JPS58117722A - Digital-to-analog converter - Google Patents

Digital-to-analog converter

Info

Publication number
JPS58117722A
JPS58117722A JP21388481A JP21388481A JPS58117722A JP S58117722 A JPS58117722 A JP S58117722A JP 21388481 A JP21388481 A JP 21388481A JP 21388481 A JP21388481 A JP 21388481A JP S58117722 A JPS58117722 A JP S58117722A
Authority
JP
Japan
Prior art keywords
bits
order
circuit
conversion circuit
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21388481A
Other languages
Japanese (ja)
Inventor
Akira Kawamoto
河本 「あきら」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP21388481A priority Critical patent/JPS58117722A/en
Publication of JPS58117722A publication Critical patent/JPS58117722A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/68Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To reduce the response time, by dividing a digital input into a plurality of upper-order and lower-order bits and synthesizing the outputs of each converter with weighing, in a D-A converter of pulse integration system. CONSTITUTION:The digital input is divided into upper-order 4 bits and lower- order 8 bits, and the upper order bits are inputted to an upper-order duty conversion circuit 5A and the lower-order bits are inputted to a lower-order duty conversion circuit 5B. When the clock frequency generated at a clock generator 3 is 4,096kHz, the output frequency of the circuit 5A is 256kHz and that of the circuit 5B is 16kHz, and they are synthesized with the weight of 16:1 at an addition circuit 8, then the ripple of both duty conversion circuit outputs is suppressed in the ratio, and the time constant of smoothing low pass filters 6A, 6B is 8ms, which is remarkably reduced in comparison with conventional types not dividing bits into upper and lower-order bits.

Description

【発明の詳細な説明】 本発明はD−A変換器に関し、特に、パルス積分方式の
D−A変換器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a DA converter, and particularly to a pulse integration type DA converter.

一般に、パルス積分方式のD−A変換器は、デジタル入
力をパルスのデユーティ比に変換し、そノハルスで基準
電源出力をオンオフした、パルス信号をつくりその出力
をローパスフィルタで平滑化してアナログ出力を得る方
式で、多数の精密抵抗を必要としないので精度と安定度
が非常にすぐねており、電子天びん用として特に適して
いる。
Generally, a pulse-integration type D-A converter converts a digital input into a pulse duty ratio, generates a pulse signal by turning on and off the reference power output using a solenoid, and smoothes the output using a low-pass filter to produce an analog output. This method does not require a large number of precision resistors, so it has very high accuracy and stability, making it particularly suitable for electronic balances.

チューティ比変換法としては、アップダウンカウンタを
使う方式、カウンタとデジタルコンパレータを使う方式
などが知られている。
As the tutee ratio conversion method, a method using an up/down counter, a method using a counter and a digital comparator, etc. are known.

第1図に従来例を示す。デジタル人力1に1ノド、じて
出力線2に第2図(4)図又は(ト)図に示す方形波パ
ルスが出力され、この出力がLPF6で平均化されて直
流アナログ出力となる。デジタル・デユーティ比変換回
路5には基準電源4がらの基壁電圧と、クロック発生器
3からのクロックパルスが供給される。第2図(4)に
示す方形パルス出力は、周期Tを一定とし、Hiレベル
になる時間TVをデジタル入力に応じて変化させたパル
ス幅変調型の場合を示し、第2図(ト)に示す方形パル
ス出力は、パルスl園Tlを一定とし、周期TVをデジ
タル入力の逆数に比例して変化させた周波数変調型の場
合を示している。
FIG. 1 shows a conventional example. After one stroke of the digital input 1, a square wave pulse shown in FIG. The digital duty ratio conversion circuit 5 is supplied with the base wall voltage from the reference power supply 4 and the clock pulse from the clock generator 3. The rectangular pulse output shown in Fig. 2 (4) is a pulse width modulation type in which the period T is constant and the time TV to reach Hi level is varied according to the digital input. The square pulse output shown is of a frequency modulation type in which the pulse field Tl is constant and the period TV is varied in proportion to the reciprocal of the digital input.

このような従来装置において、例えば12ビツトのD−
A変換器を製作する場合、クロック周波& feを40
96KHzと仮定すると、方形パルス出力の周波数fは 096 となる。ローパスフィルタをOR1段で構成するものと
すれは、出力のリップルを1/2LSB以内にするため
には、その時定数τを約1秒にと″る必要があり、D−
A変換器の出力が1/2LS13に入るまでの応答時間
は約9秒を必要とする。デジタル入力のビット数が増加
すると応答時間は更に長大化していく。
In such conventional devices, for example, 12-bit D-
When manufacturing an A converter, set the clock frequency & fe to 40
Assuming 96 KHz, the frequency f of the square pulse output is 096. If the low-pass filter is configured with one OR stage, the time constant τ must be set to about 1 second in order to keep the output ripple within 1/2 LSB.
The response time until the output of the A converter enters the 1/2LS13 requires approximately 9 seconds. As the number of bits of digital input increases, the response time becomes longer.

本発明の目的は、ビット数が増加した場合にも1ノh、
答速度が充分速く、リップル含有率も小さいD−A変換
器を提供することにiる。
The object of the present invention is to provide 1 no h even when the number of bits increases.
It is an object of the present invention to provide a D-A converter that has a sufficiently high response speed and a low ripple content.

本発明のD−A変換器は、複かrビットのデジタル入力
が所定の波高値をもつ直列パルス信号に変換され、且つ
、上記デジタル入力の値に対応して上記パルスのデユー
ティが変化する変換回路を、上記デジタル入力の上位複
数ビットに係る変換回路と下位嶺数ビットに係る変換回
路に分ul構成(、各変換回路の出力を実質的に重み付
けして加算する手段を設けたことを特徴としている。
The D-A converter of the present invention is a converter in which a digital input of multiple r bits is converted into a serial pulse signal having a predetermined peak value, and the duty of the pulse changes in accordance with the value of the digital input. The circuit is divided into a conversion circuit relating to the upper plurality of bits of the digital input and a conversion circuit relating to the lower number bits (characterized in that it is provided with means for substantially weighting and adding the outputs of each conversion circuit). It is said that

以下、本発明実施例を図mIに基いて8)・明゛d−る
Examples of the present invention will be described below based on Figure mI.

第3図に本発明の一実施例のブロック図を示す。FIG. 3 shows a block diagram of an embodiment of the present invention.

上位ビットに係るデユーティ変換回路5Aとその方形パ
ルス出力を平滑化するローパスフィルタ6Aと、下位ビ
ットに係るデユーティ変換回路5Bとその方形パルス出
力を平滑化するローパスフィルタ6Bをそわそれ設け、
基準*M4とクロック発生器6を2個のデユーティ変換
回路5A、5Bに共用する。デジタル入力が12ピット
ノ場合、例えば上位4ビツトを上位用デユーティ変換回
路5Aに入力し、残り8ビツトを下4et用デユーティ
変換回路5Bに入力する。ローパスフィルタ6A及び6
Bの出力は重み付は加算回路8により加算されてアナロ
グ出力線7に出力される。加算回路8の重み係数は、上
位4ビツトをに=1としたとき下位8ビツトはK = 
1/16となる。従って、帰還回路の抵抗R=IKQ 
のとき、R1=1抱11R2=16KQとすることによ
り上位4ビツトのゲインが1、下位8ビツトのゲインが
1/16になる。
A duty conversion circuit 5A for the upper bits and a low-pass filter 6A for smoothing its square pulse output, and a duty conversion circuit 5B for the lower bits and a low-pass filter 6B for smoothing its square pulse output are provided,
The reference *M4 and the clock generator 6 are shared by the two duty conversion circuits 5A and 5B. When the digital input is 12 pits, for example, the upper 4 bits are input to the upper duty conversion circuit 5A, and the remaining 8 bits are input to the lower 4 et duty conversion circuit 5B. Low pass filters 6A and 6
The weighted outputs of B are added by an adder circuit 8 and output to an analog output line 7. The weighting coefficient of the adder circuit 8 is such that when the upper 4 bits are set to 1, the lower 8 bits are set to K = 1.
It becomes 1/16. Therefore, the feedback circuit resistance R=IKQ
In this case, by setting R1=1−11R2=16KQ, the gain of the upper 4 bits becomes 1 and the gain of the lower 8 bits becomes 1/16.

このような構成において、上位4ビ、ノドの周波el/
lは、従来例と同様クロック周波kfC=4096KH
zとすれば、 となる。また従来例と同じCR1段形ローパスフィルタ
を用いると、リップルを12ビツトに対して1/4LS
Bに抑える、即ち、1/16384にするとして時定数
τlは8ミリ秒となり、1/4LSBに入るまでの時間
は約80ミリ秒となる。次に、残りの下位8ビツトにつ
いては周波数 f2=ニー−=16に円 56 が出力されるが、下位8ビツトのフルスケールの出力は
上位4ビツトのフルスケールの出力に片べて 8ビツト    256  1 12ビツト   4.096  16 の恵みしかもっていないから、リップル含有率も16倍
まで許賽できることになり、1/4LSBX16=4L
SBまで許され、時定数τ2は8msとなって、τl=
τ2となる。
In such a configuration, the upper 4 bits and throat frequencies el/
l is the clock frequency kfC=4096KH as in the conventional example
If z, then it becomes. Furthermore, if the same CR single-stage low-pass filter as the conventional example is used, the ripple will be reduced to 1/4LS for 12 bits.
If the time constant τl is suppressed to B, that is, 1/16384, the time constant τl will be 8 milliseconds, and the time until entering 1/4 LSB will be about 80 milliseconds. Next, for the remaining lower 8 bits, a circle 56 is output at frequency f2 = knee = 16, but the full scale output of the lower 8 bits is 8 bits in total, which is the full scale output of the upper 4 bits. Since it only has the blessings of 1 12 bits 4.096 16, the ripple content can be allowed up to 16 times, so 1/4LSBX16 = 4L
SB is allowed, the time constant τ2 becomes 8ms, and τl=
It becomes τ2.

結局、加9回路8の出力は、この二つの出力の声みを付
した加算値であるから、そのリップルは6 となり、従来と変らず、時定数は両者か等しいがら応答
時間は80 msとなる8これを従来例と対此すると約
100分の1 に短縮されたことになる。
In the end, the output of the adder circuit 8 is the added value of these two outputs, so the ripple is 6, which is the same as before, and the time constant is the same for both, but the response time is 80 ms. 8 Comparing this to the conventional example, it means that the time has been shortened to about 1/100.

上記実施例において、上位4ビツトと下位8ビツトに分
割構成したが、このようにピッ)bを2倍とびに下位の
デユーティ変換回路のデジタル入力ビットを増大させて
いくと、各段の時定数τか等しくなり、本発明の技術思
想を最も効果的に実施することができる。このようなビ
ット数の分割構成例を列挙すわば、合計9ビツトの場合
に3ビ・ブト+6ビツトの分割構成、合計14ビツトの
場合に2ビツト+4ビツト+8ビツトの3段構成、合計
18ビツトの場合に6ビツト+12ビツトの2段構成な
どである。一般的に言えば上位ビットをNとしてその下
位ビットが 2 × N1 ただしn = 0.1.2.3.−・・
−となる分割構成が好ましい。
In the above embodiment, the circuit is divided into upper 4 bits and lower 8 bits, but if the digital input bits of the lower duty conversion circuit are increased by doubling p(b) in this way, the time constant of each stage becomes τ are equal to each other, and the technical idea of the present invention can be implemented most effectively. Examples of such bit number division configurations include a 3-bit + 6-bit division configuration for a total of 9 bits, a 3-stage configuration of 2 bits + 4 bits + 8 bits for a total of 14 bits, and a total of 18 bits. In this case, a two-stage configuration of 6 bits + 12 bits is used. Generally speaking, the upper bit is N and the lower bit is 2 × N1 where n = 0.1.2.3. −・・
- is preferable.

第4図に、デジタル入力が14ビツトの場合に、デユー
ティ変換回路t−3段構成に分割した実施例を示す。前
述した頑り、上位2ビツト、中間4ビツト、下位8ビツ
トに分割構成している。この場合、重み係数に1重み付
は加算回路の抵抗値R1゜R2+ R3及び加算回路の
ゲインはそれぞれ下記の辿りとする。たたし、帰還回路
の抵抗値Rを第3図の場合と同様R=IKΩとしている
FIG. 4 shows an embodiment in which the duty conversion circuit is divided into t-3 stages when the digital input is 14 bits. As mentioned above, it is divided into upper 2 bits, middle 4 bits, and lower 8 bits. In this case, when the weighting coefficient is weighted by 1, the resistance value R1°R2+R3 of the adding circuit and the gain of the adding circuit are as follows. However, the resistance value R of the feedback circuit is set to R=IKΩ as in the case of FIG.

係tNK  入力抵抗  ゲイン 上位2ビツト  I    RI=IK!Q   1中
間4ビット  1/4R2=4にΩ  1重4下位8ピ
ッ)  1/64   R3=64KQ  1/64本
発明における止み利は加算手段は、前述したような加算
回路によるもののみに限らず、WfR的に止み付は加算
を実行しイ尋る手段を使用することができる。第5図に
デユーティ変換回路5A、5B、5Cに供給される基準
電源電圧に市み付けを施こす実施例を示す。この実施例
は、第4図のものと同様の分割(li成をもち、従って
、基準電源4の電圧をEとしたとき、上位2ビツトに係
るデユーティ変換回路5Aには電圧Eをそのまま供給し
、中間4ビツトに係るデユーティ変換回路5Bに対して
c−rゲインに比例した電圧、すなわち1/4Eを供給
し、下位8ビツトに係るデユーティ変換回路5Cに対し
ては1/64Bを供給している。そのための手段として
基準電#!4を抵抗R1r R2e R3の直列回路に
より分圧して各デユーティ変伊回路へ供給している。各
抵抗値を例示すれは、R1=IKΩ、R2= 3 KΩ
、R,3=60にΩとなる。加算回路9はiずみのない
加算を行なうよう設計されている。
Relationship tNK Input resistance Gain upper 2 bits I RI=IK! Q 1 middle 4 bits 1/4R2 = 4 to Ω single 4 lower 8 bits) 1/64 R3 = 64KQ 1/64 In the present invention, the addition means is not limited to the addition circuit as described above. , in WfR terms, it is possible to use a means of performing addition and checking. FIG. 5 shows an embodiment in which the reference power supply voltage supplied to duty conversion circuits 5A, 5B, and 5C is marketed. This embodiment has the same division (li configuration) as the one in FIG. , a voltage proportional to the cr gain, that is, 1/4E, is supplied to the duty conversion circuit 5B relating to the middle 4 bits, and 1/64B is supplied to the duty conversion circuit 5C relating to the lower 8 bits. As a means for this purpose, the reference voltage #!4 is divided by a series circuit of resistors R1r, R2e, and R3 and supplied to each duty change circuit.Examples of each resistance value are as follows: R1=IKΩ, R2=3KΩ
, R,3=60. The adder circuit 9 is designed to perform stepless addition.

本発明におけるローパスフィルタとして、前述したOR
フィルタのほか、例えGボアクチイブフィルタなど他の
公知の平滑化手段を用い得ること勿論である。
As a low-pass filter in the present invention, the above-mentioned OR
Of course, in addition to the filter, other known smoothing means, such as a G-bore active filter, can be used.

本発明によれば、高糖□□□でしかも比較的)lべ答の
速いD−A変換器を安価に得ることができる。
According to the present invention, a D-A converter with high sugar content and relatively fast response can be obtained at low cost.

また、一般によく知られているように、D−A変換器を
帰還回路に用いてA−D変換器を構成することができる
ので、本発明のD−A変換器を応用して高精度かつ安価
なA−D変換器を得ることば電子天びん等に最適である
Furthermore, as is generally well known, since an A-D converter can be constructed by using a D-A converter in a feedback circuit, the D-A converter of the present invention can be applied to achieve high precision and It is ideal for use in electronic balances, etc. to obtain an inexpensive A-D converter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示す回路ブロック図、第2図は第1図
の作用筋C明は1である。第3図G−・本発明実施例を
示す回路ブロック図、第4図は本発明の使、の実施例を
示す回路ブロック図、第5図は本発明の更に他の実施例
を示す回路ブロック図である。 1・・・・・・デジタル入力線 5A、5B、5C!・・・・・・デユーティ変換量In
6A、6B、60・・・・・・ローパスフィノ[り8・
・・・・・重み付は加豹回路 9・・・・・・加算回路 特許出願人  株式会社島津 製作所
FIG. 1 is a circuit block diagram showing a conventional example, and FIG. 2 is a circuit block diagram showing a conventional example. Fig. 3G--Circuit block diagram showing an embodiment of the present invention; Fig. 4 is a circuit block diagram showing an embodiment of the present invention; Fig. 5 is a circuit block diagram showing yet another embodiment of the present invention. It is a diagram. 1...Digital input lines 5A, 5B, 5C! ...Duty conversion amount In
6A, 6B, 60...Low pass fino [ri8・
...Weighting is added to the circuit 9... Addition circuit patent applicant Shimadzu Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)複数ビットのデジタル入力か所定の波高値をもつ
直列パルス信号に変換され、且つ、上記デジタル入力の
値に対応して上記パルスのデユーティが変化する変換回
路を、上記デジタル入力の上位複数ビットに係る変換回
路と下位複数ビットに係る変換回路を含む少なくとも2
組以上の変換回路に分解構成し、各変換回路の出力を実
質的に重み付けして加算する手段を設けたことを特徴と
するD−A変換器。
(1) A conversion circuit that converts a multi-bit digital input into a serial pulse signal having a predetermined peak value, and in which the duty of the pulse changes in accordance with the value of the digital input, is connected to the upper plurality of the digital inputs. At least two including a conversion circuit related to bits and a conversion circuit related to lower multiple bits.
1. A D-A converter, characterized in that it is disassembled into more than one set of conversion circuits, and is provided with means for substantially weighting and adding the outputs of each conversion circuit.
(2)上記上位複数ビットのビット数よりも上記下位複
数ビットのビット数が多い特許請求の範囲第1項記載の
D−A変換器。
(2) The DA converter according to claim 1, wherein the number of lower bits is greater than the number of upper bits.
JP21388481A 1981-12-30 1981-12-30 Digital-to-analog converter Pending JPS58117722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21388481A JPS58117722A (en) 1981-12-30 1981-12-30 Digital-to-analog converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21388481A JPS58117722A (en) 1981-12-30 1981-12-30 Digital-to-analog converter

Publications (1)

Publication Number Publication Date
JPS58117722A true JPS58117722A (en) 1983-07-13

Family

ID=16646607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21388481A Pending JPS58117722A (en) 1981-12-30 1981-12-30 Digital-to-analog converter

Country Status (1)

Country Link
JP (1) JPS58117722A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6062729A (en) * 1983-07-28 1985-04-10 アールシーエー トムソン ライセンシング コーポレイシヨン Device for converting digitla work including plural bits into analog signal
EP1134899A2 (en) * 2000-03-16 2001-09-19 Burr-Brown Japan, Ltd. Digital-to-analog-converting method and digital-to-analog converter employing common weight generating elements

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6062729A (en) * 1983-07-28 1985-04-10 アールシーエー トムソン ライセンシング コーポレイシヨン Device for converting digitla work including plural bits into analog signal
EP1134899A2 (en) * 2000-03-16 2001-09-19 Burr-Brown Japan, Ltd. Digital-to-analog-converting method and digital-to-analog converter employing common weight generating elements
EP1134899A3 (en) * 2000-03-16 2004-01-07 Burr-Brown Japan, Ltd. Digital-to-analog-converting method and digital-to-analog converter employing common weight generating elements

Similar Documents

Publication Publication Date Title
US4316178A (en) Digital-to-analog conversion system with compensation circuit
US5818377A (en) Bipolar element averaging, digital-to-analog converter
JP2976661B2 (en) Method for converting a digital signal to an analog signal in a digital / analog converter
JPS58117722A (en) Digital-to-analog converter
JPH03238927A (en) Digital analog converter
JPH03196280A (en) Multi-input operational amplifier circuit and integrating circuit using the amplifier circuit
WO2003092164A3 (en) Digital-to-analog converter having error correction
JPS5513583A (en) Analogue-digital converter circuit
US6476747B1 (en) Digital to analog converter
JPH03230620A (en) Digital/analog conversion circuit
JPH01164124A (en) Digital/analog converter
Carbone et al. Conversion error in D/A converters employing dynamic element matching
JPS6326929B2 (en)
JPS5918520Y2 (en) function generator
JPS6220075Y2 (en)
JPS62128619A (en) Digital-to-analog converter
SU1064455A1 (en) Device for monitoring and control of functional adjusting of resistor graticules of digital/analog converters
SU1487189A1 (en) Functional digital-to-analog converter
JPH0250620A (en) D-a conversion circuit
JP2775733B2 (en) Digital waveform signal generator
JPH02268523A (en) Digital/analog converter
JPS6128423Y2 (en)
KR0141709B1 (en) Digital and analog converter
SU1425813A1 (en) D-a phase shifter
JPH08213910A (en) D/a converter