JPS58111950A - Image forming member for electrophotography - Google Patents

Image forming member for electrophotography

Info

Publication number
JPS58111950A
JPS58111950A JP57162652A JP16265282A JPS58111950A JP S58111950 A JPS58111950 A JP S58111950A JP 57162652 A JP57162652 A JP 57162652A JP 16265282 A JP16265282 A JP 16265282A JP S58111950 A JPS58111950 A JP S58111950A
Authority
JP
Japan
Prior art keywords
layer
pulp
image forming
photoconductive layer
forming member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57162652A
Other languages
Japanese (ja)
Inventor
Toshiyuki Komatsu
利行 小松
Yutaka Hirai
裕 平井
Katsumi Nakagawa
中川 克已
Tadaharu Fukuda
福田 忠治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57162652A priority Critical patent/JPS58111950A/en
Publication of JPS58111950A publication Critical patent/JPS58111950A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08292Germanium-based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain a superior image forming member in an image forming member for electrophotography having a substrate, a barrier layer and a photoconductive layer consisting basically of amorphous silicon or germanium by contg. oxygen or nitrogen in the photoconductive layer. CONSTITUTION:In an image forming member for electrophotography having a substrate, a barrier layer and a photoconductive layer, the photoconductive layer is constituted of an amorphous semiconductor consisting basically of at least one of silicon or germanium and at least one of oxygen or nitrogen is contained therein. Then, the image forming member for electrophotography which is pollution-free, is highly resistant to heat, moisture, light fatigue and corona ions, does not cause deterioration phenomena on repetitive use, forms high quality picture images easily with high density, sharp halftones and high resolution, has high dark resistance and photosensitivity and has excellent abrasion resistance, cleanability and solvent resistance is obtained.

Description

【発明の詳細な説明】 の様な電磁波を利用して像形成するのに使用される電子
写真用像形成部材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrophotographic imaging member used to form images using electromagnetic waves such as.

従来、電子写真用像形成部材の光導電層を構成する光導
電材料として杜、Ss 、 Ca8 e ZnO勢の無
機光導電材料やポリ−Nビニルカルバゾール(PVK)
、)リニトロフルオレノン(TNF)等の有機光導電材
料(OPC’)が一般的に使用されている。
Conventionally, inorganic photoconductive materials such as Du, Ss, Ca8e ZnO, and poly-N vinylcarbazole (PVK) have been used as photoconductive materials constituting the photoconductive layer of electrophotographic image forming members.
,) Organic photoconductive materials (OPC') such as linitrofluorenone (TNF) are commonly used.

両生ら、これ等の光導電材料を使用する電子写真用像形
成部材に於いては、未だ諸々の解決され得る可き点があ
って、ある程度の条件緩和をして、個々の状況に応じて
各々適当な電子写真用像形成部材が使用されているのが
実情である。
There are still various issues that can be solved in electrophotographic image forming members that use these photoconductive materials, and the conditions should be relaxed to a certain extent to suit individual circumstances. In practice, each suitable electrophotographic imaging member is used.

例えば、S・を光導電層形成材料とする電子写真用像形
成部材は、S・単独では、例えば、可視光領域の光を利
用する場合、その分光感度領域が狭いのでTo +As
を添加して分光感度領域を拡げることが計られている。
For example, in an electrophotographic image forming member using S as a photoconductive layer-forming material, S alone has a narrow spectral sensitivity range when using visible light, so To + As
It is planned to expand the spectral sensitivity range by adding .

両生ら、この様な、Te +Asを含むSe系光導電層
を有する電子写真用像形成部材は、確かに分光感度領域
、は改良されるが、光疲労が大きくkる為に、同一原稿
を連続的に繰返し、コピーすると複写画像の1偉濃度の
低下やバックグランドの汚れ(白地部分のカブリ)を生
じ九抄、又、引続き他の原稿をコピーすると前の原稿の
画偉が残像として複写される(ゴースト現象)郷の欠点
を有している。
Ryohei et al., such an electrophotographic image forming member having a Se-based photoconductive layer containing Te + As certainly improves the spectral sensitivity range, but because the optical fatigue is large, it is difficult to print the same original. Continuously copying may cause a decrease in the density of the copied image or stains on the background (fogging of the white background), and if you continue to copy other manuscripts, the image of the previous manuscript may be copied as an afterimage. It has the disadvantage of being (ghost phenomenon) township.

而も、S・、殊KAstTeは人体に対して極めて有害
な物質であるので、製造時に於いて、人体への接触がな
い様な製造装置を使用する工夫が必要であって、装置へ
の資本投下が著しく大きい。更には、製造後に於いても
、光導電層が露呈していると、クリーニング等の処理を
受ける際、光導電層表面は直に摺擦される為に、その一
部が削09られて、現像剤中に混入したり、複写機内に
飛散した抄、複写画倫中に混入し丸抄して、人体に接触
する原因を与える結果を生む。又、8e系先光導電は、
その表面がコロナ放電に1連続的に多数回繰返し晒され
ると、層の表面付近が結晶化又は酸化を起して光導電層
の電気的特性の劣化を招く場合が少なくない。或いは、
又、光導電層表面が露呈していると、静電像の可視化(
現倫)K際し、液体現像剤を使用する場合、その溶剤と
接触する為に耐溶剤性(耐液現性)K優れていることが
要求されるが、この点に於いて、8・系光導電層は必ず
しも満足しているとは断言し難い。
However, since S., especially KAstTe, is an extremely harmful substance to the human body, it is necessary to use manufacturing equipment that does not come into contact with the human body during manufacturing, and requires less capital for equipment. The drop is significantly large. Furthermore, if the photoconductive layer is exposed even after manufacturing, the surface of the photoconductive layer will be directly rubbed during cleaning and other treatments, and a portion of it will be scraped off. It can get mixed into the developer, or get mixed into copying machines, or get mixed in with copies of prints, and be scraped, resulting in them coming into contact with the human body. In addition, the 8e-based photoconductivity is
When the surface is repeatedly exposed to corona discharge many times in a row, crystallization or oxidation occurs near the surface of the layer, often leading to deterioration of the electrical properties of the photoconductive layer. Or,
Also, if the surface of the photoconductive layer is exposed, visualization of the electrostatic image (
When using a liquid developer, it is required to have excellent solvent resistance (liquid development resistance) since it comes into contact with the solvent. It is difficult to say that the system photoconductive layer is necessarily satisfactory.

これ等の点を改良する為に、Be系光導電層の表面を、
所謂保譲層や電気絶縁層郷と称される表面被覆層で榎う
ことか提案されている。
In order to improve these points, the surface of the Be-based photoconductive layer was
It has been proposed that a surface coating layer called a so-called protective layer or an electrically insulating layer be used.

両年ら、これ等の改良に関しても、光導電層と表面被覆
層との接着性、電気的接触性及び表面被覆層に要求され
る電気的特性や表面性の点又、別に#′i、S・系光導
電層は、通常の場合真空蒸着によって形成されるので、
その為の装置への著しい資本投下を必要とし、且つ、所
期の光導電特性を有する光導電層を再現性良く得るには
、蒸着温度、蒸着基板温度、真空度、冷却速度勢の各種
の製造パラメーターを厳密に調整する必要がある。
Regarding these improvements, both years et al. also focused on the adhesion and electrical contact between the photoconductive layer and the surface coating layer, as well as the electrical properties and surface properties required for the surface coating layer, as well as #'i, Since the S-based photoconductive layer is usually formed by vacuum evaporation,
This requires a significant investment in equipment, and in order to obtain a photoconductive layer with the desired photoconductive properties with good reproducibility, various changes in deposition temperature, deposition substrate temperature, degree of vacuum, and cooling rate must be made. Manufacturing parameters need to be tightly adjusted.

更に、表面被覆層は、光導電層表面に、フィルム状のも
の曾接着剤を介して貼合するか、又は、表面核種層形成
材料を塗布して形成されゐ為k、光導電層を形成する装
置とは別の装置を設置する必要があって、設備投資の著
しい増大があって、昨今の様な減速経済成長期に於いて
は甚だ芳しくない。
Furthermore, the surface coating layer is formed by bonding a film-like adhesive to the surface of the photoconductive layer, or by applying a surface nuclide layer forming material, so that the photoconductive layer is formed. It is necessary to install equipment other than the one used for this purpose, and there is a significant increase in capital investment, which is extremely unfavorable in the current period of slow economic growth.

又、S・系光導電層は、電子写真用像形成部材の光導電
層としての高暗抵抗を保有する為に、アモルファス状1
1に形成されるが、S・の結晶化が約65℃と極めて低
い温度で起る為に、製造後の堆扱い中に、又は使用中に
於ける周囲温度や画像形成プロセス中の他の部材との摺
11による摩擦熱の影譬を多分に受1て結晶化現象を起
し、暗抵抗の低下を招き易いという耐熱性上にも欠点が
ある。
In addition, in order to have a high dark resistance as a photoconductive layer of an electrophotographic image forming member, the S-based photoconductive layer is amorphous.
1, but since the crystallization of S occurs at a very low temperature of about 65°C, the ambient temperature during post-manufacturing handling, or during use or other factors during the image forming process. It also has a drawback in terms of heat resistance, in that it is susceptible to the frictional heat caused by the sliding 11 with the member, causing a crystallization phenomenon, which tends to cause a decrease in dark resistance.

一方、ZnO、Cd8郷を光導電層構成材料として使用
する電子写真用像形成部材は、その光導電層が、ZnO
やCdS蝉の光導電材料粒子を適当な樹脂結合剤中に均
一に分散して形成されている。この、所謂バインダー系
光導電層を有する像形成部材は、Se系光導電層を有す
る像形成部材に較べて製造上に於いて有利であって、比
較的製造コストの低下を計ることが出来る。即ち、バイ
ンダー系光導電層は、ZnOやC’dSの粒子と適当な
樹脂結着剤とを適当、な溶剤を用いて混練して調合した
塗布液を適当な基体上に、ドクターブレード法、ディッ
ピング法等の塗布方法で塗布した後、固化させるだけで
形成することが出来るので、Be系光導電層を有する像
形成部材に較べ製造装置にそれ程の資本投下をする必要
がないばか妙か、製造法自体本簡便且つ容易で−ある。
On the other hand, in an electrophotographic imaging member using ZnO and Cd8 as photoconductive layer constituent materials, the photoconductive layer is made of ZnO.
It is formed by uniformly dispersing photoconductive material particles of CdS or CdS in a suitable resin binder. This image-forming member having a so-called binder-based photoconductive layer is advantageous in manufacturing compared to an image-forming member having a Se-based photoconductive layer, and the manufacturing cost can be relatively reduced. That is, the binder-based photoconductive layer is prepared by applying a coating solution prepared by kneading ZnO or C'dS particles and a suitable resin binder using a suitable solvent onto a suitable substrate using a doctor blade method. It can be formed by simply applying it using a coating method such as a dipping method and then solidifying it, so compared to an image forming member having a Be-based photoconductive layer, there is no need to invest as much capital in manufacturing equipment. The manufacturing method itself is simple and easy.

両年ら、バインダー系光導電層は、基本的に構成材料が
光導電材料と樹脂結着剤の二成分系であるし、且つ光導
電材料粒子が樹脂結着剤中に均一に分散されて形成され
なければならない特殊性の為に、光導電層の電気的及び
光導電的特性や物理的化学的特性を決定するパラメータ
ーが多く、従って、斯かるパラメーターを厳密[1!j
整しなければ所望の特性を有する光導電層を再現性良く
形成することが出来ずに歩留抄の低下を招き量産性に欠
けるという欠点がある。
Both years et al., the binder-based photoconductive layer is basically a two-component system consisting of a photoconductive material and a resin binder, and the photoconductive material particles are uniformly dispersed in the resin binder. Due to the specificity that has to be formed, there are many parameters that determine the electrical and photoconductive properties as well as the physicochemical properties of the photoconductive layer, and therefore these parameters must be strictly controlled [1! j
If the photoconductive layer is not properly adjusted, a photoconductive layer having desired characteristics cannot be formed with good reproducibility, resulting in a decrease in paper yield and a lack of mass productivity.

又、バインダー系光導電層は、分散系という特殊性故に
、層全体がポーラスになってお砂、その為に湿度依存性
が著しく、多湿雰囲気中で使用すると電気的特性の劣化
を来たし、高品質の複写画像が得られなくなる場合が少
なくない。
Furthermore, due to the unique nature of the binder-based photoconductive layer being a dispersed system, the entire layer is porous and has a sandy structure, so it is highly dependent on humidity, and when used in a humid atmosphere, the electrical properties deteriorate and high In many cases, it is no longer possible to obtain a high quality copy image.

更KFi、光導電層のポーラス性は、現偉の際の現像剤
の層中への浸入を招来し、離型性、クリーニング性が低
下するばか抄か使用不能を招溶剤と共に現像剤が層中に
浸透するので上記の点は著しいものとなり、Se系光導
電層の場合と同様に光導電層表面を表面被覆層で覆うこ
とが必要となる。
In addition, the porous nature of the KFi photoconductive layer causes the developer to penetrate into the layer during development, resulting in poor mold release and cleaning properties, or the developer becomes unusable. The above-mentioned problem becomes significant because the particles penetrate into the interior of the photoconductive layer, and it becomes necessary to cover the surface of the photoconductive layer with a surface coating layer, as in the case of the Se-based photoconductive layer.

両生ら、この表面被覆層を設ける改良も、光導電層のポ
ーラス性に起因する光導電層表面の凹凸性故K、その界
面が均一にならず、光導電層と表面被覆層との接着性及
び電気的接触性の良好な状態を得る事が仲々困難である
という欠点が存する。
Ryohei et al., the improvement of providing this surface coating layer is also due to the unevenness of the surface of the photoconductive layer due to the porous nature of the photoconductive layer, and the interface is not uniform, resulting in poor adhesion between the photoconductive layer and the surface coating layer. Another disadvantage is that it is difficult to obtain good electrical contact.

又、CdSを使用する場合には、CdS自体の人体への
影響がある為K、製造時及び使用時に於いて、人体に接
触した抄、或いは、周囲環境下に飛散したりすることの
ない様にする必要がある。ZnOを使用する場合には、
人体に対する影響は殆んど々いが、ZnOバインダー系
光導電層は光感度が低く、分光感度領域が狭い、光疲労
が著しい、光応答性が悪い等の欠点を有してい又、最近
注目されているPVK+TNF等の有機光導電材料を使
用する電子写真用像形成部材に於いては、表面が導電処
理されたポリエチレンテレフタレート等の適当な支持体
上にPVKやTNF等の有機光導電材料の塗膜を形成す
るだけで光導電層を形成出来るという製造上に於ける利
点及び可撓性に長けた電子写真用像形成部材が製造出来
るという利点を有するものであるが、他方に於いて、耐
湿性、耐コロナイオン性、クリーニング性に欠け、又光
感度が低い、可視光領域に於ける分光感度領域が狭く且
つ短波長側に片寄っている等の欠点を有し、極限定され
た範囲でしか使途に供されていない。然もこれ等の有機
光導電材料の中には発癌、性物質の疑いがあるものもあ
る等、人体に対してその多くは全く無害であるという保
証がなされていない。
In addition, when using CdS, since CdS itself has an effect on the human body, care must be taken during manufacturing and use to ensure that the material does not come into contact with the human body or scatter into the surrounding environment. It is necessary to When using ZnO,
Although it has almost no effect on the human body, ZnO binder-based photoconductive layers have drawbacks such as low photosensitivity, narrow spectral sensitivity range, significant optical fatigue, and poor photoresponsiveness, and have recently attracted attention. In an electrophotographic image forming member using an organic photoconductive material such as PVK and TNF, the organic photoconductive material such as PVK or TNF is coated on a suitable support such as polyethylene terephthalate whose surface is conductively treated. This method has the advantage in manufacturing that a photoconductive layer can be formed simply by forming a coating film, and the advantage that an electrophotographic image forming member with excellent flexibility can be manufactured, but on the other hand, It lacks moisture resistance, corona ion resistance, and cleanability, and has drawbacks such as low photosensitivity, and a narrow spectral sensitivity range in the visible light region and biased toward short wavelengths, and has an extremely limited range. It is only used for this purpose. However, there is no guarantee that many of these organic photoconductive materials are completely harmless to the human body, as some are suspected of being carcinogenic or sexual substances.

この様に、電子写真用像形成部材の光導電層を形成する
材料として従来から指摘されている光導電材料を使用し
良電子写真用像形成部材は、利点と欠点を併せ持つ為に
、ある程度、製造条件及び使用条件を緩和して各々の使
途に金う適従って、上述の諸問題点の解決された優れ九
電子厚真用倫形成部材が得られる様な電子写真用像形成
部材の光導電層を形成する材料としてO鎮3の材料が所
望されている。
As described above, good electrophotographic image forming members using photoconductive materials, which have been pointed out as materials for forming the photoconductive layer of electrophotographic image forming members, have both advantages and disadvantages, so to some extent, A photoconductive layer of an image forming member for electrophotography, which can provide an excellent nine-electron-atsushi-forming member that solves the above-mentioned problems by relaxing the manufacturing conditions and usage conditions to suit each application. As the material for forming this, the material of O-chin 3 is desired.

その様な材料として最近有望視されているものの中に例
えばアモルファスシリコン(以後a −8iと略記する
)やアモルファスゲルマニウム(以後a−Geと略記す
る)がある。
Examples of such materials that have recently been viewed as promising include amorphous silicon (hereinafter abbreviated as a-8i) and amorphous germanium (hereinafter abbreviated as a-Ge).

ところでa −8i膜十a −Go膜は、開発初期のこ
ろは、その製造法や製造条件によって、その構造が左右
される為に種々の電気的特性・光学的特性を示し、再現
性の点に大きな問題を抱えていえ。例えば、初期に於い
て、真空蒸着法やスパッターリング法で形成され九m 
−81膜はゲイト勢を多量に含んでいて、その為に電気
的性質も光学的性質重大きく影響を受け、基礎物性の研
究材料としてもそれ程注目されてはおらず、又、応用の
為の研究開発もなされなかつえ。
By the way, in the early stages of development, the a-8i film and the a-Go film exhibited various electrical and optical properties, as their structure was influenced by the manufacturing method and manufacturing conditions, and the reproducibility of the a-Go film varied. No, I have a big problem. For example, in the early stages, 9m
The -81 film contains a large amount of gate groups, and therefore its electrical properties and optical properties are greatly affected, so it has not received much attention as a research material for basic physical properties, and it has not received much attention as a research material for basic physical properties. It has not been developed.

両生ら、アモルファスではp、れ制御が不可能とされて
いたのがa −81K於いて、1976年初頭にアモル
ファスとしては初めてp−n接合がされて以来、大きな
関心が集められ、以後上記p−n接合が得られる仁とに
加えて結晶性シリコン(c−8iと略記する)では非常
に弱いルミネセンスがa −8iでは高効率で観測され
るという点から、主として太陽電池への応用に研究開発
力が注がれて来ている。
Amphitheater et al., a-81K, which was thought to be impossible to control in amorphous, has attracted great interest ever since p-n junction was made for the first time in amorphous in early 1976. In addition to the fact that -n junctions can be obtained, extremely weak luminescence is observed in crystalline silicon (abbreviated as c-8i), and a -8i can be observed with high efficiency, so it is mainly used for applications in solar cells. Research and development capabilities are being poured into this area.

この様に、これ迄に報告されているa−8t膜は、太陽
電池用として開発されえものであるので、その電気的特
性・光学的特性の点に於いて、電子写真用像形成部材の
光導電層としては使用し得えないのが実情である。即ち
、太陽電池は、太陽エネルギーを電流の形に変換して敗
り出すので、効率良く太き々電流を取り出すには、−a
 −Si膜の明抵抗(電磁波照射時の抵抗)はある程度
以下にしなければならない。一方、余り暗抵抗(電磁波
非照射時の抵抗)が小さ過ぎるa −81膜では効率曳
く大きな電流を取)出すことが出来ない。この様な点か
ら、太陽電池に応用するには%a−at膜の暗抵抗はl
os〜10aΩ・国程度が要求されている。
In this way, the a-8t films that have been reported so far could be developed for use in solar cells, and therefore, in terms of their electrical and optical properties, they are suitable for electrophotographic image forming members. The reality is that it cannot be used as a photoconductive layer. In other words, solar cells convert solar energy into electric current, so in order to efficiently extract a large amount of electric current, -a
-The bright resistance (resistance during electromagnetic wave irradiation) of the Si film must be kept below a certain level. On the other hand, an a-81 film whose dark resistance (resistance when not irradiated with electromagnetic waves) is too small is unable to draw a large current with high efficiency. From this point of view, for application to solar cells, the dark resistance of the %a-at film is l
OS~10aΩ/country is required.

両生ら、この1度の暗抵抗を有するa −81膜では、
そのままで電子写真用像形成部材の光導電層として適用
させようとしても、余りにも暗抵抗が低く過ぎて、現在
、知られている電子写真法には全く使用し得ない。この
暗抵抗の問題Id a −Ge K就ても同様に云う事
が出来る。
Ryōsei et al., in this a-81 film with a dark resistance of 1 degree,
Even if it were attempted to be applied as it is as a photoconductive layer of an electrophotographic image forming member, the dark resistance is too low to be used at all in currently known electrophotographic methods. The same can be said about this dark resistance problem Id a -Ge K.

又、電子写真用像形成部材の光導電層の形成材料として
は明抵抗が暗抵抗に較べて2〜41N程度小さいことが
要求されるが、従来、報告されているa −Si膜やa
−G・膜では精々2桁薯度であるので、この点に於いて
も従来のa−81膜やa −Ge膜では、そのままで電
子写真用像形成部材の光導電層として、適用しようとし
ても充分満足し得る光導電層とは成り得なかつ丸。
Furthermore, the material for forming the photoconductive layer of an electrophotographic image forming member is required to have a bright resistance that is approximately 2 to 41 N lower than the dark resistance.
In this respect, the conventional a-81 film and a-Ge film have a hardness of at most two digits, so it is difficult to use the conventional a-81 film or a-Ge film as a photoconductive layer in an electrophotographic image forming member. However, it cannot be a fully satisfactory photoconductive layer.

又、別には、a−8iHK関するある報告によれば、例
えば、暗抵抗が=1010・国であるa −Si膜は光
電利得(入射photo′i1 当りの光電流)が低下
しており、この点に於いて亀、従来のa −Si膜はそ
のままでは完全な電子写真用像形成部材の光導電層とは
成妙得なかった。
In addition, according to another report regarding a-8iHK, for example, the photoelectric gain (photocurrent per incident photo'i1) of an a-Si film with a dark resistance of 1010 is reduced; In this respect, the conventional a-Si film could not be used as a complete photoconductive layer of an electrophotographic image forming member as it was.

I!に、電子写真用像形成部材の光導電層として要求さ
れる上記以外の他の要件、例えば、静電的特性、耐コロ
ナイオン性、耐溶剤性、耐光疲労性、耐湿性、耐熱性、
耐摩耗性、クリーニング性等、の点に於いては、a−8
1やa −Ge K関して従来全く未知数で6つ九。
I! In addition, other requirements other than the above required for the photoconductive layer of an electrophotographic image forming member, such as electrostatic properties, corona ion resistance, solvent resistance, light fatigue resistance, moisture resistance, heat resistance,
In terms of wear resistance, cleaning properties, etc., it is a-8
Regarding 1 and a-Ge K, there are 6 and 9 total unknowns in the past.

本発明は、上記の諸点に鑑み成され九ものでh−8i及
びa−Geに就て電子写真用像形成部材の光導電層への
適用という観点から総括的に鋭意研究検討し九結果、酸
素又は/及び窒素を化学修飾物質(themlasll
 modIfier )として含むa −Si又は/及
びa−Go s更にはこれらに炭素を一部含有させたa
 −Si又は/及びa−Geの半導体層とすれば、電子
写真用像形成部材の光、導電層として極めて有効に適用
され得るばかり\でなく、電子写真用像形成部材の従来
の光導電−と較べて殆んどの点に於いて凌駕していると
と゛を見出した点に基いている。
The present invention has been made in view of the above-mentioned points, and is the result of intensive research and study on h-8i and a-Ge from the viewpoint of application to photoconductive layers of electrophotographic image forming members. Oxygen or/and nitrogen can be replaced with chemical modifiers (themlasll).
a-Si or/and a-Go s, which contains a-Si or/and a-Go s as a modifier)
- If the semiconductor layer is made of Si or/and a-Ge, it can not only be applied extremely effectively as a photoconductive layer of an electrophotographic image forming member, but also be used as a conventional photoconductive layer of an electrophotographic image forming member. This is based on the finding that it is superior in most respects compared to the previous version.

本発明は、製造時に於いては、装置のクローズドシステ
ム化が容易に出来るので、人体に対する悪影響を避は得
ることが出来、又一旦製造されえものは使用上に際し、
人体ばかりかその他の生物、更には自然環境に対しての
影響がなく無公害であって、殊に耐熱性、耐湿性に優れ
、電子写真特性が常時安定していて、殆んど使用環境に
限定を受けない全環境型であり、耐光疲労性、耐コロナ
イオン性に著しく長け、繰返し使用に際しても劣化現象
を起さない電子写真用像形成部材を提供することを主え
る目的とする。
In the present invention, since the device can be easily made into a closed system during manufacturing, it is possible to avoid adverse effects on the human body, and once manufactured, when used,
It is non-polluting, has no effect on the human body, other living things, or the natural environment, has excellent heat resistance and moisture resistance, and has always stable electrophotographic characteristics, making it suitable for almost any usage environment. The main object of the present invention is to provide an electrophotographic image forming member that can be used in any environment without limitation, has excellent light fatigue resistance and corona ion resistance, and does not cause deterioration even after repeated use.

本発明の他の目的は、濃度が高く、ハーフトーンが鮮明
に出て且つ解像度の高い、高品質画像を得る事が容易に
出来る電子写真用像形成部材を提供することである。
Another object of the present invention is to provide an electrophotographic image forming member that can easily produce high-quality images with high density, clear halftones, and high resolution.

本発明のもう一つの目的は、暗抵抗及び光感度が高く、
又、分光感度領域が略々全可視光域を覆ってお9暗減衰
速度が小さくて光応答性が速く、且つ耐摩耗性、クリー
ニング性、耐溶剤性に優れた電子写真用像形成部材を提
供することでもある。
Another object of the present invention is to have high dark resistance and light sensitivity;
We also provide an electrophotographic image forming member with a spectral sensitivity that covers almost the entire visible light range, a low dark decay rate, fast photoresponsiveness, and excellent abrasion resistance, cleaning properties, and solvent resistance. It is also about providing.

本発明の所期の目的は、光導電層を、シリコン又は/及
びゲルマニウムを母体とし、酸素又は/及び窒素を含む
アモルファス半導体(以降a−半導体と略記する)で形
成することKよって達成される。
The intended object of the present invention is achieved by forming the photoconductive layer with an amorphous semiconductor (hereinafter abbreviated as a-semiconductor) using silicon or/and germanium as a base material and containing oxygen and/or nitrogen. .

本発明の電子写真用像形成部材の最も代表的な構成例が
第1図及び第2図に示される。gt図に示される電子写
真用像形成部材1は、支持体2、光導電層3から構成さ
れ、光導電層3は、儂形成面となる自由表面を有し、該
層3は、シリコン又は/及びゲルマニウムを母体とし、
酸素又は/及び窒素を化学修飾物質として含むa−半導
体で形成されている。
The most typical structural example of the electrophotographic image forming member of the present invention is shown in FIGS. 1 and 2. The electrophotographic imaging member 1 shown in FIG. / and germanium as a matrix,
It is formed of an a-semiconductor containing oxygen and/or nitrogen as a chemical modifier.

上記の様KSa  81又は/及びa−G・を母体とす
るa−半導体に酸素又は/及び窒素を化学修飾物質の形
で含有させて光導電層を形成すると、暗抵抗の著しい増
大と、高光感度化を計ることが出来、従来のS・系光導
電層と較べても優ると4劣らない租極めて優れた電子写
真特性を有する光導電層と成抄得る。a −81又は/
及びa−G・を母体とするa−半導体に酸素又は/及び
窒素を化学修飾物質の形で含有させるには、例えば光導
電層をグロー放電法で形成する場合には、酸素、窒素、
酸化物1.、窒化物等の化合物のガスをa−81又は/
及びa−G・を形成する原料ガスと共に内部を減圧にし
得る堆積室内に導入して該堆積室内でグロー放電を生起
させて光導電層を形成すれば良い。又、例えば光導電層
をスパッターリング法で形成する場合には、所望の混合
比とし、例えば(81+5iO−−(81+5isN+
)なる成分で混合成形したスパッター用のターゲットを
使用するか、8iウエハーと8i0を又d8iiN+ウ
ェハーの二枚のターゲットを使用して、スパッターりン
グを行うか、又は酸素ガス中窒素ガス又は酸素や窒素を
含んだ化合物のガスを、例ttfArガス勢のスパッタ
ー用のガスと共に堆積室内に導入して、81又はGe、
或いは(8i+G・)のターゲットを使用してスパッタ
ーり711行って光導電層を形成すれば良い。
When a photoconductive layer is formed by incorporating oxygen and/or nitrogen in the form of chemical modifiers into the a-semiconductor based on KSa 81 or/and a-G, as described above, a significant increase in dark resistance and a high Sensitivity can be increased, and a photoconductive layer can be formed that has extremely excellent electrophotographic properties that are as good as 4 times better than conventional S-based photoconductive layers. a-81 or/
In order to incorporate oxygen or/and nitrogen in the form of a chemical modifier into an a-semiconductor having a-G and a-G, for example, when forming a photoconductive layer by a glow discharge method, oxygen, nitrogen,
Oxide 1. , gas of compounds such as nitrides a-81 or/
A photoconductive layer may be formed by introducing the photoconductive layer into a deposition chamber whose interior can be reduced in pressure together with the raw material gas for forming a-G and aG, and causing glow discharge within the deposition chamber. For example, when forming a photoconductive layer by a sputtering method, the desired mixing ratio is set, for example, (81+5iO--(81+5isN+)
), sputtering can be performed by using a sputtering target made of a mixture of components such as A nitrogen-containing compound gas is introduced into the deposition chamber together with a sputtering gas such as ttfAr gas, and
Alternatively, the photoconductive layer may be formed by sputtering 711 using a target of (8i+G.).

本発明に於いて、使用され得る酸素中窒素の化合物とし
ては、形成される光導電層に不必要な不純物が取転込ま
れないものであって、且つ光導電層中に#素中窒素が化
学修飾物質として有効な形で含有さ9.れるものであれ
ば大概の酸素や窒素の化合物が使用され得る。その様な
酸素や窒素の化合物として、好適には常温に於いてガス
状態を取り得るものが有効である。。
In the present invention, the compound of nitrogen in oxygen that can be used is one that does not introduce unnecessary impurities into the photoconductive layer to be formed and that contains nitrogen in oxygen in the photoconductive layer. Contained in a form effective as a chemical modifier9. Most oxygen and nitrogen compounds can be used as long as they can be used. As such oxygen and nitrogen compounds, compounds that can be in a gaseous state at room temperature are preferably effective. .

例えば酸素化合物としては、酸素(0り、−酸化炭素、
二酸化炭素、−酸化窒素、二酸化窒素。
For example, oxygen compounds include oxygen (oxygen, -carbon oxide,
Carbon dioxide, -nitric oxide, nitrogen dioxide.

そして窒素化合物としては、窒素(Nt )、−酸化窒
素、二酸化窒素、アンモニア、等のはか多数の化合物が
有用である。
As the nitrogen compound, a large number of compounds such as nitrogen (Nt), -nitrogen oxide, nitrogen dioxide, and ammonia are useful.

本発明に於いて、形成される光導電層中K。In the present invention, K in the photoconductive layer formed.

bものであって、所望に応じて適宜決定されねばならな
いが、通常の場合、0,1〜30 atomic fk
、好淳には0.1〜20 atmnie % s最適に
は、0.2〜15 atonxie−とされるのが望ま
しい。
atomic fk, which must be determined appropriately depending on the needs, but in normal cases, 0.1 to 30 atomic fk
, 0.1 to 20 atmnie% s, optimally 0.2 to 15 atonie%.

本発明に於いて、Sl又は/及びGoを母体とし、酸素
や窒素を化学修飾物質として含むa−半導体で構成され
る光導電層は下記のタイプのa−半導体の中の一種類で
層形成するか又は少なくとも二種類を選択し、異なるタ
イプのもの、が接合される状態として層形成する事によ
って成漬れる。
In the present invention, the photoconductive layer composed of an a-semiconductor having Sl or/and Go as a matrix and containing oxygen and nitrogen as chemical modifiers is formed of one of the following types of a-semiconductors. Alternatively, at least two types are selected, and the different types are bonded to form a layer.

■all・・・・・・  ドナー(donor)のみを
含むもの、或いは、ドナーとアクセプタ−(acc@p
t・r)との両方を含み、ドナーOak!m(Nd)が
高いもの。
■all... Contains only the donor, or the donor and acceptor (acc@p)
t/r) and donor Oak! High m(Nd).

■pm!・・・・・・アクセプターのみを含むもの、或
いは、ドナーとアクセプターとの両方を會み、アクセプ
ターの濃度(Na)が高いもの。
■pm! ...Contains only acceptor, or contains both donor and acceptor and has a high acceptor concentration (Na).

■目[・・・・・Na = Nd = 0のもの又は、
Na =NdOもの。
■Eye [...Na = Nd = 0 or,
Na=NdO.

本発明の電子写真用像形成部材の光導電層を構成する層
としての■〜■のタイプのa−半導体層は、後に詳述す
る様にグロー放電法や反応スパッターリング法等による
層形成の際に、n臘不純物又は、p型不純物、或いは、
両不純物を、形成される。a−半導体層中にその量を制
御してドーピングしてやる事によって形成される。
The a-semiconductor layers of types 1 to 3 as layers constituting the photoconductive layer of the electrophotographic image forming member of the present invention can be formed by a glow discharge method, a reactive sputtering method, etc., as will be described in detail later. In some cases, n-type impurities or p-type impurities, or
Both impurities are formed. Formed by controlling the amount of doping into the a-semiconductor layer.

この場合、本発明者等の実験結果からの知見によれば、
項中の不純物の濃度をIQ111〜l Q”am−8の
範囲内に調整することによって、よ如強I/%n蓋(又
はよ如強いp型)のa−半導体層からよ1いn II(
又はよ)弱いζ型)のa−半導体層を形成する事が出来
る。
In this case, according to the findings from the experimental results of the present inventors,
By adjusting the concentration of impurities in the term to within the range of IQ111 to lQ''am-8, it is possible to convert a very strong I/%n lid (or a very strong p-type) a-semiconductor layer to a very strong p-type a-semiconductor layer. II (
Alternatively, an a-semiconductor layer of weak ζ type) can be formed.

■〜■のタイプのa−半導体層は、グルー放電法、スパ
ッターリング法、イオンインブラン、−ツヨ、法、イオ
ップ、−ケイyf法等によって形成さ九る。これ郷の製
造法は、製造条件、町、備資本投下の負荷11度、製造
規模、製造される像形成部材に所望される電子写真特性
等の要因によって適宜選択されて採用されるが、所望す
る電子写真特性を有すゐ像形成部材を製造する為の制御
が比較的容易である、■〜■の、タイプに制御する為に
a−半導体層中に不純物を導入するのに周期律表の璽族
又はV族の不純物を置換蓋で導入することが出来る等の
利点からグロー放電法が好適に採用される。
The a-semiconductor layers of types (1) to (2) are formed by a glue discharge method, a sputtering method, an ion-in-blank method, a -Tsuyo method, an IOP method, a K-YF method, or the like. The manufacturing method in this town is selected and adopted as appropriate depending on factors such as manufacturing conditions, town, capital investment load, manufacturing scale, and electrophotographic characteristics desired for the image forming member to be manufactured. (a) The periodic table is used to introduce impurities into the semiconductor layer in order to control the electrophotographic properties of (1) to (2). The glow discharge method is preferably employed because of its advantages such as the ability to introduce impurities of the 1st group or the 5th group using a displacement lid.

更に1本発明Kjl)%Aでは、グロー放電法とスパッ
ターリング法とを同一装置系内で併用してa−半導体層
を形成しても曳い。a−半導体層は、本発明の目的とす
る電子写真用像形成部材が得られる可く、Hが含有され
る。ヒこに於いて、「a−半導体層中KHが含有されて
いゐ」ということは、[Hが、Si又はG・と結合し良
状態]、「Hがイオン化して層中に取り込まれている状
III又はr Hlとして層中゛に取り込まれて−る状
態」の何れかの又はこれ等の複合されている状態を意味
する。a−半導体層へのHの含有5i2H@ t Ge
Ha等の化合物又ti Hzの形で導入し先後熱分解、
グロー放電分解勢の方法によって、それ等の化合物又は
H3を分解して、a−半導体層中に1層の成長に併せて
含有させてもJL%/%し又、イオンインプランテーシ
ョン法で含有させても嵐い。
Furthermore, in the present invention Kjl)%A, the a-semiconductor layer may be formed by using both the glow discharge method and the sputtering method in the same apparatus system. The a-semiconductor layer contains H so that the electrophotographic image forming member targeted by the present invention can be obtained. In this case, ``KH is contained in the a-semiconductor layer'' means [H is bonded with Si or G in a good state], ``H is ionized and incorporated into the layer.'' It means any one of the following states, or a combination of these states: "incorporated into the layer as rHl" or "incorporated into the layer as rHl". a-Inclusion of H in the semiconductor layer 5i2H@tGe
Compounds such as Ha are introduced in the form of ti Hz and then thermally decomposed,
Even if such compounds or H3 are decomposed by the method of glow discharge decomposition and incorporated into the a-semiconductor layer along with the growth of one layer, the amount of JL%/% can be reduced. It's stormy though.

のHの含有量は、形成される像形成部材が実−面に於い
て適用され得るか否かを左右する大きな要因の一つであ
って、殊に形成され9るa−半導体層をpm又はn1l
K制御する一つの要素と本発明に於いそ、形成さKる像
形成部材を夷−wk充分適用させ得る為には、a−半導
体層中に含有されるHの量は通常の場合1〜40ato
mic −1好適には5〜30 atomle ’Ik
とされるのが望ましい。a−半・導体層中へのH含有量
が上記の数値範fiに限定される理由の理論的裏付は今
の処、明確にされておらず推論の域を出ない、丙午ら、
数多くの実験結果から、上記数値範囲外のHの含有量で
は、例えば本発明O像形成部材の光導電層を構成するa
−半導体層としての要求に応じ九特性に制御するのが極
めて困難である、製造され九電子写真用像形成部材は照
射される電磁波に対する感度が極めて低い、又紘場合に
よっては、該感度が殆んど認められない、電磁波照射に
よるキャリアーの増加が小さい等が認められ、Hの含有
量が上記の数値範囲内にあるのが必要条件であることが
裏付けられている。a−半導体層中へのHの含有は、例
えば、グロー放電法では、a−半導体を形成する出発物
質が5IH4e S1w山−GeHa等の水素化物を使
用するので、SiL −81tHs −GeH4等の水
素化物が分解してa−半導体層が形成される際、Hは自
動的に層中に含有されるが、更KHの層中への含有を一
層効率良く行なうには、畠−半導体層を形成するiVc
、グロー放電を行なう装置系内KH,ガスを導入してや
れば良い。
The H content is one of the major factors that determines whether the formed image forming member can be applied in practice. or n1l
In the present invention, as an element for controlling K, the amount of H contained in the a-semiconductor layer is usually between 1 and 1, in order to make the image forming member formed sufficiently compatible with the K-wk. 40ato
mic-1 preferably 5-30 atoms
It is desirable that this is done. The theoretical basis for the reason why the H content in the a-semiconductor layer is limited to the above numerical range fi is currently unclear and remains in the realm of speculation.
From a number of experimental results, it has been found that when the H content is outside the above numerical range, for example, a
- Manufactured electrophotographic imaging members, which are extremely difficult to control to meet the requirements of semiconductor layers, have extremely low sensitivity to irradiated electromagnetic waves, and in some cases, the sensitivity is almost negligible. It is confirmed that the increase in carriers due to electromagnetic wave irradiation is small, and that it is a necessary condition that the H content is within the above numerical range. The inclusion of H in the a-semiconductor layer is, for example, in the glow discharge method, since the starting material for forming the a-semiconductor uses a hydride such as 5IH4e S1w mountain-GeHa, hydrogen such as SiL-81tHs-GeH4 is used. When the compound is decomposed and an a-semiconductor layer is formed, H is automatically contained in the layer, but in order to more efficiently incorporate KH into the layer, it is necessary to form an a-semiconductor layer. iVc to do
, KH and gas may be introduced into the apparatus system for performing glow discharge.

スパッターリング法による場合K rjAr等の不活性
ガス又はこれ等のガスをベースとした混合ガス雰囲気中
でSt又はGe、或いは<St+a・)。
In the case of the sputtering method, St or Ge (or <St+a.) in an inert gas such as K rjAr or a mixed gas atmosphere based on these gases.

更にはこれ等の酸素又は/及び窒素の化合物を含むもの
をターゲットとしてスパッターリングを行なう際にH,
ガスを1人してやるか又は8iH。
Furthermore, when performing sputtering using a target containing these oxygen and/or nitrogen compounds, H,
Either one person can use the gas or 8iH.

Si、H,等の水素化硅素ガスやGeH4蝉の水素化ゲ
ルマニウムガス、或いは、不純物のドーピングも兼ねて
B、H,、・′PkXs等のガスを導入してやれば嵐い
If silicon hydride gas such as Si, H, etc., germanium hydride gas such as GeH4 cicada, or gas such as B, H, . . . 'PkXs, etc., is introduced as impurity doping, it will be a storm.

本発明の目的を達成する為に&−半導体層中に含有され
るHの量を制御するには、堆積基板温度又は/及びHを
含有させる為に使用される出発物質の製造装置系内へ導
入する量を制御してやれば良い。更には、a−半導体層
を形成した後に、鋏層な、活性化し九水素雰囲気中に晒
しても良い、又、この時a−半導体層を結晶温度以下で
加熱するのも一つの方法である。殊Ka−半導体層の暗
抵抗を向上させるためKは、骸加熱処理法紘有°効な手
段である。又、高強度の光の様な電磁波を照射して、a
−半導体層の暗抵抗を向上させる方法も有効な方法であ
る。
To achieve the objectives of the present invention &- to control the amount of H contained in the semiconductor layer, the deposition substrate temperature or/and the starting material used to incorporate H into the production equipment system. It is best to control the amount introduced. Furthermore, after forming the a-semiconductor layer, a scissors layer may be activated and exposed to a dihydrogen atmosphere, and one method is to heat the a-semiconductor layer at a temperature below the crystallization temperature at this time. . Particularly, K is an effective means for improving the dark resistance of a semiconductor layer using a bulk heat treatment method. Also, by irradiating electromagnetic waves such as high-intensity light,
- A method of improving the dark resistance of a semiconductor layer is also an effective method.

a−半導体層中にドーピングされる不純物としては、1
−半導体層をp雛にするKは、周期律表第■族Aの元素
、例えFiBe At、 Gas In* T1等が好
適なものとして挙げられ、n型にする場合には、周期律
表第VIAの元素、例えば、P。
The impurity doped into the a-semiconductor layer is 1
- Suitable K for making the semiconductor layer p-type include elements from group Ⅰ A of the periodic table, such as FiBe At, Gas In VIA elements, such as P.

As、 8b、 Bi等が好適なものとして挙げられる
Preferred examples include As, 8b, Bi, and the like.

これ等の不純物は、a−半導体層中に含有される量がp
pmオーダーであるので、光導電層を構成する主物質程
その公害性に注意を払う必要はないが出来る限り公害性
のないものを使用するのが好ましい、ζOS表観点から
すれば、形成されるa−半導体層の電気的・光学的特性
を加味して、例えば、B、AII Pe 8b等が最適
である。
The amount of these impurities contained in the a-semiconductor layer is p.
Since it is on the order of pm, it is not necessary to pay as much attention to its pollution properties as the main material constituting the photoconductive layer, but it is preferable to use materials that are as non-polluting as possible.From the perspective of the ζOS table, it is possible to form Considering the electrical and optical characteristics of the a-semiconductor layer, B, AII Pe 8b, etc. are optimal.

この他に、例えば、熱拡散やインプランテーションによ
ってLi等がインターステイシ了ルにドーピングされる
ことでn型に制御することも可能である。
In addition to this, it is also possible to control the n-type by, for example, doping Li or the like into the interstitial layer by thermal diffusion or implantation.

a−半導体層中にドーピングされる不純物の量は、所望
される電気的・光学的特性に応じて適宜決定されるが、
周期律表第m族Aの不純物の場合には、通常104〜1
0橿atomic L好適にはlO″@〜10’ at
omic fk、周期律表第■族Aの不純物の場合には
、通常10’〜1 G−” atomic IG、好適
には104〜10’ atomic %とされるのが望
ましい。
The amount of impurity doped into the a-semiconductor layer is determined as appropriate depending on the desired electrical and optical properties, but
In the case of impurities in group m of the periodic table A, usually 104 to 1
0 atomic L preferably lO''@~10' at
In the case of omic fk, an impurity belonging to group ⅠA of the periodic table, it is usually 10' to 1 G-'' atomic IG, preferably 104 to 10' atomic %.

これ等不純物のa−半導体層中へのドーピング方法は、
a−半導体層を形成する際に採用される製造法によって
各々異なるものであって、具体的には、以降の説明又は
実施例に於いて詳述される。
The method of doping these impurities into the a-semiconductor layer is as follows:
Each method differs depending on the manufacturing method employed when forming the a-semiconductor layer, and will be specifically explained in detail in the following description or examples.

第1図に示される電子写真用像形成部材の如き、光導電
層3が自由表面を有し、咳自由表面に1靜電像形成の為
の帯電処理が施されるgI!形成部材に於いては、光導
電層3と支持体2との関に、静電像形成0*0帯電処通
時に支持体2儒からOキャリアーの注入を阻止する働き
のある障壁層を設けるのが一層好ましいものである。
In the electrophotographic imaging member shown in FIG. 1, the photoconductive layer 3 has a free surface, and the free surface is subjected to a charging process for forming a static image. In the forming member, a barrier layer is provided between the photoconductive layer 3 and the support 2 to prevent O carrier from being injected into the support 2 during the electrostatic image forming 0*0 charging process. is more preferable.

この様な支持体2側からのキャリアーの注入を阻止する
働きのある障壁層を形成する材料としては、選択される
支持体の種類及び形成される光導電層の電気的特性に応
じて適宜選択されて適轟なものが使用される。その様な
障壁層形成材料としては、例えば、ムhos、 810
.8102 等縁性化合物、An、 Ir、 pt、 
ph、 Pdl Moflの金属である。
The material for forming the barrier layer that functions to prevent injection of carriers from the side of the support 2 may be selected as appropriate depending on the type of support selected and the electrical characteristics of the photoconductive layer to be formed. The appropriate one is used. Such barrier layer forming materials include, for example, Muhos, 810
.. 8102 Isorelated compounds, An, Ir, pt,
ph, Pdl Mofl metal.

支持体2としては、導電性でも電気絶縁性であって4良
い。導電性支持体としては、例えd、ステンレス、ム/
ecrsMe*ムme Ire Nb* T@l VI
 TLPt、Pd等の金属又はこれ勢の合金が挙げられ
る。
The support 2 may be either electrically conductive or electrically insulating. Examples of the conductive support include d, stainless steel, and mu/
ecrsMe*Mume Ire Nb* T@l VI
Examples include metals such as TLPt and Pd, and alloys thereof.

リアセテート、ポリプロピレン、ポリ塩化ビニル、ポリ
塩化ビニリデン、ポリスチレン、ポリアミド等の合成樹
脂のフィルム又はシート、ガラス、セラミック、紙等が
通常使用され−る。これ等の電気絶縁性支持体社、好適
KFI少なくともその一方の表・面を導電処理されるの
が望ましい。
Films or sheets of synthetic resins such as lyacetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, glass, ceramics, paper, etc. are commonly used. It is desirable that at least one surface of these electrically insulating supports is subjected to a conductive treatment using a suitable KFI.

例えば、ガラスであれば、In1O= * 81101
等でその表面が導電処理され、或いはポリニステルルt
等の金属で真空蒸着、電子ビーム蒸着、スパッタリング
等で処理し、又は前記金属でう建ネート処理して、その
表面が導電処理される。支持体の形状としては、円筒状
、ベルト状、板状等、任意の形状とし得、所望によって
、その形状は決定されるが、連続高速複写の場合には、
無端ベルト状又は円筒状とするのが望ましい。
For example, if it is glass, In1O= * 81101
The surface is conductive treated with polyester, etc., or polyester
The surface is conductively treated by vacuum evaporation, electron beam evaporation, sputtering, etc., or by embedding treatment with the metal. The shape of the support may be any shape such as cylindrical, belt, plate, etc., and the shape is determined as desired; however, in the case of continuous high-speed copying,
It is desirable to have an endless belt shape or a cylindrical shape.

支持体の厚さは、所望通抄の像形成部材が形成される様
に適宜決定されるが、像形成部材として可撓性が要求さ
れる場合には、支、神体として特休の製造上及び堆扱い
上、機械的強度勢の点から、通常は10s以上とされる
。第2図忙示−され本電子写真用侭形成部材4は、支持
体5、光導電層6から構成され、光導電層6は像形成面
となる自由表面を有し、電層6中には空乏層1が形成さ
れている。
The thickness of the support is appropriately determined so that an image forming member of the desired shape can be formed, but if flexibility is required for the image forming member, it may be necessary to From the viewpoint of mechanical strength and handling of compost, it is usually set to 10 seconds or more. The image forming member 4 for electrophotography shown in FIG. 2 is composed of a support 5 and a photoconductive layer 6. A depletion layer 1 is formed.

光導電層6中に空乏層7を設けるKは、光導電層6を、
前記のタイプOa−半導体の中の少なくとm=種類を選
択し、異なるタイプのものが接合される状態として層形
成する事によって成される。
K, which provides the depletion layer 7 in the photoconductive layer 6, makes the photoconductive layer 6
This is accomplished by selecting at least m types of the type Oa-semiconductors described above and forming layers in a state where different types are bonded.

即ち、空乏層7は、例えば、所望に従った表面特性を有
する支持体5上に、先ず、Illのa−半導体層を所定
の層厚で形成し、次いで該i III a−半導体層上
vcpmのa−半導体層を形成するととによって1!1
1−半導体層とpIla−半導体層との接合部として形
成される(以後、空乏層7に関して支持体s側の1−半
導体層を内部層8、自由表面側のa−半導体層を外部層
9と称する)。詰峠、空乏層7は、異なるタイプのa−
半導体層が接合される様に、光導電層6を形成した場合
K、内部a−半導体層と外部a−半導体層との境界遷移
領域に形成される。
That is, the depletion layer 7 is formed, for example, by first forming an Ill a-semiconductor layer with a predetermined thickness on the support 5 having desired surface characteristics, and then forming a vcpm layer on the iIII a-semiconductor layer. 1!1 by forming the a-semiconductor layer of
Formed as a junction between the 1-semiconductor layer and the pIla-semiconductor layer (hereinafter, the 1-semiconductor layer on the side of the support s with respect to the depletion layer 7 will be referred to as the inner layer 8, and the a-semiconductor layer on the free surface side will be referred to as the outer layer 9. ). The depletion layer 7 is a different type of a-
When the photoconductive layer 6 is formed so that the semiconductor layers are bonded, it is formed in the boundary transition region between the inner a-semiconductor layer and the outer a-semiconductor layer.

空乏層7は、電子写真用像形成部材に静電像を形成する
プロセス中の一工程である電磁波照射工程の際に1照射
される電磁波を吸収して移動可能なキャリアーを生成す
る層としての機能を有する。又、空乏層7は、定常状態
では、フリーキャリアーの枯渇した状態となっているの
で所謂真性半導体としての挙動を示す。
The depletion layer 7 is a layer that absorbs electromagnetic waves irradiated during an electromagnetic wave irradiation step, which is a step in the process of forming an electrostatic image on an electrophotographic image forming member, and generates mobile carriers. Has a function. Furthermore, in a steady state, the depletion layer 7 is depleted of free carriers, so it behaves as a so-called intrinsic semiconductor.

第1図及び第2図に示される像形成部材は、光導電層が
自由表面を有する構成のものであるが、光導電層表面上
には従来のある種の電子写真用像形成部材の様に、所謂
保護層や電気的絶縁層等の表面被覆層を設けてもよい。
The imaging member shown in FIGS. 1 and 2 has a photoconductive layer having a free surface, but there is a surface on the surface of the photoconductive layer similar to that of certain conventional electrophotographic imaging members. Additionally, a surface coating layer such as a so-called protective layer or an electrically insulating layer may be provided.

その様な表面被覆層を有する像形成部材が第3図に示さ
れる。
An imaging member having such a surface coating layer is shown in FIG.

第3図に示される像形成部材10は、支持体11と光導
電層12と光導電層12上に自由表面を有す表面被覆層
13を有する点以外は、構成上に於いて、第1図に示さ
れる像形成部材1と本質的に異なりものではない。丙午
ら表面被覆層1゜3に要求される特性は、適用する電子
写真プロセスによって各々異なる。即ち、例えば、特公
昭42−23910号公報同43−24748号会報に
記載されているNP方式の様な電子写真プロセスを適用
するのであれば、表面被覆層13は、電気的絶縁性であ
って、帯電処理を受は九llO静電荷保持能が充分あっ
て、ある程度以上の厚みがあゐことが要求されるが、例
えば、カールソンプリセスの如き電子写真プ四セスを適
用するのであれば、静電像形成後の明部の電位は非常に
小さいことが望ましいので表面被覆層13の厚さとして
は非常に薄いことが要求される。表面被覆層13は、そ
の所望される電気的特性を満足する(DK加えて、光導
電層12に化学的・物理的に悪影畳を与えないこと、先
導電層12との電気的接触性及び接着性、更には耐湿性
、耐摩耗性、クリーング性等を考慮して形成される。
The imaging member 10 shown in FIG. It is not essentially different from the imaging member 1 shown in the figures. The characteristics required for the surface coating layer 1.3 differ depending on the electrophotographic process to which it is applied. That is, for example, if an electrophotographic process such as the NP method described in Japanese Patent Publication No. 42-23910 and Publication No. 43-24748 is applied, the surface coating layer 13 should be electrically insulating. The material that undergoes the charging process is required to have sufficient electrostatic charge retention ability and to be thicker than a certain level. For example, if an electrophotographic process such as a Carlson process is used, Since it is desirable that the potential of the bright area after electrostatic image formation is very small, the thickness of the surface coating layer 13 is required to be very thin. The surface coating layer 13 satisfies the desired electrical properties (DK, in addition, does not give a chemically or physically adverse effect on the photoconductive layer 12, and has good electrical contact with the leading conductive layer 12). It is formed in consideration of adhesion, moisture resistance, abrasion resistance, cleanability, etc.

表面被覆層13の形成材料として有効に使用されるもの
として、その代表的なのは、ポリエチレンテレフタレー
ト、ポリカーボネート、ポリプロピレン、ポリ塩化ビニ
ル、ポリ塩化ビニリチン、ポリビニルアルコール、ポリ
スチレン、ポリアミド、ポリ四弗化エチレン、ポリ三弗
化塩化エチレン、ポリ弗化ビニル、ポリ弗化ビニリデン
、六弗化プロピレン−四弗化エチレンツボリマー、三弗
化エチレン−弗化ビニリデン−ポリマー、ボリブデン、
ポリビニルブチラール、ポリウレタン等の合成樹脂、ジ
アセテート、トリアセテート等のセルロース誘導体等が
挙げられる。これ等の合成樹脂又はセルロース誘導体は
、フィルム状とされて光導電層12上に貼合されても良
く、又、それ等の、塗布液を形成して、光導電層12上
に塗布し、層形成しても良い。
Typical materials effectively used for forming the surface coating layer 13 include polyethylene terephthalate, polycarbonate, polypropylene, polyvinyl chloride, polyvinylitine chloride, polyvinyl alcohol, polystyrene, polyamide, polytetrafluoroethylene, and polyethylene terephthalate. Ethylene trifluoride chloride, polyvinyl fluoride, polyvinylidene fluoride, propylene hexafluoride-ethylene tetrafluoride polymer, ethylene trifluoride-vinylidene fluoride-polymer, bolybdenum,
Examples include synthetic resins such as polyvinyl butyral and polyurethane, and cellulose derivatives such as diacetate and triacetate. These synthetic resins or cellulose derivatives may be made into a film and laminated onto the photoconductive layer 12, or a coating liquid thereof may be formed and applied onto the photoconductive layer 12, A layer may be formed.

表面被覆層13の層厚は、所望される特性に応じて、又
、使用される材質によって適宜決定されるが、通常の場
合、0.5〜70μ程度とされる。殊K11li禎覆層
13が先述した保護層としての機能が要求される場合に
は、轡常の場合、10s以下とされ、逆に電気的絶縁層
としての機能が要求される場合には、通常の場合lOμ
以上とされる。丙午ら、この保一層と電気絶縁層とを差
別する層厚値は、使用材料及び適用され為電子写真ブー
セス、設計される像形成部材の構造によって、変動する
もので、先の1oμとiう値は絶対的なものではない。
The layer thickness of the surface coating layer 13 is appropriately determined depending on the desired characteristics and the material used, but is usually about 0.5 to 70 μm. In particular, when the K11li cover layer 13 is required to function as the above-mentioned protective layer, it is usually 10 seconds or less, and conversely, when it is required to function as an electrical insulating layer, it is usually If lOμ
This is considered to be the above. The layer thickness value that distinguishes between the protective layer and the electrically insulating layer varies depending on the materials used, the applied electrophotographic process, and the structure of the image forming member designed. Values are not absolute.

又、この表面被覆層13は、先に述べた如き反射防止層
としての役目も荷わせれば、その機能が一層拡大されて
効果的となる。
Furthermore, if this surface coating layer 13 is also given the role of an antireflection layer as described above, its function will be further expanded and it will become more effective.

く実施#11〉 完全にシールドされたクリーンルーム中帆装置されえ1
14図に示す装置を用い、以下の細動操作によって電子
写真用像形成II#を作馬しえ。
Implementation #11〉 Completely shielded clean room with sail equipment 1
Using the apparatus shown in Figure 14, create an electrophotographic image forming II# by the following fibrillation operation.

表面が清浄にされえQl■犀墨−xOアルζニウム板(
基板)11を、支持台14上に静置されえグリ−放電蒸
着11&内の所定位置にiる同足部材18にWi同に一
定しえ。基板五1は、固定部材18内の加熱し−jll
−19によって±@、5℃osIIlllで加温される
。温度は、熱電対(アルメル−カミタル)によって基板
裏面を直1i!淘定されるように2Il:iiれた。次
いで系内0食パルプが閉じられていることを確認してか
らメインパルプ22を全開して、@15内が排気1れ、
約5 X 10 ’torrの真空度にしえ。そのli
ヒーター19の入力電圧を上昇させ、アh<=tiム基
板温度を検知しながら入力電圧を変化さ破、400Cの
一定値になるまで安定させえ。
Ql Rhinoceros ink-xO aluminum ζ plate whose surface can be cleaned (
The substrate 11 is placed on the support stand 14 and is fixed to the same foot member 18 which is placed in a predetermined position within the green discharge deposition 11. The substrate 51 is heated within the fixing member 18.
-19±@, warmed at 5°C osIIll. The temperature is measured directly on the back side of the board using a thermocouple (Alumel-Camital)! 2Il:ii was selected to be eliminated. Next, after confirming that the 0 edible pulp in the system is closed, the main pulp 22 is fully opened, and the inside of @15 is exhausted.
The vacuum level should be approximately 5 x 10' torr. That li
Increase the input voltage of the heater 19, change the input voltage while detecting the substrate temperature, and stabilize it until it reaches a constant value of 400C.

そO後、補助パルプ24、ついで流出パルプ4JI 、
 4&及び流入パルプ!? 、 !II を全一し、7
0−メーターai、is内も十分脱気真空状態にされた
。補助パルプ24.パルプ43,45 。
After that, auxiliary pulp 24, then outflow pulp 4JI,
4&and inflow pulp! ? , ! Complete II, 7
The insides of the 0-meters ai and is were also sufficiently degassed and vacuumed. Auxiliary pulp24. Pulp 43, 45.

87.39を閉じた後、シランガス(純度$199・X
)ボンベssoパルプ4・を−け、輿口圧ゲージsbの
圧を1〜/−に調整し、緯入パルプ31を徐々に細けて
フμm・メーpsx内ヘシランガスtm人させえ。引き
つづいて、#l出パルプ4a會徐々に關け、′)−で補
助パルプ24を徐々Kl!!1け、ビラニーゲージ2a
O@みを注視しながら補助パルプ24の開口を調整し、
槽内がI X I Q ”tortになhまで補助パル
プ24を關けた。槽内圧が安定してから、メインパルプ
22を徐々Kwiじビラニーゲージ230指示が0. 
I torr Kなるまで開口を絞つ九。内圧が安定す
る。t−確認し、続いてアンモニアガス(純1199.
999 N ) ホンへ27 OAhプ51t va 
* s出ロ圧ゲージ&70圧t1−/−に調整し、流入
パルプ39を徐々KMけ70−メ−INBIIC7ンモ
ニアガスを流入させえ後、tit出パルプ4it徐々に
−1、フーーメー*ai。
87. After closing 39, silane gas (purity $199・X
) Put the pulp 4 in the cylinder, adjust the pressure on the mouth pressure gauge sb to 1 to /-, and gradually thin the weft pulp 31 until it reaches 5 μm. Subsequently, gradually turn on the #l output pulp 4a, and gradually turn on the auxiliary pulp 24 with ')--! ! 1, Villany gauge 2a
Adjust the opening of the auxiliary pulp 24 while paying close attention to the
The auxiliary pulp 24 was turned on until the inside of the tank reached I
Close the aperture until I torr K. The internal pressure becomes stable. t-confirm, followed by ammonia gas (purity 1199.
999 N) Hon 27 OAhp 51t va
* Adjust the output pressure gauge & 70 pressure t1-/-, and gradually introduce the inflow pulp 39 KM 70-Me-INBIIC7 ammonia gas, then the output pulp 4It gradually -1, Fuu-me *ai.

読みが、シランガスの流量の!5lGK&る様Km出パ
ルプ45の開口を定め、安定化させ九〇高周波電源20
のスイッチをon状簡にして、@導コイル21に、5M
1−hの高周波電力を投入し。
The reading is the flow rate of silane gas! 5l GK & Rusama Km Determine the opening of the pulp 45 and stabilize it 90 High frequency power source 20
Turn on the switch and add 5M to @ conductive coil 21.
Turn on 1-h of high-frequency power.

槽内15のコイル内S(槽上s)Kグロー放電を発生さ
せ、30Wの入力電力とし九〇上条件で基板上ga−半
導体層を生長させ、10時間同条件を保ったvk、その
後、高周波電$120をoff状態とし、グ■−放電を
中止させた0引き続いて、加熱ヒーター19の電源をo
ffとし。
A glow discharge was generated in the coil S (s above the tank) in the tank 15, and a ga-semiconductor layer was grown on the substrate under 90 conditions with an input power of 30 W, and the same conditions were maintained for 10 hours. Turn off the high frequency electric current $120 and stop the discharge.Subsequently, turn off the power to the heating heater 19.
ff.

基板温度が100℃帆なるのを待ってから補助パルプ2
4.流出パルプ43.45を閉じメインパルプ22を全
一にして、槽内を1O1orr以下にしたuk、メイン
パルプ22を閉じ、槽ls内−1リークパルプ16によ
って大気圧として1−半導体層を形成した基板を取り出
した0この場合、形成されfta−半導体層の全厚は約
20μであった。
Wait for the substrate temperature to reach 100℃, then add auxiliary pulp 2.
4. The outflow pulp 43 and 45 were closed, and the main pulp 22 was made all the same, and the inside of the tank was made below 1O1 orr.The main pulp 22 was closed, and the inside of the tank LS was set to atmospheric pressure by the leak pulp 16, and a 1-semiconductor layer was formed. In this case, the total thickness of the fta-semiconductor layer formed was about 20 microns.

こうして得られた像形成部材を、帯電露光実験装置に設
置し、96KVで0.2 sec間コ闘す帯電を行−1
直ちに光像を照射した。光像は、タングステンクンノ光
II#It用い、五トは・acO光量を透過盤のテスト
チャートを通して照射されえ。
The image forming member thus obtained was placed in a charging exposure experimental device, and charged at 96 KV for 0.2 seconds.
A light image was immediately irradiated. The light image was irradiated using a tungsten light II #It, and the amount of acO light was irradiated through a test chart on a transmission plate.

七の−直ちに、Φ荷電性Om像剤(トナーとキャリアー
を含有)を像形成部材表面にカスケードすることによっ
て、部材表面上に良好なトナー画像′に倫九。部材上の
トナー画像を、+5KVのコロナ帯電で転写紙上に転写
し九所、解像力に優れ、階w4再現性のよi#明な^織
度のm像が得られ丸。
7 - Immediately create a good toner image on the surface of the imaging member by cascading a Φ chargeable Om imager (containing toner and carrier) onto the surface of the member. The toner image on the member was transferred onto a transfer paper using +5KV corona charging, and a clear image with excellent resolution and high reproducibility was obtained.

更に、同装置を同様に操作して、龜料ガスの混合比を変
化させた。一定のシランガス流量に対して7ンモ品アガ
スfILiIkを以下(t)値で変化させ、上達O*V
t膳光、m像の操作を同一条件で施すことによってそれ
ぞれQiiia1gItk比較しtF価した。
Furthermore, the same apparatus was operated in the same manner to change the mixing ratio of the additive gas. For a constant silane gas flow rate, change the 7mm product agus fILiIk at the following (t) value to improve O*V
The Qiiiia1gItk values were compared and the tF values were determined by performing t-photo and m-image operations under the same conditions.

その結果t−表1に示した。The results are shown in Table 1.

表  1 tff14基阜:◎・・・優 Q・・・爽 Δ・・・実
用上町 X・・・不司次に、7ンモニアガス流量比をシ
ランガス減量010Xに一定し、アルミニウム基板温置
會変化、させて同様の評価を行つ丸結釆1&!に示す。
Table 1 tff14 base: ◎...Excellent Q...Refreshing Δ...Practical town Let's do the same evaluation Maruyukan 1 &! Shown below.

タ 2 評価基準は表1と同じ 表2中00内は、窒素中400Ct)fib処1g1i
時間後の評価であり、低i&板温度でa−半導体層を形
成(、た像形成部材では、1処JIKよって鮮@度は改
善されえ。
2 Evaluation criteria are the same as Table 1.00 in Table 2 indicates 400Ct)fib treatment in nitrogen 1g1i
This is an evaluation after hours, and in an image forming member in which an a-semiconductor layer is formed at a low temperature and plate temperature, the sharpness can be improved by JIK.

く実施Ml> 完全にシールドされたタリーンルーム中に設置され九1
14図に示す装置を用い、以−下の如き操作によって電
子写真用像形成部材を作製した。
Implementation Ml> Installed in a completely shielded talen room 91
Using the apparatus shown in FIG. 14, an electrophotographic image forming member was produced by the following operations.

表面が清浄にされたQ、2霞厚551にのアル電ニウム
板(基板)iyts支持台14上に静置されたグロー放
電蒸着槽15内の所定位置に&ゐ固定部材18に1固に
固定した。基板17は、固定部#五8内の加熱ヒーター
111によって±0.5℃の精度で加温される。温度は
、熱電対(プルメルーカロメル)によって基板裏面を直
接一定されるようになされた。次いで系内の全バルブが
閉じられていることを確認してからメインパルプ22を
全開して、檜15内が排気され、約5 X 10−@t
orrの真空度にした。その後ヒーター19(2)入力
電圧を上昇させ、アルにラム基板温度を検知しながら入
力電圧を変化させ、400Cの一定値Kするまで安定さ
せた。
Q, whose surface has been cleaned, is placed in a predetermined position in the glow discharge deposition tank 15 placed on the support stand 14 & fixed to the fixing member 18. Fixed. The substrate 17 is heated with an accuracy of ±0.5° C. by the heater 111 in the fixed part #58. The temperature was kept constant directly on the backside of the substrate by a thermocouple (Plumeruc Calomel). Next, after confirming that all the valves in the system are closed, the main pulp 22 is fully opened, and the inside of the cypress 15 is evacuated.
The vacuum level was set to orr. Thereafter, the input voltage to the heater 19 (2) was increased, and while the temperature of the ram substrate was being detected by Al, the input voltage was varied until it reached a constant value K of 400C.

その後、補助パルプ841Cついで流出パルプ48.4
6及び流入イ(ルブ37,4Gを金−し、70−メータ
ー31.34内も十分朧気真!I!状態にされ丸。補助
パルプ24、)(ルブ4s。
After that, the auxiliary pulp 841C and the outflow pulp 48.4
6 and inflow A (Lube 37, 4G is turned on, 70-meter 31.34 is also in a state of hazy state. Auxiliary pulp 24,) (Lube 4s.

46.37.40を閉じた後、シランガス(純度9L9
99N)ボンベ25のノ<にブ4Iを−け、出口圧ゲー
ジ55の圧をlkl/−に調整し、流入パルプ37を徐
々に開けて70−メーIs1内ヘシ2ンガスを流入させ
た。引きつづiて、流出パルプ43を徐々に開け、つい
で補Hhl’ルプ24を徐々に開け、ビラニーゲージ2
80@みt注視しながら補助パルプ24(D開口を調整
し、槽内がI X 1 G−”torr flc tk
るまで補助)(ルブ24を―け九、槽内圧が安定してか
ら、メインパルプ21!を徐々に閉じビラニーゲージ!
IIの指示が0.5 torrになる壕で開口を絞った
。内圧が安定するのを確認し、°続いて二酸化炭素ガス
(純度99.999N)ボンベ280バルブs3を開き
、出口圧ゲージ58の圧を1〜/−に調整し、流入パル
プ40t−徐々に開はフローメ−714に二酸化炭素を
流入させ**、#l出I(kプ4・を徐々に闘け、7a
−ノー1840m拳が、シランガス“oIILtoo、
ixになる橡に流出バルブ46Ol1口を定め、安定化
させえ、高周絨電11200スイッチを・1状■にして
、−導コイル!tに、S臆ムの高周波電力を投入し、槽
内lioコイル内部(槽上部)Kグ四−放電を発生させ
、@0VIt)入力電力としえ、上条外で基板上にa−
半導体層を生長させ、s時間開条件1保つに@、そO後
、高ji1m電1[2I t *tt状態とし、グー−
放電を中止させえ。引自統−で、加熱ヒーターsee電
榔をoffとし、基板温11が10・℃になるOを待っ
てから補助パルプ24、臨出パ廣プ48,46を閉じ、
メインパルプ2!!を全一にして、槽内を10”−”t
orr以下にした後、メインパルプ3怠を閉じ一1s内
をリータパルプ16によって大気圧としてa−苧導体l
IAの形成され九基1[を坂〕iした。この場合、形成
されえa−半導体層の全厚は約IJIμであった。
After closing 46.37.40, silane gas (purity 9L9
99N) A valve 4I was placed in the nook of the cylinder 25, the pressure of the outlet pressure gauge 55 was adjusted to lkl/-, and the inflow pulp 37 was gradually opened to allow 70 meters of heshin gas to flow in. Successively, gradually open the outflow pulp 43, then gradually open the auxiliary Hhl' loop 24, and open the Villany gauge 2.
80 @ Adjust the auxiliary pulp 24 (D opening) while watching carefully so that the inside of the tank is I
(auxiliary until the lubricant 24 is turned on, and the pressure inside the tank is stabilized, then gradually close the main pulp 21!) and the Villany gauge!
The opening was narrowed down in the trench where II indicated 0.5 torr. Confirm that the internal pressure is stabilized, then open the carbon dioxide gas (purity 99.999N) cylinder 280 valve s3, adjust the pressure of the outlet pressure gauge 58 to 1 to /-, and gradually open the inflow pulp 40t. Let carbon dioxide flow into Flowme-714**, #l output I (k gradually fight 4・, 7a
- No 1840m fist, Silangus “oIILtoo,”
Set the outflow valve 46Ol 1 port on the ix hole, stabilize it, set the high frequency carpet 11200 switch to ・1 state ■, - conductive coil! At t, the high-frequency power of Schim is input, and a discharge is generated inside the IO coil in the tank (at the top of the tank), which is taken as the input power, and a-
Grow the semiconductor layer and keep the open condition 1 for s time.
Stop the discharge. Turn off the heating heater and wait for the substrate temperature 11 to reach 10°C, then close the auxiliary pulp 24 and the output pulps 48 and 46.
Main pulp 2! ! 10"-"t inside the tank.
After reducing the pressure to below orr, the main pulp 3 is closed and the inside of the chamber is set to atmospheric pressure by the Rita pulp 16, and the a-conductor l
IA was formed and nine groups were formed. In this case, the total thickness of the a-semiconductor layer that could be formed was approximately IJIμ.

こうして得られ丸像形成部材を、帯電露光実験装置Kl
l置し、(d@KVで0.2蹴関コロナ帯電を行い、直
ちに光像を照射した。光像は、タンれた。
The round image forming member thus obtained was transferred to the charging exposure experimental apparatus Kl.
1, then 0.2 Koseki corona charging was performed using (d@KV), and a light image was immediately irradiated. The light image turned tan.

その後直ちに、e荷電性のm像剤(トナーとキャリアー
を含有)を像形成部@懺閣にカスケードすることによっ
て、像形成Il#表面上に良好なトナーiki像を得た
。像形成部材上のトナー画像を、+5KVのコロナ帯電
で転写紙上に転写した所、解健力に優れ、階調PIiI
A性のよ一鮮一な′A1111度の画像が得られた。
Immediately thereafter, a good toner iki image was obtained on the imaging Il# surface by cascading the e-chargeable m imager (containing toner and carrier) into the imaging station @Kokaku. When the toner image on the image forming member was transferred onto transfer paper using +5KV corona charging, it had excellent resolution and a gradation of PIiI.
A very clear image of A1111 degrees was obtained.

く実施鍔3〉 完全にシールドされたクリーンルーム中KI装置された
第4図に示す装置を用い、以下の如き操作によって電子
写真用像形成部材を作属しえ。
Implementation 3> Using the apparatus shown in FIG. 4 equipped with KI equipment in a completely shielded clean room, attach an electrophotographic image forming member by the following operations.

表面が清浄にされた0、 2−厚5鋼XOアルンニウム
板(基板)17t、支持台14上に静置され九グロー放
電蒸着楢Is内の所定位置に番る゛固定部材18&C鉦
固に同定しえ。基板11は、一定部#18内0.11E
I熱ヒーター19によって±0.61CC)9度で加温
される。温IE紘、1電対(アルメル−カロメル)によ
って!IEa画を直IIIkm定されるよ5に&され丸
。次−で系内O全パルプが閉じられてiることを確認し
てからメインバルブs雪を全一して、横1s内が排気さ
れ、約8 X 10−’torr O真空計にし丸。そ
の後ヒーター1940入力端子を上昇させ、フルきニウ
ム基板titを検知しながら入力電圧を変化させ、as
ocの一定値になるまで安定させえ。
17 tons of surface-cleaned 0, 2-5 steel Shie. The board 11 is 0.11E in the fixed part #18.
It is heated at 9 degrees (±0.61 CC) by the I-thermal heater 19. By Wen IE Hiro, 1 Electron (Alumel-Calomel)! The IEa picture is set to 5 & is rounded. Next, after confirming that all the pulp in the system is closed, the main valve is completely closed, and the side is evacuated to about 8 x 10 torr with an O vacuum gauge. After that, the input terminal of the heater 1940 is raised, and the input voltage is changed while detecting the fluorinium substrate tit.
Stabilize until oc reaches a constant value.

そp畿1袖助バルブ=4、ついで流出パルプ44.46
及び流入パルプ38.40を全開し、7a−メーター8
!、!i4丙も十分説気真空状sscされえ。補助A 
k 7’ 24、パhブ44,46v畠2,34を閉じ
先後、ゲルマンガス(純度119.99・X)ボンベ2
6のバhysoを−け、肯ロ圧ゲージsto圧i 1 
KLI/−に1葺し、流入パルプ3111を徐々に−け
て70−メータ3雪内へグルマンを臨入させ丸、引きつ
りiて、減員バルブ441徐々K11lけ、りi″e@
助パルプ24を徐々に開け、ビラニーゲージ28t)1
1111.拳を注視しながら補助パルプ24の開口を調
整し、槽内がI X 1 G−”torrになるまで補
助パルプ24を開は丸。槽内圧が安定してから、メイン
パルプ22を徐々に閉じ、ピラニーゲージ280指示が
0.5 torrになるまで開口を絞った。内圧が安定
するのを確認し、続いて二酸化炭素(M度99.99 
N )ボンベ28のパルプ5意を開自、ttso圧ケー
ジ580圧t111/jK111111EL、流入パル
プ40を徐々に開はフローメータ34に二酸化炭素を流
入させ九後、流出パルプ46を徐々に開け、フローメー
タ344D軌みが、ゲルマンガスの流量の10XK&る
様に流出パルプ4−6の開口を定め、安定化させえ。続
いて高周練電l120のスイッチをon状態にして、誘
導コイル21 K s 5 MHzO高周波電力を投入
し、槽内16のコイル内部(槽上部)にグロー放電を発
生させ、aOWの入力電力とした。上条外で基板上にa
−半導体層を生長させ、8時I4−条件を保り九俵、そ
の後、AJII11#L亀源got・ff状態とし、グ
ロー放電を中止させ丸。引1!i絖−て、加熱ヒーター
ISO電源をoffとし、基・板温度が10・℃になる
のを待ってから補助ノ(ルプ34、流山バルブ44.4
6を閉じ、メインノ(ルプ!雪を全一にして、槽15内
を10−ζorr以下にし先後、メインパルプ22を閉
じ槽IS) 内をリークパルプl・によって大気圧として基板を取)
出し丸。この場合、形成されたa−半導体層の全厚は約
lI#でありえ。
Sop Ki 1 Sodesuke valve = 4, then outflow pulp 44.46
and fully open the inflow pulp 38.40, 7a-meter 8
! ,! i4hei should also be given enough persuasion vacuum state ssc. Auxiliary A
k 7' 24, Pub 44, 46v After closing Hatake 2, 34, German gas (purity 119.99 x) cylinder 2
6, and check the positive pressure gauge sto pressure i 1
Apply 1 to KLI/-, gradually remove the inflow pulp 3111, and let the Gourmand enter the 70-meter 3 snow.
Gradually open the auxiliary pulp 24 and set the Birani gauge 28t) 1
1111. Adjust the opening of the auxiliary pulp 24 while watching the fist, and open the auxiliary pulp 24 in a circle until the inside of the tank reaches I , the opening was narrowed until the Pirani gauge 280 indicated 0.5 torr. After confirming that the internal pressure was stabilized, carbon dioxide (M degree 99.99
N) Open the pulp 5 of the cylinder 28, open the ttso pressure cage 580 pressure t111/jK111111EL, gradually open the inflow pulp 40, let carbon dioxide flow into the flow meter 34, and then gradually open the outflow pulp 46 to increase the flow rate. The meter 344D trajectory determines and stabilizes the opening of the outflow pulp 4-6 so that the flow rate of germane gas is 10XK. Next, turn on the switch of the high frequency electric power generator 120, apply 5 MHz high frequency power to the induction coil 21, generate a glow discharge inside the coil in the tank 16 (at the top of the tank), and change the input power of the aOW. did. A on the board outside of Kamijou
-Grow the semiconductor layer, maintain the 8 o'clock I4-condition for 9 layers, then set the AJII11#L to ff state and stop the glow discharge. Draw 1! Then, turn off the heating heater ISO power, wait until the board/board temperature reaches 10°C, and then turn on the auxiliary valve (34, Nagareyama valve 44.4).
After that, close the main pulp 22 and bring the inside of the tank IS to atmospheric pressure with the leak pulp l, and remove the substrate).
Demaru. In this case, the total thickness of the a-semiconductor layer formed may be about lI#.

ζうして得られ九儂形成部材を、帯電露光実験装置に設
置し、θ4iKVで0.1sw間コロナ帯その後直ちに
、■荷電性の梳儂剤(トナーとキャリアーを含有)を部
材表mKカスケードすることによって、部材弐両上に良
軒なトナー画像を得た。部材上のトナー画像を、+5K
Vのコロナ帯電で転写紙上に転与した所、解像力に優れ
、N[4現性のよい鮮明な^澁度の画像が得られ丸。
The thus obtained nine-layer forming member is placed in a charging exposure experiment apparatus, and exposed to a corona zone for 0.1 sw at θ4iKV. Immediately thereafter, a chargeable combing agent (containing toner and carrier) is applied to the member surface mK cascade. As a result, a good toner image was obtained on both parts. Toner image on material +5K
When transferred onto a transfer paper using V corona charging, a clear image with excellent resolution and good developability was obtained.

く集施H4> 第5WJに示す装置を用iて、以下O#l11き操作に
よって電子写真用像形成部材を作製しえ。
Collection H4> Using the apparatus shown in the 5th WJ, produce an electrophotographic image forming member by the following operations.

表面が清浄された0、2霞厚1・XIQawOアルミニ
ウム板を基板として、スI(ツメリング蒸着機61内O
加熱ヒーター64と電熱対を内蔵し九同定部材6s上に
固定され丸。基板63と対向しえ電極6・上には、多結
晶シリーン板(純11HIQ9111N)ターゲット6
sが基板63と平行に約4Km離されて対向するように
固定されえ。
Using a surface-cleaned 0.2 haze thickness 1.XIQawO aluminum plate as a substrate,
It has a built-in heater 64 and an electric thermocouple, and is fixed on the nine identification member 6s. A polycrystalline silicon plate (pure 11HIQ9111N) target 6 is placed on the electrode 6 facing the substrate 63.
s may be fixed parallel to the substrate 63 and facing each other at a distance of about 4 km.

1161内ti、メインノ(ルプ・1を全一して一旦5
×10−嘗torr Q度まで真!gKされ、(このと
自、系O全バルブは閉じらnている)、補助バルブ71
および流出パルプ87.88.81が開もかれ十分1に
脱気された後、流出パルプ87.88.$9と補助パル
プ71が閉じられえ。
1161, ti, main no.
×10-1torr True to Q degree! (At this point, all system O valves are closed), and the auxiliary valve 71 is closed.
and after the effluent pulp 87.88.81 is opened and degassed to 100%, the effluent pulp 87.88. $9 and auxiliary pulp 71 should be closed.

基板・2は、加熱ヒーター電源が入力され、5eecに
保たし丸。(Lテ水* (711度99.991191
 % >ボンベ180パルプ1sを−け、出口圧力針7
秘によって1−/−に出口圧を調整しえ。続いて一滝人
パルプS1を徐々に鴎いて、フローメーI・4内に水嵩
ガスを流入させ、続いて、fIL出バルブ・1を徐々に
NI!更に、補助バルブ71を−いた。
The heater power is input to board 2, and it is maintained at 5eec. (L te water * (711 degrees 99.991191
% > Pour 1 s of 180 pulp into the cylinder, and press the outlet pressure needle 7.
Adjust the outlet pressure to 1-/- by secret. Next, Ichitakijin Pulp S1 is gradually released, water bulk gas is allowed to flow into Flowme I-4, and then fIL outlet valve-1 is gradually turned to NI! Furthermore, an auxiliary valve 71 was provided.

41@10内圧を、圧力計68で検知しながらamパル
プs’tvtws*シて!a X 10−’torrま
で流入さ−を九。引き続きアルゴン(純度99.999
Q俤)カスボンベ730パルプ76を開け、出口圧力針
ysoaみが1(/−になる様に調整され先後、流入パ
ルプ8意が開けられ、続いて流出パルプS・が徐々に開
けられ、アルゴンガスな槽内&C*入させた。槽内圧計
680指示が5x1o−’$orrに亀るまで、流出パ
ルプ88が徐々に開けられ、との状態で流量が安定して
から、メインパルプ61が徐々K11lじられ、槽内圧
がI X 10−”1orr Klkるまで開口が絞ら
れ九。続いて、二酸化窒素ガス(M度INL1111%
)ボンベ74のパルプ77をNき、出口圧ゲージ5et
−を麺/−に調整し流入パルプ83tEき、徐々に流出
パルプ89を開はフローメータ86O読みから、水嵩ガ
スの7o−メータ84()示す流量oIIJsue減量
で流入されるようl1cl出パルプ89を調整した。フ
ローメータ84.85.86が安定すゐOを確認してか
ら、高周波電源70を・−状態にし、!−ゲット65お
よび固定部材6s間に13.56MH* 、500W、
1.6KVO交流電力が入力された。この条件で安定し
九放電を続ける機にマツチングを取シながら層を形成し
え、ζO様にして8時間放電を続は層を形成し友、高周
波電源70をoff状態とし、加熱ヒーター640電源
もoff状態とした。基板温度がlO・℃以下になるの
を待って、流出バルブボッ、易易。
41@10 While detecting the internal pressure with the pressure gauge 68, am pulp s'tvtws*! a x 10-'torr flow up to 9. Continue with argon (purity 99.999
Q 俤) Open the waste cylinder 730 pulp 76, adjust the outlet pressure needle ysoa to 1 (/-), then open the inflow pulp 8, then gradually open the outflow pulp S, and argon gas The outflow pulp 88 was gradually opened until the tank pressure gauge 680 indicated 5x1o-'$orr, and after the flow rate became stable, the main pulp 61 was gradually opened. The aperture is narrowed until the internal pressure of the tank reaches I
) Nerve the pulp 77 in the cylinder 74 and check the outlet pressure gauge 5et.
Adjust the inflow pulp 83tE to noodle/- and gradually open the outflow pulp 89. From the flow meter 86O reading, the water volume gas 7O-meter 84 () indicates the flow rate oIIJsue decrease and the l1cl outflow pulp 89 is opened. It was adjusted. After confirming that the flow meters 84, 85, and 86 are stable, turn the high frequency power supply 70 into the - state, and! - 13.56MH*, 500W between the get 65 and the fixed member 6s,
1.6KVO AC power was input. Under these conditions, a layer can be formed while maintaining stable discharge for 9 hours, and a layer can be formed while discharging in the ζO manner for 8 hours.Then, the high frequency power source 70 is turned off, and the heating heater 640 is powered on. was also turned off. Wait for the substrate temperature to drop below 10°C, then open the outflow valve.

89を閉じ、11111ハル7’71tffiじ−kl
l、メインバルブ67を全開して槽内Oガスを#L%/
にえ。
Close 89, 11111 hull 7'71tffiji-kl
l, Fully open the main valve 67 and reduce the O gas in the tank to #L%/
Nie.

その後メインパルプ67を閉じてリークパルプ69を開
−て大気圧にリークしてからa−半導体層O形成され九
基板を3131出しえ。
Thereafter, the main pulp 67 is closed and the leak pulp 69 is opened to leak to atmospheric pressure, and then the a-semiconductor layer O is formed and the nine substrates 3131 are taken out.

ζO場場合形成されえa−半導体層の厚1紘、18#で
あつえ。
The ζO field can be formed with a semiconductor layer thickness of 1 mm and 18#.

ζうして得られ丸像廖成11材を、実施鍔1と同様に試
験した所、e41KVO=smす帯電e荷電性m像剤の
lIiみ舎せO場合に、解像力、階調性、画像@嵐とも
にすぐれ良画像が得られ良。
ζ When the thus obtained round image 11 material was tested in the same manner as in Experimental Tsuba 1, it was found that the resolution, gradation, and image quality were @I was able to get excellent images with both Arashi.

く実IIAIFl&> 第5WjAに示す装置を用iて、以下の如き操作によっ
て電子写真用像形成部材を作製した。
An electrophotographic image forming member was prepared using the apparatus shown in No. 5WjA and the following operations.

表面が清浄され丸&2■厚10XI@agoアルイエウ
ム板を基板として、スパッタリング蒸着槽61内O加熱
ヒーター64と電熱対を内蔵しえ固定ii&i#t63
上に固定された。基板I83と対向し九電&6・上には
、シリコン11車(!11度(#1[*e。99.、)
2重量部を充夛混合し先後、ホットプレスしえターゲッ
トm5−is基板68と平行に約41et:m離されて
対内するように固定され丸。
The surface is cleaned and a round & 2 inch thick 10XI@ago aluminum plate is used as a substrate, and an O heating heater 64 and an electric thermocouple are built in and fixed in the sputtering vapor deposition tank 61.
Fixed on top. Opposite the board I83, on top of Kyuden &6, there is a silicon 11 wheel (!11 degrees (#1 [*e.99.,)
2 parts by weight were mixed together and then hot pressed and fixed in parallel with the target m5-is substrate 68 at a distance of about 41 et:m and inwardly into a circle.

槽4Il内は、メインパルプ67を全開して一旦!I 
X 1 G ’t・rr揚度まで真空にされ、(ζOと
き、系の全パルプは閉じられてvhh)、補助パルプ7
1j?よび流出パルプ87.8111が―もかれ十分に
脱気され先後、流出パルプsy、msと補助パルプ71
が閉じられた。
Once inside the tank 4Il, the main pulp 67 is fully opened! I
The vacuum is evacuated to a lift of
1j? After the outflow pulp 87.8111 is thoroughly degassed, the outflow pulp sy, ms and the auxiliary pulp 71
was closed.

基板62は、加熱ヒーター電源が入力され、200 C
Wc保えれえ。そして水素(純度99.99995 j
l)ボンベ12のパルプ7sを−け、出口圧力針711
によって1〜/−に出口圧をwI41Iシ丸、統いて、
流入パルプ81を徐々に開いて、70−メ−784内に
水嵩ガスを流入させ、絖iて、流出パルプ81を徐々に
開き更に、補助パルプ71tjJ!いた。
The substrate 62 is heated to 200 C by inputting the heating heater power.
Wc keep it. and hydrogen (purity 99.99995 j
l) Pour the pulp 7s from the cylinder 12 and press the outlet pressure needle 711.
Set the outlet pressure to 1~/- by wI41I,
The inflow pulp 81 is gradually opened to allow water bulk gas to flow into the 70-me-784, and then the outflow pulp 81 is gradually opened and the auxiliary pulp 71tjJ! there was.

槽6五の内圧を、圧力針611で検知しながら流出パル
プ87を調整して5 X I F”torrまで流入さ
せえ。引@ il @ 7 s−コン(#1lIl!9
11.9111Hjl )ガスポンベ7sのバーブ76
を開け、出口圧力針79の読みが1細/−になる橡K1
1lill葺され九俵、流入パルプ82が開けられ、統
一て#11!出パルプ88が徐々に開けられ、アルゴン
ガスを1内に流入させえ。傭内圧針67の指示が5 X
 10−’torrになるまで、f11mパルプ88が
徐々に開けられ、ζO状態で流量が安定してから、メイ
ンパルプ61が徐々に閉じられ、槽内圧がIXI@=t
@rt Kな為まで開口が絞られた。ガス流量及び槽内
圧が安定するのを確認してから、高周波電源7・會・n
状liKシ、ターゲット@sおよび固定lji材6材間
3間 L i @ 胤s e 6oow −i、6 K
 Vの交流電力が入力されえ。この条件で安定した放電
を続ける様にマツチングを取シなから層を形成した。こ
の様にして10時間放電を続は層を形成しえ、Oち、高
周波電源7・をoff状態とし、加熱艦−タ−64の電
源もoff状態としえ。基板温度が100C以下になる
のを待って、#l出バルブ87.88を閉じ、補助パル
プ71を閉じ九俵、メインパルプ61を全開して槽内の
ガスを抜%A丸。その後メインパルプ67を閉じてリー
クパルプ6914いて大気圧にリークしてからa−半導
体層の形成された基板を取シ出し丸。
While detecting the internal pressure of the tank 65 with the pressure needle 611, adjust the outflow pulp 87 to allow it to flow in to 5 X I F"torr.
11.9111Hjl) Barb 76 of gas pump 7s
Open the hole K1 and the reading of the outlet pressure needle 79 becomes 1 fine/-.
1lill was covered, 9 bales were opened, 82 inflow pulps were opened, and unified #11! The outlet pulp 88 is gradually opened to allow argon gas to flow into it. The indication of the internal pressure needle 67 is 5
The f11m pulp 88 is gradually opened until the pressure reaches 10-'torr, and after the flow rate is stabilized in the ζO state, the main pulp 61 is gradually closed, and the tank internal pressure becomes IXI@=t.
@rt The aperture was narrowed down to K. After confirming that the gas flow rate and tank internal pressure are stable, turn on the high frequency power supply 7.
Condition liK shi, target @ s and fixed lji material 6 materials 3 intervals Li @ seed 6oow -i, 6 K
AC power of V may be input. A layer was formed without matching so that stable discharge could continue under these conditions. After 10 hours of discharge in this manner, a layer is formed, and then the high frequency power source 7 is turned off, and the power source of the heating tank 64 is also turned off. Wait for the substrate temperature to drop below 100C, close the #l outlet valves 87 and 88, close the auxiliary pulp 71 for 9 bales, and fully open the main pulp 61 to evacuate the gas in the tank. Thereafter, the main pulp 67 is closed and the leak pulp 6914 is leaked to atmospheric pressure, and then the substrate on which the semiconductor layer has been formed is taken out.

この場合、形成され丸亀−半導体層0S−a紘、20μ
で6つ九。
In this case, the formed Marugame-semiconductor layer 0S-a Hiro, 20μ
So six nine.

こうして得られ九像形成部材を、実施′阿1と同様に試
験した所、66KVのコロナ帯電e荷電性現像剤の組み
合せの場合に、解像力、階調性、画像濃度ともにすぐれ
九−像が得られえ。
The thus obtained image-forming member was tested in the same manner as in Example 1, and it was found that in the case of a combination of a 66 KV corona-chargeable developer, an image with excellent resolution, gradation, and image density was obtained. It's rare.

〈実施病6〉 基板として0.2■厚!*Ximのモリブテン基板を清
浄にした後、実施Mlと同様に槽内に設置した。続いて
、実施N1と同様の操作によってグロー放電4115内
t s x i o−”torr o真空となし、基板
温度は400℃に保えれえ後S1に−H1と同様にシラ
ンガスとアンモニアガス(シラン流量の5〜)が流され
、槽内は0.8torrに―節された。この時、更にホ
スフィンガスが、シランガスの0.61Nとなるように
、本スフィンガスボンベ29からパルプssを通して、
IK#/−のガス圧(出ロ圧カゲージs*ovit拳)
で流入パルプ41、流出バルブ41の調節によって7a
−/−fi3sO1lみから榴1iPiにシランガス及
びアンモニアガスと為合流入させ丸。
<Execution disease 6> 0.2■ thickness as a board! *After cleaning the molybdenum substrate of Xim, it was placed in a tank in the same manner as in the implementation M1. Subsequently, the inside of the glow discharge 4115 is made into a vacuum by the same operation as in execution N1, and the substrate temperature is maintained at 400°C. After that, silane gas and ammonia gas (silane A flow rate of 5 ~) was flowed, and the inside of the tank was set at 0.8 torr.At this time, phosphine gas was further passed through the pulp ss from the sphine gas cylinder 29 so that the silane gas was 0.61N.
IK#/- gas pressure (output pressure gauge s*ovit fist)
7a by adjusting the inflow pulp 41 and outflow valve 41.
-/- From fi3sO1l, silane gas and ammonia gas were combined to flow into 1iPi.

ガス流入卆安定し槽内圧が一定とな)、−板温度が40
0℃に安定してから、夾ti例五と同様KjIIIjI
flIL電源20を・n状態として、/a−放電を開始
させた。この条件で、6時間グロー放電を持続慣せ先後
、高屑波電*20をoff状態としてグロー放電を中止
させえ。そO後、流出パルプ4 a m 4 S t 
41を閉じ、補助パルプ24、メインパルプ2雪を全1
1Kして、槽中を5XIG″′−@torr jで真空
にした。その後、補助パルプ24、メインパルプ2sは
閉じられ、流出パルプ4s及び4it徐々に開け、補助
バルブ24、メインパルプ22を上記し九層の形成時と
岡じシラ30のパルプ54を縛け1.出口圧ゲージ60
011 圧t1114/aiKm411L、流入パルプ42を徐
々に−けて、フローノー−36内へジボランガスを流入
させた。貴に流出パルプ48を徐々K[lけ、)p−メ
ータ8−の読みがシランガスO流量OO,02Kになる
様Km出A、にプ4at)開ロヲ定め、槽内へのシラン
ガス及びアンモニアガスの流量とともに流量が安定化す
るat待つえ。
The gas inflow volume is stable and the tank internal pressure is constant), - the plate temperature is 40
After stabilizing at 0°C, KjIIIjI as in Example 5.
The flIL power supply 20 was set to the .n state, and /a- discharge was started. Under these conditions, after acclimatizing the glow discharge for 6 hours, turn off the high waste wave electric field*20 to stop the glow discharge. After that, the outflow pulp 4 a m 4 S t
Close 41, auxiliary pulp 24, main pulp 2 snow all 1
1K, the tank was evacuated with 5XIG'''-@torr j. After that, the auxiliary pulp 24 and the main pulp 2s were closed, the outflow pulps 4s and 4it were gradually opened, and the auxiliary valve 24 and the main pulp 22 were opened as described above. When the nine layers are formed, tie the pulp 54 of the Okajishira 30 1. Outlet pressure gauge 60
011 Pressure t1114/aiKm411L, the inflow pulp 42 was gradually turned off, and diborane gas was allowed to flow into the flow no. 36. Gradually pour out the pulp 48 into the tank so that the reading on the meter 8 becomes the silane gas O flow rate OO, 02K, and then pour the silane gas and ammonia gas into the tank. Wait for the flow rate to stabilize as the flow rate increases.

続いて、高周波電源20を再び・1状繍として、   
”グロー放電を開始させ、この条件でグロー放電を45
分間持続させた後、加熱ヒーター19及び高周波電11
2Qtoff状態として、基板温度$100Cになるの
を待つえ。その後、補助パルプ24、流出パルプ43,
45,411を閉じ、メインパルプ2!を全開にして槽
15内を一且1 a1torr以下にした後、メインパ
ルプ2sを閉じて、槽15内をり1襲バルブ16によっ
て大気圧した彼、基板を取)出した。ヒラして像形成部
材を得た。形成され支全層の厚さは約15、gcであっ
た。
Subsequently, the high frequency power source 20 is again set in one shape,
``Start the glow discharge, and under these conditions, the glow discharge continues for 45 minutes.
After continuing for a minute, the heating heater 19 and the high frequency electric generator 11
Wait for the substrate temperature to reach $100C in the 2Qtoff state. After that, the auxiliary pulp 24, the outflow pulp 43,
Close 45,411, main pulp 2! After fully opening the tank 15 to bring the pressure inside the tank 15 below 1 to 1 torr, the main pulp 2s was closed, the tank 15 was brought to atmospheric pressure by the first valve 16, and the substrate was taken out. An imaging member was obtained by twisting. The thickness of the entire stratum formed was approximately 15 gc.

こうして得られ九像形成部材を、実施v41と同様に帯
電露光の実験装置に静置して画−形成の試験をした所、
−6KVのコロナ帯電、■荷電性現像剤の組み合せの場
合に、極めて良質01コントラストの高いトナー画像が
転写紙上K11lられ丸。
The nine image forming members thus obtained were placed in an electrostatic exposure experimental apparatus in the same manner as in Example v41, and an image forming test was conducted.
In the case of a combination of -6 KV corona charging and a chargeable developer, a very good quality 01 high contrast toner image was produced on the transfer paper.

<vsmst> 表WjJが清浄にされ九0.1−厚oht基板(4×4
m+)が夾施飼1と同様に第4図に示す装置O同定m材
1$上に静置され丸。続いて実施Mlと同SO操作によ
りてりp−放電蒸着槽15内及び全ガス流入系を5 X
 I Q−@1Orr OA!!となし、a榎iimt
t、410CK保*tL&、1IJ111飼1と同様の
会パルプ操作で榴18内にシランガスとアンモニアガス
(シラン流量のsX)が流され、槽内圧は0.8 *o
rr Kされえ。
<vsmst> Table WjJ is cleaned and 90.1-thick oht board (4 x 4
m+) was placed on the apparatus O identification m material 1$ shown in FIG. Subsequently, the interior of the p-discharge vapor deposition tank 15 and the entire gas inflow system were heated by 5X using the same SO operation as the Ml.
I Q-@1Orr OA! ! Tonashi, aenoki iimt
Silane gas and ammonia gas (silane flow rate sX) were flowed into the shell 18 using the same pulp operation as in 1IJ111Kai1, and the tank internal pressure was 0.8*o.
rr K be done.

]!!にジボランメスボンベ30のパルプ54を開け、
出口圧ゲージ60圧を1−/−に調整し流入パルプ42
を徐々に開け、フルーメーター36の読みがシランガス
流量のo、osxになる様に流出パルプ48も徐々に開
けられてジボランガスが流入され九。シランガス、アン
モニアガス及びジボランガス共に流量が安定化し、基板
温度が4jOCで安定化してから、高周波電−20を・
島状−として、槽15内にグロー放電を開始させえ。こ
の条件でりp−放電を1s分間行り−に後、グロー放電
を続けなが゛ら、ジボランの流山パルプ48をフローメ
ータ3・を注視しtkがら徐々KiFiじ、シランガス
流量に対してジボランガス流量が0.0IXKする★で
開口を絞りえ。
]! ! Open the pulp 54 of the diborane female cylinder 30,
Adjust the outlet pressure gauge 60 pressure to 1-/- and inflow pulp 42
is gradually opened, and the outflow pulp 48 is also gradually opened to allow diborane gas to flow in so that the reading on the full meter 36 becomes the silane gas flow rate o, osx. After the flow rates of silane gas, ammonia gas, and diborane gas have stabilized, and the substrate temperature has stabilized at 4jOC, the high frequency electric
Start a glow discharge in the tank 15 as an island. After performing p-discharge for 1 s under these conditions, while continuing glow discharge, the diborane Nagareyama pulp 48 was carefully monitored with the flow meter 3, and the diborane gas was gradually adjusted to the silane gas flow rate. Squeeze the opening with ★ for a flow rate of 0.0IXK.

ζO条件で更にグルー放電ts時間続けた後、高周波電
源をoffとしてグロー放音で中止させ、続−て加熱ヒ
ーター19をoff状態とし先後、1板温度が100t
l:になるのを待って、補助バルブ24.流出Ahプ4
1.4S、48共Ellじbれ、メインパルプ2211
X全開されて榴1暴が一旦1 G−”torr以下にさ
れてからメインパルプ22を閉じ、リークバルブ16t
用いて曽15内を大気圧に戻してから基板を取)出し丸
After continuing the glue discharge for a further ts time under the ζO condition, the high frequency power supply was turned off to stop the glow sound, and then the heating heater 19 was turned off and the temperature of one plate was 100t.
l: Wait until the auxiliary valve 24. Leaked Ah pu 4
1.4S, 48 both Elljib, main pulp 2211
After the X is fully opened and the pressure is reduced to below 1 G-"torr, the main pulp 22 is closed, and the leak valve 16t is closed.
After returning the inside of So 15 to atmospheric pressure, remove the board.

形成され九層の全厚は約16#でありえ。The total thickness of the nine layers formed can be about 16#.

こうして得られたサンプルを、サンプル裏側ohtIi
t接着テープで目ばシし先後更にポリカーボネート樹脂
oso%トルエンS*に一直度で引き上げて&−1ii
i層上に電リカーV斗−一樹脂■う層を設けえ。そO後
接着テープは除去されえ。
The sample obtained in this way is
Brush with adhesive tape and then pull up the polycarbonate resin oso% toluene S* in one go &-1ii
Provide a layer of electric liquor Vto-ichi resin on the i layer. Then the adhesive tape can be removed.

得られ丸、fa形成ll#を、市販の複写機(NP−L
lキャノン株式会社製)を改造した実験機のドラム(感
光層otk−ムt)′2ム)K接地されるように一定し
、07KV1次帯電、露光同時ムC@KV帯電、現像(
e荷電性筐体m像剤χII絞珈(ローラー絞珈)、転写
e5KV帯電の適紬工揚によって普通紙上に鮮−な画像
コントラス)0*%/h画像を得え。又ζO工薯を〈〕
かえし10万枚以上コピーしても初期の良質な画像を維
持し丸。
The obtained circle, fa-formed ll# was transferred to a commercially available copying machine (NP-L
The drum (photosensitive layer otk-mt)'2m) of an experimental machine modified from Canon Co., Ltd.) K is constant so that it is grounded, 07KV primary charging, exposure simultaneous mC@KV charging, development (
By using a chargeable housing, a χ II imager (roller aperture), and a transfer e5KV charger, a bright image contrast (0*%/h) can be obtained on plain paper. Also ζO plant〈〈
Even after copying over 100,000 copies, the original high-quality image is maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

jI1図、總j1図及び第S図は、各々本発明の子写真
用像形成部材を製造する□為の装置の1筒を示す模式約
説@−である。 1.4.10−・・・・・電子写真用像形成部材、1、
II、11−−−−−−支持体、3 、 @ 、 11
−−−−−光導電層、13・・・・・・表面被覆層、1
!I、@1・・・・・・蒸着備、11・・・・・・基板
、18.63・・・・・・−室部材、19・・・・・・
ヒーター、20,70・・・・・・高周絖電榔、!5.
!6,27,28.H1,3@、71m、78.?4・
・・・・・ガスボンベ 出願人  キャノン株式金社
Figure 11, Figure 1, and Figure S are schematic diagrams each showing one cylinder of an apparatus for manufacturing the image forming member for child photographs of the present invention. 1.4.10 - Electrophotographic image forming member, 1,
II, 11---Support, 3, @, 11
----- Photoconductive layer, 13...Surface coating layer, 1
! I, @1... Evaporation equipment, 11... Substrate, 18.63...- Chamber member, 19...
Heater, 20,70...High frequency electric wire! 5.
! 6, 27, 28. H1,3@, 71m, 78. ? 4.
... Gas cylinder applicant Canon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 支持体と障壁層とシリコン及びゲルマニウムO少なくと
もいずれか一方を母体とするア峰ルファス半導体で構成
され、酸素又は/及び窒素を含む光導電層とを有してい
る事を特徴とする電子写真用像形成部材。
For electrophotography, comprising a support, a barrier layer, and a photoconductive layer composed of an amorphous semiconductor having at least one of silicon and germanium O as a base material, and containing oxygen and/or nitrogen. Imaging member.
JP57162652A 1982-09-18 1982-09-18 Image forming member for electrophotography Pending JPS58111950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57162652A JPS58111950A (en) 1982-09-18 1982-09-18 Image forming member for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57162652A JPS58111950A (en) 1982-09-18 1982-09-18 Image forming member for electrophotography

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5360578A Division JPS54145539A (en) 1978-05-04 1978-05-04 Electrophotographic image forming material

Publications (1)

Publication Number Publication Date
JPS58111950A true JPS58111950A (en) 1983-07-04

Family

ID=15758689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57162652A Pending JPS58111950A (en) 1982-09-18 1982-09-18 Image forming member for electrophotography

Country Status (1)

Country Link
JP (1) JPS58111950A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273546A (en) * 1986-05-22 1987-11-27 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS62273561A (en) * 1986-05-22 1987-11-27 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS62273548A (en) * 1986-05-22 1987-11-27 Fuji Xerox Co Ltd Electrophotographic sensitive body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273546A (en) * 1986-05-22 1987-11-27 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS62273561A (en) * 1986-05-22 1987-11-27 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS62273548A (en) * 1986-05-22 1987-11-27 Fuji Xerox Co Ltd Electrophotographic sensitive body

Similar Documents

Publication Publication Date Title
JPS6226458B2 (en)
USRE35198E (en) Image forming member for electrophotography
US4737428A (en) Image forming process for electrophotography
JPS6226459B2 (en)
JPS6035059B2 (en) Electrophotographic photoreceptor and its manufacturing method
JPS639221B2 (en)
JPS6161103B2 (en)
JPS6212509B2 (en)
JPS649623B2 (en)
JPS6247303B2 (en)
JPS649625B2 (en)
JPS58111950A (en) Image forming member for electrophotography
JPS6161102B2 (en)
JPS6227388B2 (en)
JPS6216419B2 (en)
JPS6215856B2 (en)
JPS6161104B2 (en)
JPS6062165A (en) Photoconductive member
JPH0220099B2 (en)
JPS6410067B2 (en)
JPS5875156A (en) Electrophotographic method
JP2558210B2 (en) Electrophotographic image forming member
JPS5891683A (en) Photoconductive member
JPS6341060B2 (en)
JPH0454944B2 (en)