a is discharged to the outside by opening the valve 31 of the pipe 30 part. When the raw water 21 is drained or the like, the concentrated liquid 21-a is discharged and processed outside. However, since the amount of the concentrated liquid 21-a is reduced by being concentrated, the processing amount can be reduced and the processing work is easy. This produces the advantage. Further, since it is concentrated in the case of juice or the like, it is effectively used as a high-quality product with improved added value.

冷却器2の周りに厚く氷結した凍結体(氷など)22は昼間、図8に示すような方法によって解氷しながら、冷熱利用部300においてその冷熱をプロセス冷却や空調に利用する。このためバルブ57を閉じ、バルブ56を開く。一方ポンプ23を駆動して、回収槽40内に溜る回収液41を、パイプ35、バルブ36を介して、パイプ25から散水器26を通して冷却器2の凍結体22の周りに供給する。その後、この回収液41を受液槽20−aから、パイプ53,バルブ56、パイプ54から回収槽40内へ戻すようにする。このためパイプ24部のバルブ37を閉じ、パイプ35部のバルブ36を開く。凍結体22が融解して回収槽40内へ溜った回収液41は低温度となっているので、ポンプ48を駆動して、パイプ46,47内の熱媒体(水など)を熱交換器50側から熱交換器49側へ輸送することによって、放熱器45からは冷熱が発生する。この冷熱は空調やプロセスの冷却に利用される。   A frozen body (ice or the like) 22 that is thickly frozen around the cooler 2 uses its cold energy for process cooling and air conditioning in the cold heat utilization unit 300 while defrosting it by the method shown in FIG. 8 during the daytime. Therefore, the valve 57 is closed and the valve 56 is opened. On the other hand, the pump 23 is driven to supply the recovered liquid 41 accumulated in the recovery tank 40 around the frozen body 22 of the cooler 2 from the pipe 25 through the sprinkler 26 via the pipe 35 and the valve 36. Thereafter, the recovered liquid 41 is returned from the liquid receiving tank 20-a into the recovery tank 40 through the pipe 53, the valve 56, and the pipe 54. Therefore, the valve 37 in the pipe 24 part is closed and the valve 36 in the pipe 35 part is opened. Since the recovered liquid 41 that has been frozen and accumulated in the recovery tank 40 is at a low temperature, the pump 48 is driven to transfer the heat medium (water, etc.) in the pipes 46 and 47 to the heat exchanger 50. By transporting from the side to the heat exchanger 49 side, cold heat is generated from the radiator 45. This cold energy is used for air conditioning and process cooling.

この従来システムは、冷却器2がコイル状となっていて、その周りに氷を厚く結氷させて凍結濃縮操作を行うため、コイル間隔を大きくする必要があり、冷却器2の受液槽20−a内に大きな専有空間を常に確保しておく必要がある。また図7に示す夜間の凍結濃縮操作と、図8に示す日中の解氷・熱利用操作も、受液槽20−aを利用する必要があり、日中新たに工場のプロセスで生産される原水21、あるいは日中生ずる排水をこの受液槽20−a内へ適宜投入して活用することができない。このため日中生ずる原水21は別個の補助槽32を設けてポンプ27,パイプ28,バルブ29を介した後、それに溜めて保管しておく必要がある。このためシステムの配置スペースが大きくなるという難点がある。また日中の熱利用時においては、熱利用部300のポンプ48のほか、原水循環部200のポンプ23をも駆動することが必要で、省エネルギーの面でも好ましくない状態となっていた。   In this conventional system, the cooler 2 has a coil shape, and ice is thickly formed around it to perform the freeze concentration operation. Therefore, it is necessary to increase the coil interval. It is necessary to always secure a large private space within a. Further, the nighttime freeze concentration operation shown in FIG. 7 and the daytime ice-melting / heating use operation shown in FIG. 8 also require the use of the liquid receiving tank 20-a, and are newly produced by the factory process during the daytime. The raw water 21 or the wastewater generated during the day cannot be appropriately put into the liquid receiving tank 20-a for use. For this reason, the raw water 21 produced during the day needs to be stored after storing a separate auxiliary tank 32 through the pump 27, pipe 28 and valve 29. For this reason, there is a problem that the arrangement space of the system becomes large. In addition, when using heat during the day, it is necessary to drive not only the pump 48 of the heat utilization unit 300 but also the pump 23 of the raw water circulation unit 200, which is not preferable in terms of energy saving.

前記課題を解決するため(1)冷凍装置を構成する冷却器を平板状として、この平板状の冷却器に原水を流下させて氷結させた後、一時的に冷却器を加熱して脱氷させる機能を持たせるものとする、(2)次に冷却器周りを流下する原水と、冷却器から離脱した砕氷を分離して、流下した原水を原水槽、砕氷を熱利用部の回収槽に移送する機構を設ける。(3)このような構成にすることによって原水槽の上部に冷却器を配設する場合には、原水槽は受液槽を兼ねたものとし、受液槽を省略する。(4)原水槽の上部に冷却器を配設できない場合には小型な受液槽を設け、この上部に流下後の原水と砕氷を分離する機構を設け、この機構の上部に冷却器を配設する。   In order to solve the above problems, (1) the cooler constituting the refrigeration apparatus is formed into a flat plate shape, and raw water is allowed to flow through the flat plate cooler to freeze, and then the cooler is temporarily heated to deice. (2) Next, the raw water flowing down the cooler and the crushed ice separated from the cooler are separated, and the flowed raw water is transferred to the raw water tank and the crushed ice is transferred to the recovery tank of the heat utilization section. A mechanism is provided. (3) When a cooler is provided in the upper part of the raw water tank by adopting such a configuration, the raw water tank also serves as a liquid receiving tank, and the liquid receiving tank is omitted. (4) If a cooler cannot be installed in the upper part of the raw water tank, a small liquid receiving tank is provided, and a mechanism for separating the raw water and crushed ice is provided in this upper part, and a cooler is provided in the upper part of this mechanism. Set up.

本発明によれば(1)日中の熱利用時間帯には回収槽に溜められた砕氷を融解して、この冷熱を放熱部に供給すればよく、熱利用部のポンプのみの駆動でよく、原水槽から散水器を介して冷却部に原水を輸送する必要はなく、これにともなうポンプは停止でき、省エネルギーとなる。(2)また原水槽内の濃縮液は排出して利用した後、空にし、その後日中生産プロセスから生ずる原水あるいは排水を、直接この原水槽に投入して貯蔵できるので、補助槽は不要となる。(3)また冷却器に結晶した凍結体を適宜脱氷してダイナミックに凍結と脱氷を行うためシステムの処理速度が高まり実用に供して便利となる。   According to the present invention, (1) during the daytime heat utilization time period, it is only necessary to melt the crushed ice stored in the recovery tank and supply this cold heat to the heat radiating section, and it is sufficient to drive only the heat utilization section pump. In addition, it is not necessary to transport raw water from the raw water tank to the cooling unit via the sprinkler, and the pump associated therewith can be stopped, thus saving energy. (2) Since the concentrated liquid in the raw water tank is discharged and used, it is emptied, and then raw water or wastewater generated from the daytime production process can be directly put into the raw water tank for storage, so an auxiliary tank is unnecessary. Become. (3) Since the frozen body crystallized in the cooler is appropriately deiced and dynamically frozen and deiced, the processing speed of the system is increased and it is useful for practical use.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1、図2は本発明の一実施例の構成図である。図1は凍結濃縮開始初期の状態、図2は凍結濃縮終了前の状態を示している。この実施例では、原水槽20の上部に板状の冷却器2が配設されていて、この冷却器2は、パイプ3,4、ポンプ5、熱交換器1−aとによって、冷凍機1と熱的に結合されている。また原水槽20と冷却器2との間には、原水21、濃縮液21−aを通すことのできる傾斜型の目皿44−aが設けてあり、その下部にはスライダー44が付いている。ポンプ5を駆動してパイプ3,4、熱交換器1−aを介して、冷却器2内に冷凍機1で発生するマイナス温度の冷媒を供給する。一方ポンプ23を駆動して原水槽20内の原水21を、パイプ24,25を介し散水器26を通して冷却器2の外面に流下液膜状に流す。この流下液膜流は冷却器2からのマイナス温度の冷熱により、徐々に冷却器2の周りに凍結し始める。この過程によって冷却器2の外面に凍結した凍結体(氷)22は精製された氷になり、冷却器2を流下して、その下部に落下し、目皿44−aを通過し、その下部の原水槽20に落下する液体(水)21は溶質分の多い濃縮水となる。一定時間、冷却器2の周りに凍結体(氷)22の成長をさせたなら、冷凍機1を停止して、冷却器2への冷熱の供給を停止する。ポンプ5を駆動し続けていると、徐々に外気の温熱が冷却器2へ供給され、冷却器2はプラス温度に上昇する。これによって凍結体(氷)22が冷却器2と接している部分が融解し、これによって凍結体(氷)22は下方部に落下し砕氷となる。この砕氷22−aは傾斜型の目皿44−aを滑り、さらにスライダー44を滑り、回収槽40内へ落下して貯蔵される。   1 and 2 are configuration diagrams of an embodiment of the present invention. FIG. 1 shows a state at the beginning of the start of freeze concentration, and FIG. 2 shows a state before the end of freeze concentration. In this embodiment, a plate-like cooler 2 is disposed on the upper part of the raw water tank 20, and this cooler 2 is composed of a refrigerator 1 by pipes 3 and 4, a pump 5 and a heat exchanger 1-a. And is thermally coupled. Further, between the raw water tank 20 and the cooler 2, there is provided an inclined eye plate 44-a through which the raw water 21 and the concentrated liquid 21-a can pass, and a slider 44 is attached to the lower part thereof. . The pump 5 is driven to supply a minus temperature refrigerant generated in the refrigerator 1 into the cooler 2 through the pipes 3 and 4 and the heat exchanger 1-a. On the other hand, the pump 23 is driven, and the raw water 21 in the raw water tank 20 flows through the sprinkler 26 via the pipes 24 and 25 to the outer surface of the cooler 2 in the form of a falling liquid film. This falling liquid film flow gradually begins to freeze around the cooler 2 due to the cold heat of the minus temperature from the cooler 2. By this process, the frozen body (ice) 22 frozen on the outer surface of the cooler 2 becomes purified ice, flows down the cooler 2 and falls to the lower part thereof, passes through the eye plate 44-a, and the lower part thereof. The liquid (water) 21 falling into the raw water tank 20 becomes concentrated water with a large amount of solute. If the frozen body (ice) 22 grows around the cooler 2 for a certain time, the refrigerator 1 is stopped and the supply of cold heat to the cooler 2 is stopped. If the pump 5 is continuously driven, the heat of the outside air is gradually supplied to the cooler 2, and the cooler 2 rises to a plus temperature. As a result, the portion where the frozen body (ice) 22 is in contact with the cooler 2 is melted, whereby the frozen body (ice) 22 falls to the lower portion and becomes crushed ice. The crushed ice 22-a slides on the tilted eye plate 44-a, slides on the slider 44, and falls into the collection tank 40 to be stored.

冷却器2による製氷・脱氷操作が進行すると、図2に示すように、原水槽20内の原水21は溶質分が多く含まれた濃縮水となり、その量は図2に示すように、図1の初期状態の原水21よりは少ないものとなる。この濃縮された原水21はバルブ31を開いてパイプ30から外部へ排出する。一方回収槽40内に貯蔵される砕氷22−aの量は多くなる。この砕氷22−aは純水に近いものとなるが、この砕氷22−aの冷熱は冷熱利用部300にて融解して利用する。すなわちポンプ48を駆動して、パイプ46,47内の熱媒体(エチレングリコール等の不凍液)を熱交換器49と熱交換器50とを通して循環すると砕氷22−aは徐々に融解して希薄な回収液41となる。この時発生する冷熱は放熱器45にて放冷し、空調やプロセス冷却に利用される。融解された希薄な回収液41は、バルブ43を開いて、パイプ42を介して所望の場所に輸送され有効利用される。   When the ice making / deicing operation by the cooler 2 proceeds, as shown in FIG. 2, the raw water 21 in the raw water tank 20 becomes concentrated water containing a large amount of solute, and the amount is as shown in FIG. 1 than the raw water 21 in the initial state. The concentrated raw water 21 is discharged from the pipe 30 to the outside by opening the valve 31. On the other hand, the amount of crushed ice 22-a stored in the collection tank 40 increases. The crushed ice 22-a is close to pure water, but the cold heat of the crushed ice 22-a is melted and used in the cold heat utilization unit 300. That is, when the pump 48 is driven and the heat medium (antifreeze liquid such as ethylene glycol) in the pipes 46 and 47 is circulated through the heat exchanger 49 and the heat exchanger 50, the crushed ice 22-a is gradually melted and diluted. It becomes the liquid 41. The cold heat generated at this time is cooled by the radiator 45 and used for air conditioning and process cooling. The melted diluted recovered liquid 41 is transported to a desired place through the pipe 42 by opening the valve 43 and is effectively used.

このような熱利用操作は昼間行われるが、昼間はポンプ48のみ駆動しておけばよく、原水循環部200のポンプ23,及び冷凍装置100部のポンプ5は停止しておいてよく、このため極めて省エネルギーとなる。また原水槽20内の濃縮された原水21―aはパイプ30から排出してしまえば、昼間は空となっているので、ポンプ27を駆動してパイプ28,バルブ29を介して、この原水槽20内へ、昼間生産される原水21を直接投入することができ、そのまま夜間の凍結濃縮操作まで待機することができる。すなわち従来システムの図7,図8の補助槽32は不要となる。   Such heat utilization operation is performed in the daytime, but only the pump 48 may be driven during the daytime, and the pump 23 of the raw water circulation unit 200 and the pump 5 of the refrigeration apparatus 100 unit may be stopped. It is extremely energy saving. Further, if the concentrated raw water 21-a in the raw water tank 20 is discharged from the pipe 30, it is empty in the daytime. Therefore, the pump 27 is driven and the raw water tank is connected via the pipe 28 and the valve 29. The raw water 21 produced during the daytime can be directly fed into the inside 20 and can stand by until the freeze concentration operation at night. That is, the auxiliary tank 32 of FIGS. 7 and 8 of the conventional system is not necessary.

また夜間の凍結濃縮操作においては、原水槽20は受液槽としても作用し、このため図7,図8に示す受液槽20−aは不要となる。   Further, in the nighttime freeze concentration operation, the raw water tank 20 also functions as a liquid receiving tank, and therefore the liquid receiving tank 20-a shown in FIGS. 7 and 8 is not necessary.

なおこの実施例において脱氷操作を促進するために、冷凍機1を停止するとともに、パイプ3の途中を分岐して他の熱交換器(図示せず)に熱的に接続し、この熱交換器に温熱を一時的に与えて、この熱を冷却器2に供給すると凍結体(氷など)22の脱水効果が高まる。   In this embodiment, in order to promote the deicing operation, the refrigerator 1 is stopped, the middle of the pipe 3 is branched and thermally connected to another heat exchanger (not shown), and this heat exchange is performed. When the heat is temporarily given to the cooler and this heat is supplied to the cooler 2, the effect of dehydrating the frozen body (ice or the like) 22 is enhanced.

図3は本発明の他の実施例の構成図である。これは原水槽20の上部に冷却器2を配設できず、それより離れた所に冷却器2を設けなければならない場合に有効な実施例である。スライダ44に連なる目皿44−aの下部に小型な受液槽20−aを設け、受液槽20−aと原水槽20とをパイプ51で連結する。必要に応じてパイプ51にバルブ52を設けてその戻り量を調節してもよい。夜間は目皿44−aの上部に配設した冷却器2の外面に、原水槽20内の原水21をポンプ23を駆動して供給して凍結濃縮操作を行う。原水21は原水槽20から、散水器26、冷却器2,目皿44−a、受液槽20−a、パイプ51を循環する間に、徐々に減少する。一方脱氷操作によって、目皿44−a、スライダー44を介して回収槽40内に移送される砕氷22−aは徐々に多くなる。このようにして回収槽40内に貯蔵された砕氷22−aは昼間融解して、その冷熱を空調・プロセス冷却に利用する。   FIG. 3 is a block diagram of another embodiment of the present invention. This is an embodiment effective in the case where the cooler 2 cannot be provided at the upper part of the raw water tank 20 and the cooler 2 must be provided at a location farther than that. A small liquid receiving tank 20-a is provided at the lower part of the eye plate 44-a connected to the slider 44, and the liquid receiving tank 20-a and the raw water tank 20 are connected by a pipe 51. If necessary, a valve 52 may be provided in the pipe 51 to adjust the return amount. At night, the raw water 21 in the raw water tank 20 is supplied to the outer surface of the cooler 2 disposed on the top of the eye plate 44-a by driving the pump 23 to perform the freeze concentration operation. The raw water 21 gradually decreases from the raw water tank 20 while circulating through the sprinkler 26, the cooler 2, the eye plate 44-a, the liquid receiving tank 20-a, and the pipe 51. On the other hand, by the deicing operation, the crushed ice 22-a transferred into the collection tank 40 via the eye plate 44-a and the slider 44 gradually increases. Thus, the crushed ice 22-a stored in the recovery tank 40 is melted in the daytime, and the cold energy is used for air conditioning and process cooling.

図4は図3の変形実施例の構成図である。これはスライダー44の途中に目皿44−aを設け、この目皿44−aの下方部に受液槽20−aを設けたものである。このような構成においても、図3と同様の効果を奏する。   FIG. 4 is a block diagram of the modified embodiment of FIG. In this embodiment, an eye plate 44-a is provided in the middle of the slider 44, and a liquid receiving tank 20-a is provided below the eye plate 44-a. Even in such a configuration, the same effect as in FIG. 3 is obtained.

図5は図4の変形実施例の構成図である。これは回収槽40の上部に冷却器2が配設されている場合の例である。冷却器2の下部に傾斜した目皿44−aとスライダー44を設け、目皿44−aの下部に受液槽20−aを設け、濃縮液21−aを溜めることができるようにしてある。このような例においても図4と同様にバルブ52の付いたパイプ51を設けて、原水槽20内に原水21を供給するようにしてよい。しかし原水槽20と回収槽40が図5のように近接して設置できる場合には、原水槽20と回収槽40との間の壁20−bを一体化して設け、その壁20−bに開孔51−aを設けて、この開孔51−aから受液槽20−a内の濃縮液21−aを原水槽20内に戻してもよい。このようにすると、装置は簡素化される。   FIG. 5 is a block diagram of the modified embodiment of FIG. This is an example in the case where the cooler 2 is disposed above the collection tank 40. An inclined pan 44-a and a slider 44 are provided at the lower part of the cooler 2, and a liquid receiving tank 20-a is provided at the lower part of the pan 44-a so that the concentrated liquid 21-a can be stored. . Also in such an example, a pipe 51 with a valve 52 may be provided as in FIG. 4 to supply the raw water 21 into the raw water tank 20. However, when the raw water tank 20 and the recovery tank 40 can be installed close to each other as shown in FIG. 5, a wall 20-b between the raw water tank 20 and the recovery tank 40 is provided integrally, and the wall 20-b is provided on the wall 20-b. An opening 51-a may be provided, and the concentrated liquid 21-a in the liquid receiving tank 20-a may be returned to the raw water tank 20 through the opening 51-a. In this way, the device is simplified.

図6は図3の変形実施例の構成図である。これは図3の受液槽20−aとパイプ51の代わりに、原水戻し板44−bをスライダー44とは逆勾配で設けたものである。このようにすると受液槽20−aとパイプ51を省略でき、かつ細いパイプ51を利用しなくてよく、大量の濃縮水21−aを原水槽20へ戻すことができる。またこの実施例は、冷凍装置100部は直膨方式として、間接熱交換に必要な不凍液(エチレングリコールなど)はパイプ3,4に流す必要はなく、ポンプ5も不要とした構成としている。このためパイプ3と4との間に圧縮機6,凝縮器7,減圧機構(膨張弁)8を、パイプ11,12を利用して連結する。圧縮機6によって断熱圧縮された冷媒(フロンなど)はパイプ11を通って凝縮器7に入り、ここで凝縮の潜熱を放出して液化する。その後、パイプ12、バルブ9を通って減圧機構(膨張弁)8を通る間に断熱膨張して低温度となり、パイプ4を通って冷却器2に入る。これによって冷却器2はマイナス温度に冷却され、その後パイプ3を通って圧縮機6に入り、前と同じサイクルをくり返す。冷却器2の周りに成長した凍結体(氷)22を離脱させるにはパイプ12部のバルブ9を閉じ、パイプ11とパイプ4とを結ぶパイプ13部のバルブ10を一時的に開く、これによって圧縮機6によって断熱圧縮された高温冷媒がパイプ13のバルブ10を通った後、減圧機構8を介さずしてパイプ4から冷却器2内へ直接注入される。このため冷却器2は一時的に加熱され、その周りに成長した凍結体(氷)22は離脱して脱氷22−aとなって回収槽40内へ移送される。この脱氷操作が終了したなら、再びバルブ10を閉じ、バルブ9を開いて元の冷凍操作に入る。このシステムによれば短時間に脱氷できる。   FIG. 6 is a block diagram of the modified embodiment of FIG. In this embodiment, instead of the liquid receiving tank 20-a and the pipe 51 of FIG. 3, a raw water return plate 44-b is provided with a reverse gradient with respect to the slider 44. In this way, the liquid receiving tank 20-a and the pipe 51 can be omitted, and the thin pipe 51 need not be used, and a large amount of concentrated water 21-a can be returned to the raw water tank 20. Further, in this embodiment, the refrigeration apparatus 100 is a direct expansion system, and it is not necessary to flow antifreeze liquid (ethylene glycol or the like) necessary for indirect heat exchange through the pipes 3 and 4, and the pump 5 is also unnecessary. For this reason, the compressor 6, the condenser 7, and the pressure reducing mechanism (expansion valve) 8 are connected between the pipes 3 and 4 using the pipes 11 and 12. The refrigerant (such as chlorofluorocarbon) adiabatically compressed by the compressor 6 passes through the pipe 11 and enters the condenser 7 where the latent heat of condensation is released and liquefied. After that, adiabatic expansion occurs while passing through the pipe 12 and the valve 9 and the pressure reducing mechanism (expansion valve) 8, and the temperature is lowered. As a result, the cooler 2 is cooled to a negative temperature, and then enters the compressor 6 through the pipe 3 and repeats the same cycle as before. To release the frozen body (ice) 22 grown around the cooler 2, the valve 9 of the pipe 12 is closed, and the valve 10 of the pipe 13 connecting the pipe 11 and the pipe 4 is temporarily opened. The high-temperature refrigerant adiabatically compressed by the compressor 6 passes through the valve 10 of the pipe 13 and is then directly injected into the cooler 2 from the pipe 4 without passing through the pressure reducing mechanism 8. For this reason, the cooler 2 is temporarily heated, and the frozen body (ice) 22 grown around the cooler 2 is detached to be deiced 22-a and transferred into the recovery tank 40. When this deicing operation is completed, the valve 10 is closed again, the valve 9 is opened, and the original freezing operation is started. According to this system, it can be deiced in a short time.

本発明の平板状の冷却器を用い製氷・脱氷操作をくり返し行っていくダイナミック式の方法と、従来のコイル状の冷却器の周りに氷を厚く成長させていくアイスオンコイル式の方法の製氷量の違いについて図9と図10を用いて明らかにしておく。   A dynamic method in which ice making / deicing operations are repeated using the flat plate cooler of the present invention and an ice-on-coil method in which ice is grown thickly around a conventional coiled cooler. The difference in the ice making amount will be clarified with reference to FIG. 9 and FIG.

図9は横軸に時間t、縦軸に無次元氷厚さをとって、円管式と平板式の氷厚さの相違を示したものである。どちらも、時間tに対して氷厚さは放物線状に成長し、時間とともに成長率は減少する。これは氷の厚さが増大し、氷の結晶層の熱抵抗が時間とともに増大することによる。平板式の場合にも、脱氷操作を行わないで、そのまま氷を冷却器に成長させ続けると、大きな製氷量は期待できない。このため本発明に用いるダイナミック式は、短時間に成長した氷を脱氷しながら製氷を続けるものである。すなわち図9の平板式の曲線の原点近傍で、氷が成長し始めた直後においては、放物線の時間に対する氷厚さの勾配(成長率)は大きく、成長速度が速い。一例として20min製氷/2min脱氷の例を採り、成長した氷の厚さを時間に対して積分すると、一点鎖線のように時間に対する積算氷厚さは著しく増大させることができる。このようなダイナミック式は、脱氷なしの平板式に対して、著しく氷の収穫量を大きくすることができ、凍結濃縮システムに利用すると相乗効果が高いものである。   In FIG. 9, the horizontal axis represents time t, and the vertical axis represents dimensionless ice thickness. In both cases, the ice thickness grows parabolically with respect to time t, and the growth rate decreases with time. This is because the ice thickness increases and the thermal resistance of the ice crystal layer increases with time. Even in the case of the flat plate type, if ice is continuously grown on the cooler without performing the deicing operation, a large amount of ice making cannot be expected. For this reason, the dynamic type used in the present invention continues ice making while deicing ice grown in a short time. That is, immediately after the start of ice growth in the vicinity of the origin of the flat curve in FIG. 9, the gradient of the ice thickness (growth rate) with respect to the parabolic time is large and the growth rate is fast. Taking an example of 20 min ice making / 2 min deicing as an example, if the thickness of the grown ice is integrated with respect to time, the integrated ice thickness with respect to time can be remarkably increased as indicated by a dashed line. Such a dynamic type can significantly increase the yield of ice compared to a flat plate type without deicing, and has a high synergistic effect when used in a freeze concentration system.

図10は図9の結果を用いて、横軸に時間t、縦軸に無次元製氷量をとって示したもので、円管式(実線)に対し、ダイナミック式の本発明(一点鎖線)は著しく製氷量が大きく、円管式に対して約1/2の時間で、同一の製氷量を得ることが可能となることを示したものである。   FIG. 10 shows the result of FIG. 9 with time t on the horizontal axis and dimensionless ice making on the vertical axis. The present invention is a dynamic type (one-dot chain line) versus a circular pipe type (solid line). Indicates that the ice making amount is remarkably large, and the same ice making amount can be obtained in about half the time of the circular tube type.

本発明の一実施例の構成図Configuration diagram of one embodiment of the present invention 図1の実施例で、凍結濃縮が進行した状態を示す図The figure which shows the state which freeze concentration advanced in the Example of FIG. 本発明の他の実施例の構成図Configuration of another embodiment of the present invention 図3の変形実施例の構成図FIG. 3 is a block diagram of the modified embodiment of FIG. 図4の変形実施例の構成図4 is a block diagram of the modified embodiment of FIG. 図3の変形実施例の構成図FIG. 3 is a block diagram of the modified embodiment of FIG. 従来の凍結濃縮システムの構成図Configuration diagram of conventional freeze concentration system 図7の従来法の構成図で、凍結濃縮終了後の状態を示す図FIG. 7 is a configuration diagram of the conventional method in FIG. 7 and shows a state after completion of freeze concentration. 本発明のダイナミック式の凍結濃縮システムの効果を説明する図The figure explaining the effect of the dynamic type freeze concentration system of this invention 本発明のダイナミック式の凍結濃縮システムの効果を説明する図The figure explaining the effect of the dynamic type freeze concentration system of this invention

符号の説明Explanation of symbols

1…………冷凍機
1−a………熱交換器
2…………冷却器(平板、製氷コイル)
3,4……パイプ
5…………ポンプ
6…………圧縮機
7…………凝縮器
8…………減圧機構(膨張弁)
9,10…………バルブ
11,12,13…………パイプ
20………原水槽
20−a……受液槽
21………原水
21−a…………濃縮液
22………凍結体(氷など)
22−a…………砕氷
23………ポンプ
24,25…パイプ
26…………散水器
27…………ポンプ
28…………パイプ
29…………バルブ
30…………パイプ
31…………バルブ
32…………補助槽
33…………パイプ
34…………バルブ
35…………パイプ
36,37…バルブ
40…………回収槽
41…………回収液(希薄液)
42…………パイプ
43…………バルブ
44…………スライダー
44−a………目皿(メッシュ、パンチ穴付板)
44−b…………原水戻し板
45…………放熱器
46,47……パイプ
48…………ポンプ
49,50……熱交換器
51…………パイプ
51−a…………開孔
52…………バルブ
53,54,55……パイプ
56,57……バルブ
100…………冷凍装置
200…………原水循環部
300…………冷熱利用部
1 ………… Refrigerator 1−a ……… Heat exchanger 2 ………… Cooler (flat plate, ice making coil)
3, 4 …… Pipe 5 ………… Pump 6 ………… Compressor 7 ………… Condenser 8 ………… Decompression mechanism (expansion valve)
9, 10 ………… Valve 11, 12, 13 ………… Pipe 20 ……… Raw water tank 20-a …… Receiving tank 21 ……… Raw water 21-a ………… Concentrated liquid 22 ………… Frozen bodies (ice, etc.)
22-a ………… Crush ice 23 ………… Pump 24,25… Pipe 26 ………… Sprinkler 27 ………… Pump 28 ………… Pipe 29 ………… Valve 30 ………… Pipe 31 ………… Valve 32 ………… Auxiliary tank 33 ………… Pipe 34 ………… Valve 35 ………… Pipe 36, 37… Valve 40 ………… Recovery tank 41 ………… Recovered liquid ( Dilute liquid)
42 ………… Pipe 43 ………… Valve 44 ………… Slider 44-a ……… Deck plate (mesh, plate with punch holes)
44-b ………… Raw water return plate 45 ………… Heat radiator 46,47 …… Pipe 48 ………… Pump 49,50 …… Heat exchanger 51 ………… Pipe 51-a ………… Open hole 52 ………… Valve 53, 54, 55 …… Pipe 56, 57 …… Valve 100 ………… Refrigeration equipment 200 ………… Raw water circulation part 300 ………… Cool heat utilization part

Claims (2)

冷凍機の冷熱で原水槽から送られてきた原水を氷結させた後、これによって生じた氷を離脱させることのできる機能を有する冷却器、冷却器の下方部に設けられ、未氷結の原水を原水槽に戻すことと、この未氷結の原水とは分離して、前記脱氷を別個に設けた回収槽に輸送することのできる機構を具備してなる凍結濃縮システム。   After freezing the raw water sent from the raw water tank by the cold heat of the refrigerator, a cooler that has the function of removing the ice generated by this, it is installed in the lower part of the cooler, A freeze concentration system comprising a mechanism that can be returned to the raw water tank and separated from the unfrozen raw water and transported to the recovery tank provided with the deicing separately. 冷却器とその下方部の原水槽及び回収槽との間に、前記未氷結の原水と脱氷とを分離する機構と、未氷結の原水を一時的に受けてそれを原水槽に戻すことのできる受液槽を具備してなる請求項1に記載の凍結濃縮システム。   A mechanism for separating the unfrozen raw water and deicing between the cooler and the raw water tank and the recovery tank below the cooler, and temporarily receiving the unfrozen raw water and returning it to the raw water tank The freeze concentration system according to claim 1, further comprising a liquid receiving tank that can be used.
JP2004008556A 2004-01-15 2004-01-15 Freeze concentration system Withdrawn JP2005201546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004008556A JP2005201546A (en) 2004-01-15 2004-01-15 Freeze concentration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004008556A JP2005201546A (en) 2004-01-15 2004-01-15 Freeze concentration system

Publications (1)

Publication Number Publication Date
JP2005201546A true JP2005201546A (en) 2005-07-28

Family

ID=34821845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004008556A Withdrawn JP2005201546A (en) 2004-01-15 2004-01-15 Freeze concentration system

Country Status (1)

Country Link
JP (1) JP2005201546A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100983281B1 (en) 2008-05-22 2010-09-24 엘지전자 주식회사 Apparatus for separating slush and Refrigerater including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145965U (en) * 1981-03-10 1982-09-13
JPS60130381U (en) * 1984-02-13 1985-08-31 トヨタ自動車株式会社 plate ice maker
JPH11128937A (en) * 1997-10-29 1999-05-18 Hoshizaki Electric Co Ltd Concentrated electrolyzed water and its production apparatus
JP2002130879A (en) * 2000-10-27 2002-05-09 Meidensha Corp Frozen drainage re-utilizing system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145965U (en) * 1981-03-10 1982-09-13
JPS60130381U (en) * 1984-02-13 1985-08-31 トヨタ自動車株式会社 plate ice maker
JPH11128937A (en) * 1997-10-29 1999-05-18 Hoshizaki Electric Co Ltd Concentrated electrolyzed water and its production apparatus
JP2002130879A (en) * 2000-10-27 2002-05-09 Meidensha Corp Frozen drainage re-utilizing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100983281B1 (en) 2008-05-22 2010-09-24 엘지전자 주식회사 Apparatus for separating slush and Refrigerater including the same

Similar Documents

Publication Publication Date Title
EP0088468B1 (en) Heat pump
CN101603752A (en) A kind of novel ice making method and device
CN104006594A (en) Tube ice making machine applicable to both fresh water and seawater, and ice making process thereof
JPH0985232A (en) Seawater desalination device and seawater desalination system using the device
JP2005201546A (en) Freeze concentration system
CN207871592U (en) A kind of device for realizing crystallization processes Process Energy cascade utilization
JPS61282739A (en) Ice slurry thermal accumulation device
JP2018071835A (en) Ice machine
KR101470958B1 (en) An ice machine with an integrated water-air cooling system
JP4565951B2 (en) Method for removing ice nuclei from ice making device by supercooling of brine and ice making device using the same method
JP2006110416A (en) Multi-step freeze concentration system
JPH0438176Y2 (en)
JP4399309B2 (en) Ice heat storage device
CN212403529U (en) Freezing method sea water desalination
JP3364454B2 (en) Defrosting method for ice machine
CN203857723U (en) Fresh water/seawater dual-purpose tubular ice making machine
JP2002162136A (en) Ice making method and ice plant
JP2000274747A (en) Dynamic type ice storage system and its double pipe type heat-exchanger and supercooling release pipe
JP2003194444A (en) Automatic ice making machine
FI73818B (en) FOERFARANDE FOER VAERMEUPPTAGNING UR TILLFRYSANDE VAETSKA.
JP2000241051A (en) Ice-making system and its operation method
JP2816779B2 (en) Method and apparatus for defrosting heat exchanger for supercooled water
JP2000093131A (en) Device and method for concentration
JPH09170792A (en) Heat storing type freezing system
JP2666884B2 (en) Cold transport method and apparatus using anti-freeze protein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061117

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070110