JPS58110075A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS58110075A
JPS58110075A JP21239181A JP21239181A JPS58110075A JP S58110075 A JPS58110075 A JP S58110075A JP 21239181 A JP21239181 A JP 21239181A JP 21239181 A JP21239181 A JP 21239181A JP S58110075 A JPS58110075 A JP S58110075A
Authority
JP
Japan
Prior art keywords
region
insulating film
film
base
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21239181A
Other languages
Japanese (ja)
Inventor
Tadanaka Yoneda
米田 忠央
Masaoki Kajiyama
梶山 正興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21239181A priority Critical patent/JPS58110075A/en
Publication of JPS58110075A publication Critical patent/JPS58110075A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain a high gain-band width as well as to obtain a high frequency transistor which generate no short-circuit between electrode wirings even when its base-collector P-N junction capacity is small by a method wherein the emitter-base junction surface is made flat, and the base-collector area is also made small. CONSTITUTION:An N<+> type buried layer 32 is provided on a P type Si substrate 21, an N type layer 33 is epitaxially grown on the whole surface, and the layer 33 is isolated into an island-like form using an SiO2 film 25a. Then, an N type collector wall 34 is formed on the circumference of the layer 33, this part is covered by an SiO2 film 35, a polycrystalline film 27 is deposited on the whole surface, and a BSG film 28 is provided at the part facing the wall 34. Subsequently, the boron in the film 28 is diffused by performing a heat treatment, a P<+> type region 38 is formed, a diffusion is performed on the wall 34 by pressing-in, and the layer 33 is connected to the N<+> type layer 32. Then, the layer adjoining the region 38 is removed, a P type region 40 is formed by diffusion in the exposed layer 33, and an N type emitter region 24, which is pinched by a P type base region 42, is provided.

Description

【発明の詳細な説明】 この発明は半導体装置およびその製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device and a method for manufacturing the same.

従来、エミッタ・ペース接合が平坦なトランジスタを得
る製造方法として、第1回国ないしくC)に示す工程が
提案されている。
Conventionally, as a manufacturing method for obtaining a transistor with a flat emitter-paste junction, a process shown in the first example or C) has been proposed.

この製造工程の手順は次のとおりである。The steps of this manufacturing process are as follows.

(1)  p形5i基板1にn+形墳込領域2を形成し
、n形エピタキシャル層3を形成する。そしてp形分離
領域4en+形コレクタウオール領域5.厚さ30.9
tmのS t 0,2膜6を形成する。そしてペース形
成領域05in2II 6を除去し、拡散窓7を形成す
もそして、厚さ約0.2鵬の多結晶Si膜8を形成すも
そして、拡散法もしくはイオン注入法により拡散11!
7に和尚する領域に多結晶5を膜8中のAIを拡散源に
して、拡散深さ約0.2綿のn+形領領域9形成する(
11図翰)。
(1) An n+ type buried region 2 is formed on a p-type 5i substrate 1, and an n-type epitaxial layer 3 is formed. and p-type isolation region 4en+ type collector all region 5. Thickness 30.9
A S t 0,2 film 6 of tm is formed. Then, the pace forming region 05in2II6 is removed, a diffusion window 7 is formed, and a polycrystalline Si film 8 with a thickness of about 0.2mm is formed.
Form an n+ type region 9 with a diffusion depth of approximately 0.2 cm using the polycrystal 5 as a diffusion source in the region 7.
Figure 11).

(2)次に、厚さ約0.Q6#Lの13N4膜10を形
成し、ホトエッチ技術によりエミッタ形成領域上にS 
i 3N、嘆10を残し、S i 、N、膜10をマス
クにして多結晶5を膜8およびn+形領領域9エツチン
グ除去する。そして、拡散窓7に露出したエピタキシャ
ル層3を酸化して、厚さ約0.15m05iO2膜11
を形成する。そして、約160 Key、約1刈Q−i
 o n s/7のボロンをイオン注入する。このよう
にして n +影領域(エミッタ領域)9′直下に厚さ
約0.1踊のp形ペース領域12を、ま九S i02膜
11+区Fには厚さ約0.3μのp影領域13を形成す
る。さらに、約60 KeV 、約I X 10  s
now15gのボロンをイオン注入し、SiO2膜11
1:下にp影領域14を形成する(1μ1図(均)。
(2) Next, the thickness is about 0. A 13N4 film 10 of Q6#L is formed, and S is formed on the emitter formation region by photoetching.
The polycrystalline 5 is removed by etching away the film 8 and the n+ type region 9, leaving the i 3N and 10 layers and using the S i , N and film 10 as a mask. Then, the epitaxial layer 3 exposed in the diffusion window 7 is oxidized to a thickness of about 0.15m05iO2 film 11.
form. And about 160 Key, about 1 cutting Q-i
Boron ions are implanted at on s/7. In this way, a p-type space region 12 with a thickness of about 0.1 μm is formed directly under the n+ shadow region (emitter region) 9′, and a p-type space region 12 with a thickness of about 0.3 μm is formed in the Si02 film 11+ region F. A region 13 is formed. Furthermore, about 60 KeV, about I x 10 s
Now 15 g of boron is ion-implanted, and the SiO2 film 11 is
1: Form a p shadow area 14 below (1μ1 figure (average).

(3)  次に、1000℃でアニールするとシート抵
抗約180 Q/口のp+形ベースコンタクト領域15
が形成される。そして、Si、N、 III 10を除
去し、ベースコンタクト窓、コレクタコンタクト室を形
成し、ベースAt配1116.エミッタM配線17.コ
レクタM配繰18を形成する(第1図(C))。
(3) Next, when annealing at 1000°C, the sheet resistance is approximately 180 Q/gate p+ type base contact region 15
is formed. Then, Si, N, III 10 is removed, a base contact window and a collector contact chamber are formed, and a base At layer 1116. Emitter M wiring 17. A collector M arrangement 18 is formed (FIG. 1(C)).

しかしながら、このようKして得られるトランジスタで
は、ペース形成領域のれ+影領域9を除去しているし、
SiO2膜6が約0.9#sLとJいためKM配置11
6,170段差’1ist9.20?”、U配線ノ断線
率が高い。また、M配線16と17のシ■−トを防ぐ九
めに%M配線間距離Xを2〜3−にしなければならない
。さらに、ベースkl配繰16は幅2〜3綿のベースコ
ンタクト窓に対シて2〜3帛大きくしなければならない
ので、ペースM配繰16の幅は4〜6肩になる。ま九エ
ミッタM配繰17はエミッタ領域9′の端よりも約1綿
外側にくるようにしなければならない。したがって、A
t配#1t11距離Xの2〜3mを加えると、ベースコ
ンタクト領域150幅yは7〜1G#w&となる。その
ためにベースコンタクト領域150面積が大きくなり、
ペース・コレクタ間接合容量が増大して高周波特性が劣
化する。また、段差を小さくするためにSiO2膜6の
厚さを薄くすると、160 KeVでボロンをイオン注
入した*StO,膜6直下のエピタキシャル層3がp形
に反転してしまう。
However, in the transistor obtained by K in this way, the paste formation area overlap + shadow area 9 is removed,
KM arrangement 11 because the SiO2 film 6 is about 0.9#sL
6,170 steps '1ist9.20? ", the U wiring has a high disconnection rate. Also, in order to prevent the sheets of M wiring 16 and 17, the distance X between the %M wiring must be set to 2 to 3. must be 2-3 times larger than the base contact window, which is 2-3 times wide, so the width of the pace M thread 16 will be 4-6 shoulders. It should be about one cotton swath outside of the 9' end. Therefore, A
When adding 2 to 3 meters of the t-width #1t11 distance X, the base contact region 150 width y becomes 7-1G#w&. Therefore, the area of the base contact region 150 becomes large,
The pace-collector junction capacitance increases and the high frequency characteristics deteriorate. Furthermore, if the thickness of the SiO2 film 6 is reduced in order to reduce the step difference, the epitaxial layer 3 directly under the *StO film 6 into which boron ions are implanted at 160 KeV is inverted to p-type.

さらttc、ht配線が凹凸のある表面上で形成されて
いるために、CCt、ガス等を用いたドライエッチの場
合、段差部でMが残りやすOu配線シ日−ト率が高くな
り歩留が低下する。
In addition, since the ttc and ht wiring is formed on an uneven surface, when dry etching is performed using CCt, gas, etc., M remains at the stepped portions, increasing the Ou wiring shedding rate and reducing the yield. decreases.

したがり万、この発明の目的は、エミッタ・ペース接合
が平坦で高fTが得られ、しかもペース。
However, the purpose of this invention is to obtain a high fT with a flat emitter-pace junction, and to achieve a high fT.

コレクタの面積を小さくしてペース・コレクタ間のpn
接合容量が小さいKもかかわらず電極配光間のシ目−ト
が生じない高周波トランジスタを含む半導体装置および
その製造方法を提供することである。
PN between the pace and the collector by reducing the area of the collector.
It is an object of the present invention to provide a semiconductor device including a high frequency transistor in which no seam occurs between electrode light distributions despite the small junction capacitance K, and a method for manufacturing the same.

この発明の一実施例を第2図(A)1〜(Flおよび(
4)〜(豹に示す。すな−わち、この半導体装置は、エ
ミッタ・ペース接合が平坦なトランジスタを含む半導体
集積回路装置であって、第2図(I’)K示すように、
p形S1基板21上に順次積層形成したコレクタ22.
ベース23およびエミッタ24と、前記ベース23から
別記基板21上に形成された分離酸化膜25aとの境界
部にかけて形成したベースコンタクト領域26と、前記
ベースコンタクト領域26の前記分1arR化膜25m
との境界に近い一部領域から前記分離酸化膜251表面
にかけて水平に引出形成した多結晶5i膜27aからな
るペース引出線と、ll1lI記工ミツタ24上面を残
しその側面、ベースコンタクト領域26および)−ス引
出II(多結晶5i膜27a)を被覆した酸化膜28息
、28bと、前記酸化膜28mの前記分離酸化膜251
相当部に形成し走間すを介して前記ペース引出線(多結
晶5i膜271)に接合させ九ペースAffi纏29と
、前記エミッタ24の上面側に接合させたエミッタAt
配繰30と、前記コレクタ22に接合させたコレクタA
Jf!41I31とを備え、前記酸化膜28鳳、28b
のうち、前記ペース引出線を形成する多結品別FM27
mを被覆するIII域は多結晶1膜27mの拡散源に用
いたボロンを含む5in2II (BSG膜)281か
らなり、その他のIi[域FiS102膜28楓からな
っている。
An embodiment of this invention is shown in FIG. 2 (A) 1 to (Fl and (
4) - (shown as a leopard. In other words, this semiconductor device is a semiconductor integrated circuit device including a transistor with a flat emitter-paste junction, and as shown in FIG. 2(I')K,
A collector 22 is formed by sequentially laminating layers on a p-type S1 substrate 21.
A base contact region 26 formed from the base 23 and the emitter 24 to a boundary between the base 23 and an isolation oxide film 25a formed on a separate substrate 21, and a 1arR film 25m formed in the portion of the base contact region 26.
A space leader line consisting of a polycrystalline 5i film 27a formed horizontally from a partial region close to the boundary with the surface of the isolation oxide film 251; - the oxide films 28 and 28b covering the space drawer II (polycrystalline 5i film 27a) and the isolation oxide film 251 of the oxide film 28m;
A nine-pace Affi sheet 29 formed in a corresponding portion and bonded to the pace leader line (polycrystalline 5i film 271) via a running gap, and an emitter At bonded to the upper surface side of the emitter 24.
a pipe 30 and a collector A joined to the collector 22;
Jf! 41I31, and the oxide films 28 and 28b
Among them, FM27 according to the multi-connected product forming the pace leader line.
The III region covering the polycrystalline film 27m is made up of a 5in2II (BSG film) 281 containing boron, which is used as a diffusion source for the polycrystalline film 27m, and the other region Ii is made of a FiS102 film 28.

この半導体装置は次の手順により製造される。This semiconductor device is manufactured by the following procedure.

なお、第2図の(5)〜(F)は各工程の半導体基板の
平面図を、(A〜(わはその平面図に対応する断面図を
示している。
Note that (5) to (F) in FIG. 2 are plan views of the semiconductor substrate in each step, and (A to (F) are cross-sectional views corresponding to the plan views.

(1)  まず、p形10〜20ρ噛S弧基板21に♂
形埋込鎖*32を形成する。そしてn形約0.691の
エピタキシャル層33を約1.5μ賜形成する。そして
絶縁分離技術を用いて別02の分離酸化膜25mを形成
する。加熱酸化法もしくけCVD法により厚さ約0.5
μ鶏の5IO2膜25bを形成する(第2図区)。
(1) First, attach the p-type 10 to 20ρ S-arc substrate 21 to the ♂
A shape-embedding chain *32 is formed. Then, an n-type epitaxial layer 33 of about 0.691 nm is formed with a thickness of about 1.5 μm. Then, another isolation oxide film 25m is formed using an insulation isolation technique. Approximately 0.5 in thickness by heating oxidation method or shake CVD method
A 5IO2 film 25b of μ chicken is formed (section 2 in Figure 2).

(A’) )。(A’)).

(2)次に、選択拡散技術を用いて♂形コレクク11[
*(El形コレクタクオール)34を形成する。
(2) Next, using selective diffusion technology, the male-shaped collection 11 [
*(El-form collector quaol) 34 is formed.

そして、ベース形成縦板の5i02[35を除去してベ
ース拡散窓36を形成する(W52図(B) 、 (的
)。
Then, the base forming vertical plate 5i02[35 is removed to form the base diffusion window 36 (Figure W52 (B), (target)).

(3)  次に1厚さ約0.2踊の多結晶Si膜27を
形成する。さらにその上に厚さ約0.4μmのボロンを
含んだSi〇−(以下BSG膜と呼ぶ) 2811に形
成する。そして、ホトエッチ技術に−よりベース拡散窓
36の一部(幅Cが約2踊とする)と分離酸化膜25a
上にBSG膜28aを残す(第2図(C)、(σ))。
(3) Next, a polycrystalline Si film 27 with a thickness of about 0.2 diodes is formed. Furthermore, a boron-containing Si〇- (hereinafter referred to as a BSG film) 2811 with a thickness of about 0.4 μm is formed on top of this. Then, a part of the base diffusion window 36 (width C is about 2 degrees) and the isolation oxide film 25a are formed by photo-etching.
The BSG film 28a is left on top (FIG. 2(C), (σ)).

(4)次に1約100 KeVで約7X15 1ons
/aj。
(4) Next, about 7X15 1 ounces at about 100 KeV
/aj.

AJイオンを注入する。そうするとBSG膜2膜層8息
直下以外結晶5i膜27にA$が注入される。そして、
厚す約0.1m OCVD 5in2膜37を形成し、
N2ガス雰囲気中1000℃で加熱する。そうするとB
SG膜281百丁の多結晶3i膜27はp+形の多結晶
3i膜271に、それ以外の多結晶Si膜27はn+形
の多結晶5を膜27bになる。そして、ベース拡散W1
36領域のr影身結晶5i膜271直下!/cはシート
抵抗約150ψ口。
Inject AJ ions. Then, A$ is injected into the crystal 5i film 27 except immediately below the BSG film 2 film layer 8. and,
Form an OCVD 5in2 film 37 with a thickness of about 0.1m,
Heat at 1000° C. in N2 gas atmosphere. Then B
The polycrystalline 3i films 27 of the SG film 281 become p+ type polycrystalline 3i films 271, and the remaining polycrystalline Si films 27 become n+ type polycrystalline 5 films 27b. And base diffusion W1
Directly below the r shadow crystal 5i film 271 in the 36 region! /c is a sheet resistance of approximately 150ψ.

拡散深さ約0.5鵬のp+形領領域38形成され、また
n+形影身晶引膜27b [下にはシート抵抗約40ψ
口、拡散深さ約0.IIRILのn+形領領域39形成
される。を几、BSG膜281の端8周辺直下の多結晶
5iではボロンsAsの両方が拡散される領域すが形成
される。また、n+形コレクタ領域(コレクタウオール
)34はn形埋込領域32と接する(第2図(2)、a
ly))。
A p+ type region 38 with a diffusion depth of about 0.5 psi is formed, and an n+ type crystalline film 27b [below has a sheet resistance of about 40 ψ].
mouth, diffusion depth approximately 0. An n+ type region 39 of IIRIL is formed. As a result, a region is formed in the polycrystalline 5i just below the edge 8 of the BSG film 281 where both boron and sAs are diffused. Further, the n+ type collector region (collector all) 34 is in contact with the n type buried region 32 (Fig. 2 (2), a
ly)).

(51次に、約120 KeV e I X 10 1
ons/cs+のボロンイオンを基板表面から注入する
。そうすると、♂影領域39[下にベース幅約0.08
 tmのp形ペース領域40が形成される。一方、n形
エピタキシャル層33表面はC影身結晶5i膜27b、
5i02膜35に阻止されてp形に反転することはない
。すなわち、p形反転が生じないようKsto□膜35
の厚さを決めなければならない(第2図(8勺)。
(51 then about 120 KeV e I X 10 1
Ons/cs+ boron ions are implanted from the substrate surface. Then, the male shadow area 39 [bottom base width approximately 0.08
A p-type space region 40 of tm is formed. On the other hand, the surface of the n-type epitaxial layer 33 is a C shadow crystal 5i film 27b,
It is not prevented by the 5i02 film 35 from being inverted to p-type. In other words, the Ksto□ film 35 is
The thickness must be determined (Fig. 2 (8)).

(6)  次に、厚さ約0.06趣のSN3’4膜41
を形成する。そしてホトエッチ技術により、エミッタ形
成領域のS i 、N、膜41aおよび分離酸化膜25
a−1にもSi3N4膜41bを残す。BSG膜281
とS’T3N4 嘆41a間距sdを約II!rILと
する(第2図億)、(ビ))。
(6) Next, the SN3'4 film 41 with a thickness of about 0.06mm
form. Then, by photoetching, Si, N, film 41a and isolation oxide film 25 in the emitter formation region are removed.
The Si3N4 film 41b is also left on a-1. BSG film 281
The distance sd between S'T3N4 and S'T3N4 is approximately II! Let it be rIL (Figure 2), (B)).

(7)次に、BSG膜2膜層8履a13N4膜41をマ
スクにしてHNO3,HF混合液でn+形影身晶si模
27bおよびn+形領領域39エツチングし、= 5t
3N、膜41alt¥下にn影身結晶Si@27b、そ
の’FKn+形エミ、ツタ領域24を残す。またSi3
N、膜41a直下にn+形多結晶Si !II 27b
 、 BSG膜28a LT下にp+形多結晶膜S1膜
271が残る。この場合、ウェットエツチング方法で行
いサイドエツチングを大きくシ、n+形の多結晶5i膜
27b a n+形領領域39エツチング速度が速いこ
とを利用して(少しオーバーエツチングしてもn形エビ
タ牛シャル層33にまでエツチングは進まない)、深さ
方向のエツチング精度を上げる。t+、p影領域40は
エツチングされても後の工程でp影領域を形成するので
、オーバーエッチしてもかまわない(第2図(G’))
(7) Next, using the BSG film 2 layer 8 layer a13N4 film 41 as a mask, the n+ type crystal Si pattern 27b and the n+ type region 39 are etched with a HNO3 and HF mixed solution, = 5t.
3N, the n shadow crystal Si@27b, its 'FKn+ type emitter, and the ivy region 24 are left under the film 41alt. Also Si3
N, N+ type polycrystalline Si directly under the film 41a! II 27b
, the p+ type polycrystalline film S1 film 271 remains under the BSG film 28a LT. In this case, the wet etching method is used to greatly reduce the side etching and take advantage of the fast etching speed of the n+ type polycrystalline 5i film 27b a n+ type region 39 (even if slightly overetched, the n type Etching does not progress to 33), increasing the etching accuracy in the depth direction. Even if the t+, p shadow region 40 is etched, it will form a p shadow region in a later step, so there is no need to overetch it (FIG. 2 (G')).
.

(8)  次に、900−1000℃の酸化雰囲気中で
熱処理して、n形エピタキシャル層36表[frK厚さ
0、15 趨fJs 102膜28bを、n+形 p+
形多結晶5i膜271゜27bの側面およびエミッタ2
40側11iK厚さ約0.2pの5in2膜28bをそ
れぞれ形成する。次いで、約60KeVslX10  
foil/cdoボ’:/lイ*ン注入し、SiO2膜
28b直下にp+形領領域42形成する(第2図(的)
(8) Next, heat treatment is performed in an oxidizing atmosphere at 900-1000°C to convert the n-type epitaxial layer 36 surface [frK thickness 0, 15 direction fJs 102 film 28b] into n+ type p+
Side surface of polycrystalline 5i film 271° 27b and emitter 2
A 5in2 film 28b having a thickness of about 0.2p and a thickness of 11iK on the 40th side is formed. Then about 60KeVslX10
Foil/cdo bo':/l ions are implanted to form a p+ type region 42 directly under the SiO2 film 28b (see Figure 2).
.

(9)  次に、N2ガス中でアニール処理し、前記p
+形領領域2に150ρ泪、深さ0゜3μのメ形ベース
コンタクト傾城26を形成する。次に、5i3N411
141i′f:除去してエミッタコンタクト窓を形成し
、ホトエッチ技術により分離酸化$ 25 m上のBS
G膜旧iの一部を除去してり影身結晶Sil[27aと
M配線が接するようにベースコンタク113を形成する
。同様に%襲形コレクタ領緘34上のS i 02膜3
5を除去してコレクタコンタクト$44を形成して、ペ
ースM配線29.エミッタM配線30およびコレクタM
配線31を形成する。そして、エミッタ24直下の1形
領域が活性ベース23゜?形鎖域がエミッタ24となる
。まえ、エミッタ・ベース接合の側面け5to2*zs
bで囲まれる(第2図(y) * (l’ ) )。
(9) Next, annealing treatment is performed in N2 gas, and the p
A me-shaped base contact inclined wall 26 having a depth of 150 ρ and a depth of 0° 3 μ is formed in the +-shaped region 2. Next, 5i3N411
141i′f: Remove to form emitter contact window and isolate oxidized $25 m by photoetch technique.
A part of the old G film i is removed to form a base contact 113 so that the shadow crystal Sil[27a and the M wiring are in contact with each other. Similarly, the S i 02 membrane 3 on the collector area 34
5 is removed to form a collector contact $44, and the paste M wiring 29. Emitter M wiring 30 and collector M
Wiring 31 is formed. And the type 1 region directly below the emitter 24 is at an active base of 23 degrees? The shape chain region becomes the emitter 24. Front, emitter-base junction side 5to2*zs
b (Fig. 2 (y) * (l')).

このように−成し几ため、第2図(1’)に示すベース
コンタクト領域26の幅fは、第2図(G′)に示す幅
Cと第2図(F′)に示すdと第2図(σ)に示すeの
寸&の和となり釣4.5−の幅になり、ベース領域の総
面積を小さくすることかできる。
Therefore, the width f of the base contact region 26 shown in FIG. 2(1') is equal to the width C shown in FIG. 2(G') and the width d shown in FIG. 2(F'). The sum of the dimension & of e shown in FIG. 2 (σ) results in a width of 4.5 −, making it possible to reduce the total area of the base region.

ま几、ベースコンタクト傾城26が分層酸化膜251の
多結晶Si膜27Jl上に形成されているため、Al配
線29と30の間隔を約2.5#Lとすることdiでき
る。さらに、BSG膜28mの端gの下の多結晶り膜2
7a t n+形領領域39エツチングされたさペオー
バノ・ングが生じているのでこの段差部にM力!付着し
ても途中で分断される。そのためM配線29゜30を形
成するさいにレジストノ(ターン形−成段階でシ■−卜
することがあっても、段差部klist確寮に分断され
ht配線z9と30力孟シ雪−トするのを防止でき、k
t配配線−1)率を大幅に低減イヒすることができる。
However, since the base contact slope 26 is formed on the polycrystalline Si film 27Jl of the split layer oxide film 251, the distance between the Al wirings 29 and 30 can be set to about 2.5 #L. Furthermore, the polycrystalline film 2 below the edge g of the BSG film 28m
7a t n + shape region 39 Since etching has occurred, M force is applied to this step! Even if it sticks, it will be separated in the middle. Therefore, when forming the M wiring 29°30, even if the resist no. It can prevent
t-wiring-1) ratio can be significantly reduced.

サラニ、ベース、エミッタAjEi129.3Qti灸
結晶Si膜27!1.27b上に配線しているので、凹
凸が小さく急しゅんが段差が生じず、そのためにM配線
の断線確率を大幅に低減化でき、CCV、等を用いたA
tのドライエツチングの際、段差部でAt間シ欝−トを
生じることがないので微細なAl1<ターンを歩留良く
形成することができる。
Since the wires are placed on the Sarani, base, and emitter AjEi129.3Qti moxibustion crystal Si films 27!1.27b, the unevenness is small and there are no sudden steps, which can greatly reduce the probability of disconnection of the M wiring. A using CCV, etc.
During the dry etching of t, fine Al1<turns can be formed with a high yield because no gaps are generated between At at the step portion.

また、この半導体装at@記製造方法により製造する場
合には、前記特性の半導体装置を精度よ〈高歩留りに製
造するととができる。
Furthermore, when manufacturing a semiconductor device using this manufacturing method, it is possible to manufacture a semiconductor device having the above-mentioned characteristics with high accuracy and high yield.

なお、前記製造方法において、第2図(G′)に示す工
程でHNO3とHFの混合液で多結晶5を膜27b #
 n”影領域41をエツチングする代りに、CF、 I
 C3F8ガス等を用いたデヲズマエフチングもしくは
スノ(フタエッチでも良い。
In the above manufacturing method, the polycrystalline 5 is coated with the film 27b using a mixed solution of HNO3 and HF in the step shown in FIG. 2 (G').
Instead of etching the n'' shadow area 41, CF, I
Deodorized etching or lid etching using C3F8 gas or the like may also be used.

を九、p”N多結晶S1膜271 e p”*領域38
*n”影身結晶5i膜zyb e p”ffe領域26
゜p影領域40゜n+形領領域39抵抗体として使える
ので、所望のシート抵抗のものを抵抗体として使えば良
い。また、多結晶Si膜270代りに無定形の5iを用
いても鼠い。
9, p”N polycrystalline S1 film 271 e p”* region 38
*n” shadow crystal 5i film zyb e p”ffe region 26
゜p shadow area 40゜n+ shaped area 39 can be used as a resistor, so it is sufficient to use one with a desired sheet resistance as a resistor. Furthermore, it is difficult to use an amorphous 5i film instead of the polycrystalline Si film 270.

以上のように、この発明の半導体装置は、半導体基板上
に順次積層形成したコレクタ、ベースおよびエミッタと
、!111I起半導体基板上に形成された\ 分離絶縁膜の境界部から前記ベースにかけて形り見シタ
ベースコンタクト領域ト、1ilFIaヘ−x :l 
:/ !51クト領域の前記分離絶縁膜との境界に近い
一部軸域から前記分離絶縁膜表面にかけて水平に引IB
形成した多結晶5を膜からなるベース引出線と、IIu
記エミッタ上面を残しその側面、ベースコンタクト領域
およびペース引出線を被覆した絶縁膜と、前記絶縁膜の
前記分離絶縁膜相当部に形成した開口を介して前記ペー
ス引出線に接合させたペース電極と、iiT紀エミッタ
の上面側に接合させ九エミッタ電極と、前記コレクタに
接合させたコレクタ電極とを備え友ものであるため、エ
ミッタ・ペース接合が平坦で高fTが得られ、しかもペ
ース、コレクタの面積を小さくしてペース・コレクタ間
のpn接合容量が小さいにもかかわらず電極配線間のシ
■−トが生じない高周波トランジスタを含む半導体装置
とすることができ、またこの発明の半導体装置の製造方
法は、第1導電形半導体基板上の所定島領域を囲む分離
絶縁膜部と前記島領域上面を債う被覆絶縁膜部とからな
る第1絶縁膜の前記被覆絶縁膜部の所定領域にベース拡
散窓を開口する拡散窓形成工程と、前記第1絶縁膜の分
離絶縁膜部の上面に一部がかかるように前記半導体基板
上に多結晶Si膜を形成する多結晶Si膜形成工程と、
前記拡散窓の蓼記分離絶縁膜部境界近傍領域上から前記
分離絶縁膜部上にわたるIIIII配多結晶5i膜、ト
に第2導電形形成用不純物を含むts2絶縁膜を形成す
る第2絶縁膜形成工程と、前記拡散窓相当領域の前記第
2絶縁膜下を除く部分に第1導電形領域をltr紀第2
導電膜下に第2導電形領域をそれぞれ形成する第1拡散
工程と、前記ペース拡散窓に第2導電形形成用不純物を
拡散して前記第1導電形領域直下部に第2導電形ベース
領域を形成する第2拡散工程と、前記ベース拡散窓に露
出する前記多峙晶Si膜のエミッタ形成領域に耐酸化性
膜;〔、iし成しこの耐酸化性膜と前記第2絶縁膜とを
マスクとしてIff起多結晶5i膜および前記第1導電
形領域をエツチング除去し残された第1導電形領域をエ
ミッタとするエツチング工程と、削紀エツチング処理面
を酸化して!s3絶縁膜を形成しこの第3絶縁膜を介し
てイオン注入し前記ts2絶縁嗅および前記第3絶縁膜
の下部に第2導電形のベースコンタクト領域を形成する
ベースコンタクト領域形成工程と、前記第2絶縁膜の!
iiI記分離絶縁嗅部相当領域に開口を形成しこの開口
より前記多結晶Silにペース電極を接合形成するペー
ス電極形成工程と、前記耐酸化性膜を除去しR紀要結晶
5i膜を介してエミッタにエミッタ電極を接合形成する
エミッタ電極形成工程と、コレクタにコレクタ電極をで
ある友め、前記の半導体装置を歩留9よく高精度に!l
ll造することができるという効果を有する。
As described above, the semiconductor device of the present invention includes a collector, a base, and an emitter that are sequentially stacked on a semiconductor substrate. A memento base contact region formed on the 111I semiconductor substrate from the boundary of the isolation insulating film to the base, 1ilFIa to x:l
:/! IB drawn horizontally from a partial axial region near the boundary with the isolation insulating film in the 51st region to the surface of the isolation insulating film.
The formed polycrystal 5 is connected to a base lead line made of a film, and IIu
an insulating film that leaves the upper surface of the emitter and covers its side surface, a base contact region, and a pace lead wire, and a pace electrode that is connected to the pace lead wire through an opening formed in a portion of the insulating film corresponding to the separation insulating film. Since the emitter electrode is connected to the upper surface of the iiT emitter and the collector electrode is connected to the collector, the emitter-pace junction is flat and a high fT can be obtained. It is possible to obtain a semiconductor device including a high-frequency transistor with a small area and no sheet between electrode wirings despite the small pn junction capacitance between the pace and collector, and also to manufacture the semiconductor device of the present invention. The method includes applying a base layer to a predetermined region of the covering insulating film portion of a first insulating film, which includes an isolation insulating film portion surrounding a predetermined island region on a first conductivity type semiconductor substrate and a covering insulating film portion covering the upper surface of the island region. a diffusion window forming step of opening a diffusion window; a polycrystalline Si film forming step of forming a polycrystalline Si film on the semiconductor substrate so as to partially cover the upper surface of the isolation insulating film portion of the first insulating film;
A second insulating film forming a ts2 insulating film containing impurities for forming a second conductivity type on a III polycrystalline 5i film extending from a region near the boundary of the isolation insulating film part of the diffusion window to above the isolation insulating film part; forming a first conductivity type region in a region corresponding to the diffusion window except under the second insulating film;
A first diffusion step of forming second conductivity type regions under the conductive film, and diffusing second conductivity type forming impurities into the pace diffusion window to form a second conductivity type base region directly below the first conductivity type region. a second diffusion step of forming an oxidation-resistant film in the emitter formation region of the polyhedral Si film exposed in the base diffusion window; The Iff polycrystalline 5i film and the first conductivity type region are etched away using as a mask, and the remaining first conductivity type region is used as an emitter, and the etching process surface is oxidized! a base contact region forming step of forming a s3 insulating film and implanting ions through the third insulating film to form a base contact region of a second conductivity type under the ts2 insulating film and the third insulating film; 2 Insulating film!
(iii) A pace electrode forming step in which an opening is formed in the area corresponding to the separated insulating olfactory part and a pace electrode is bonded to the polycrystalline Sil through this opening, and the oxidation-resistant film is removed and an emitter is formed through the R bulletin crystal 5i film. By combining the emitter electrode forming process in which the emitter electrode is bonded to the collector and the collector electrode to the collector, the semiconductor device described above can be manufactured with a high yield of 9 and high precision! l
It has the advantage of being able to be manufactured in large quantities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1開開ないしり)は従来例の製造工程説明図、@2図
開開いしくF)および第2図(に)ないしくI’)Hそ
れぞれこの発明の一実施例を平面図シよび断面図で示す
製造工程説明図である。 21・・・p形5i基板(半導体基板)、22・・・コ
レクタ、23・・・ペース、24・・・エミッl 、 
251−9#II酸化膜(分離絶縁膜部) 、’25i
)−・・5i02膜(被覆絶縁膜部)、26・・・ベー
スコンタクト領域、271・・・n+形多結晶5i膜、
27b・・・p+形多結晶5i膜、28a・・・BSG
膜(第2絶縁膜)、28b−・・s to2膜(第3絶
縁膜)、29・<−Xkt配、IN(ペース電極)、3
゜・・・エミッタAj配W&(エミッタ電極)、31・
・・コレクタAl配線(コレクタ電極)、32・・・計
形埋込領斌、33・・・n形エピタキシャル層、35・
・・5io2qa。 36−・・拡散窓、37−CVD 5to2膜、38−
p+形領領域59−n1形領域、40 ・p形ペース領
域、41S13N4 膜、’ 2・・・p+形領領域4
3・・・ベースコンタクト窓、44・・・コレクタコン
タクト窓手続補正書(方式) 昭和57年5 月10日 昭和56 年特  許 願第212391弓・2、発明
の名称 半導体装置およびその製造方法 3、補正をする者 事件との関係  出願人 住 所 大阪府門真市大字門真1皓播地名 称 (58
2)松下電器産業株式会社代表者   111   下
  俊  彦4、代 理 人 5、 hli正命令の日付   昭和57  年 4 
月 9 日(1)明細書1N?頁第1行目ないし第2行
目、「第211(A) 〜CF)#!ヒ(16〜(II
J ト、%6ヲr IFI 2W(Al−(F) #よ
び(a)〜(1)」と訂正する。 (2)明細書117頁第4行目、「第2図(豹」とある
をrflK2図0)」2と訂正する。 (3)明細書lN8111I行I、「(IcJ〜(1ハ
」トするを「(a)〜(1)は」と訂正する。 (4)明細書第8頁11N15行目ないし第16行目、
「第2図(A)、(4Jとあるを「第2図囚、 (i)
 Jと訂正する。 (5)明細書第8頁第20行目、rlN2図(81、(
IJとあるを「第2図(B) 、 (b) Jと訂正す
る。 (6)  明細書117頁第6行目、rl!2図(C)
 、 ((j Jとあるを「第2図(Q 、 (c) 
Jと訂正する。 (7)明細書第1O頁第2行目ないし1113行目、「
第2図(D)、(ロ)」とあるを「第2図(II 、 
(d) Jと訂正する。 (8)明細書第10j[第11行目、「第2図(鎖」と
あるを「第2図(C)」と訂正する。 (9)明細書1110頁第16行目、rl12図(2)
)。 (メ」とあるを「第2図(E)、 (f) Jと訂正す
る。 (10)明細書@11頁第1’1行目、「第2図(α」
とあるをrl12v!J(g)Jと訂正する。 01) 1oll@11頁第19行目、「第2m関上あ
るをrfMg図(h)」と訂正する。 (12)明細書第12頁第13行目ないし第14f?″
目、「第2図(F) 、 (わ」とあるを「第2rlJ
(El)、(1)」と訂正する。 (13) IIJI書11112 j[II l 5 
行l、rl12m(1’)Jとあるを「II2図(I)
」と訂正する。 (14)明細書第12頁第16行目、r第2図(C!I
Jとあるを「第2図(C)」と訂正する。 (15)明細書第12頁第17行目、「第2図(ロ)」
とあるを「第2図(f)」と訂正する。 (16) 明細書lll12j[lN17行目、「第2
11(cAJとあるを「第2図(g)」と訂正する。 (17) #i細書II!14頁112行目、rlN2
図(υ」とあるを「第2FjA(g)Jと訂正する。 (18)明細書第17頁第10行目、「第2図(6)な
いしく0は」とあるを「第2図(a)ないしく1)は」
と訂正する。 (19)図面の第2図中の図番「(4)〜(わ」を別紙
朱書のとセリr (a)〜(1)」と訂正する。
1) is an explanatory diagram of the manufacturing process of the conventional example, and Figures 2 and 2 are a plan view and a cross section of an embodiment of the present invention. It is a manufacturing process explanatory diagram shown in a figure. 21... p-type 5i substrate (semiconductor substrate), 22... collector, 23... pace, 24... emitter,
251-9#II oxide film (isolation insulating film part), '25i
)--5i02 film (covering insulating film part), 26... base contact region, 271... n+ type polycrystalline 5i film,
27b...p+ type polycrystalline 5i film, 28a...BSG
Film (second insulating film), 28b-...s to2 film (third insulating film), 29・<-Xkt arrangement, IN (pace electrode), 3
゜...Emitter Aj arrangement W & (emitter electrode), 31.
... Collector Al wiring (collector electrode), 32 ... Meter-shaped buried layer, 33 ... N-type epitaxial layer, 35.
...5io2qa. 36-...diffusion window, 37-CVD 5to2 film, 38-
p+ type region 59-n1 type region, 40 ・p type pace region, 41S13N4 film, '2...p+ type region 4
3...Base contact window, 44...Collector contact window procedural amendment (method) May 10, 1980 Patent Application No. 212391 Bow 2, Title of invention Semiconductor device and method for manufacturing the same 3 , Relationship to the case of the person making the amendment Applicant's address: Kadoma 1, Kadoma City, Osaka Prefecture, Osaka Prefecture
2) Matsushita Electric Industrial Co., Ltd. Representative 111 Toshihiko Shimo 4, Agent 5 Date of hli positive order 1981 4
Month 9th (1) Statement 1N? 1st line or 2nd line of the page, "No. 211 (A) - CF) #! Hi (16 - (II
J, %6or IFI 2W (Al-(F) # and (a) to (1)" is corrected. (2) On page 117 of the specification, line 4, it says "Figure 2 (leopard)" amended as "rflK2 Figure 0)" 2. (3) In the specification lN8111I line I, "(IcJ~(1)" is corrected as "(a)~(1) is"). (4) Specification Page 8, 11N, lines 15 to 16,
``Figure 2 (A), (4J) ``Figure 2 prisoner, (i)
Correct it with J. (5) Specification, page 8, line 20, rlN2 diagram (81, (
IJ is corrected to ``Figure 2 (B), (b) J. (6) Specification page 117, line 6, rl!Figure 2 (C)
, ((j
Correct it with J. (7) Specification, page 10, line 2 to line 1113, “
Figure 2 (D), (B)" was replaced with "Figure 2 (II,
(d) Correct J. (8) Specification No. 10j [Line 11, "Fig. 2 (chain") is corrected to "Fig. 2 (C)". (9) Specification page 1110, Line 16, rl Fig. 12 ( 2)
). (Me) is corrected as "Figure 2 (E), (f) J. (10) Specification @ page 11, line 1'1, "Figure 2 (α)''
A certain rl12v! Correct it as J(g)J. 01) 1oll@page 11, line 19, correct it as "rfMg diagram (h) for the 2nd m section." (12) Page 12, line 13 to 14f of the specification? ″
Eye, ``2nd figure (F), (wa'') is ``2nd rlJ
(El), (1)”. (13) Book IIJI 11112 j [II l 5
Line l, rl12m(1')J is ``II2(I)
” he corrected. (14) Specification page 12, line 16, r Figure 2 (C!I
Correct the text "J" to "Figure 2 (C)". (15) Page 12, line 17 of the specification, “Figure 2 (B)”
The text has been corrected to read "Figure 2 (f)". (16) Specification lll12j[lN line 17, “Second
11 (Correct cAJ to "Figure 2 (g)". (17) #i Specification II! Page 14, line 112, rlN2
(18) In the 10th line of page 17 of the specification, the phrase ``Figure 2 (6) or 0 is'' is changed to ``Figure 2 (a) or 1)
I am corrected. (19) The figure numbers "(4) to (wa)" in Figure 2 of the drawings are corrected to "(a) to (1)" in the attached red book.

Claims (2)

【特許請求の範囲】[Claims] (1)  半導体基板上に順次積層形成し九コレクタ。 ベースおよびエミッタと、1!Ir起半導体基板上に形
成された分離絶縁膜の境界部から前記ベースにかけて形
成したペースコンタクF領域’a、sueベースコンタ
クト領域の前記分離絶縁膜との境界に近い一部領域から
前記分離絶縁膜表面にかけて水平に引出形成した多結晶
Sム膜からなるベース引出線と、前記エミッタ上面を残
しその側面、ベースコンタクト領域およびベース引出線
を被覆した絶縁膜と、前記絶縁膜の前記分離絶縁膜相当
部に形成し九開口を介して前記ベース引出線に接合させ
たベース電極と、ltI配エミッタの上面側に接合させ
たエミッタ電極と、fMJ配コレクタに接合させ九コレ
クタ電極とを備えた半導体装置。
(1) Nine collectors are formed by sequentially laminating them on a semiconductor substrate. Base and emitter and 1! A space contact region F'a formed from the boundary of the isolation insulating film formed on the Ir-generated semiconductor substrate to the base, and a part of the base contact region near the boundary with the isolation insulating film to the isolation insulating film a base lead line made of a polycrystalline SM film drawn horizontally over the surface; an insulating film covering the side surfaces of the emitter, leaving the upper surface thereof, a base contact region, and the base lead line; and an insulating film corresponding to the isolation insulating film. A semiconductor device comprising: a base electrode formed in a portion thereof and connected to the base lead line through an opening; an emitter electrode connected to the upper surface side of an ltI emitter; and a collector electrode connected to an fMJ collector. .
(2)  第1導電形半導体基板上の所定島領域を囲む
分離絶縁膜部と前記島領域上面を覆う被覆絶縁膜部とか
らなる1s1絶縁膜のltl配被嶺絶縁膜部の所定領域
にベース拡散窓を開口する拡散窓形成工程と、前記!s
l絶縁膜の分離絶縁膜部の上面に一部がかかるようKl
tre半導体基板上に多結晶5i膜を形成する多結晶S
!膜形成工程と、前記拡散窓の前記分離絶縁膜部境界近
傍領域上から前記分離絶縁膜部上にわ九るII起多結晶
Sム膜上に第2導電形形成用不純物を含む!s2絶縁膜
を形成する第2絶縁膜形成工程と、1tIe拡散窓相当
領域の前記第2絶縁膜下を除く部分に第1導電形領域を
前記第2絶縁膜下に第2導電形領域をそれぞれ形成する
第1拡散工程と、前記ペース拡散室に第2導電形形成用
不純物を拡散してit+紀@1導電形領域直下部に第2
導電形ベース領域を形成する第2拡散工程と、前記ベー
ス拡散1KK露出する!?U配多結晶5i11のエミッ
タ形成領域に耐酸化性膜を形成しこの耐酸化性膜と前記
第2絶縁膜とをマスクとして前記多結晶5を膜および前
記第1導電形領域をエツチング除去し残された′s1導
電導電域領域ミッタとするエツチング工程と、前記エツ
チング処理面を酸化して@3絶縁膜を形成しこの第3絶
縁膜を介してイオン注入し前記第2絶縁膜およびlIT
起第3絶縁嘆の下部に第2導電形のペースコンタクを領
域を形成するベースコンタクト領域形成工程と、削紀@
2絶縁嘆の前記分喝絶縁嘆部和尚領域に開口を形成しこ
の開口よシ・]iF記多結晶5illKペース電極を接
合形成するペース電極形成工程と、Wa配耐酸化性膜を
除去し111Ie多結晶Si膜を介してエミッタにエミ
ッタ電極を接合形成するエミッタ電極形成工程と、コレ
クタにコレクタ電極を接合形成するコレクタ電極形成工
程とを含む半導体装置の製造方法。
(2) A base on a predetermined region of the LTL distribution ridge insulating film portion of the 1s1 insulating film, which is composed of an isolation insulating film portion surrounding a predetermined island region on the first conductivity type semiconductor substrate and a covering insulating film portion covering the upper surface of the island region. A diffusion window forming step of opening a diffusion window, and the above! s
Kl so that a part of it covers the upper surface of the isolation insulating film part of the
Polycrystalline S to form a polycrystalline 5i film on a tre semiconductor substrate
! In the film forming step, an impurity for forming a second conductivity type is included on the II polycrystalline SM film extending from above the region near the boundary of the isolation insulating film part of the diffusion window to above the isolation insulating film part! a second insulating film forming step of forming an s2 insulating film, and forming a first conductivity type region in a portion of the 1tIe diffusion window corresponding region except under the second insulating film and a second conductivity type region under the second insulating film, respectively. a first diffusion step to form a second conductivity type forming impurity into the pace diffusion chamber to form a second conductivity type immediately below the it+ period @1 conductivity type region;
A second diffusion step to form a conductive type base region and expose the base diffusion 1KK! ? An oxidation-resistant film is formed in the emitter formation region of the U-coupled polycrystal 5i11, and the polycrystal 5 and the first conductivity type region are removed by etching using this oxidation-resistant film and the second insulating film as masks. an etching process to make the 's1 conductive area region mitter, and the etched surface is oxidized to form an @3 insulating film, and ions are implanted through this third insulating film to form the second insulating film and lIT.
A base contact region forming step of forming a second conductivity type pace contact region at the bottom of the third insulation layer;
2. A pace electrode forming step in which an opening is formed in the divided insulation region of the insulation region, and a pace electrode is bonded to this opening. A method for manufacturing a semiconductor device, including an emitter electrode forming step of bonding an emitter electrode to an emitter via a polycrystalline Si film, and a collector electrode forming step of bonding a collector electrode to a collector.
JP21239181A 1981-12-23 1981-12-23 Semiconductor device and manufacture thereof Pending JPS58110075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21239181A JPS58110075A (en) 1981-12-23 1981-12-23 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21239181A JPS58110075A (en) 1981-12-23 1981-12-23 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS58110075A true JPS58110075A (en) 1983-06-30

Family

ID=16621801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21239181A Pending JPS58110075A (en) 1981-12-23 1981-12-23 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58110075A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59960A (en) * 1982-06-25 1984-01-06 Matsushita Electronics Corp Manufacture of semiconductor device
US4860078A (en) * 1985-12-11 1989-08-22 U.S. Philips Corp. High-frequency transistor with low internal capacitance and low thermal resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59960A (en) * 1982-06-25 1984-01-06 Matsushita Electronics Corp Manufacture of semiconductor device
US4860078A (en) * 1985-12-11 1989-08-22 U.S. Philips Corp. High-frequency transistor with low internal capacitance and low thermal resistance

Similar Documents

Publication Publication Date Title
JPH06252359A (en) Manufacture of semiconductor device
JPS6140146B2 (en)
JPS60223165A (en) Manufacture of semiconductor device
JPS623576B2 (en)
GB2179201A (en) Method for fabricating a semiconductor device
JPS58110075A (en) Semiconductor device and manufacture thereof
GB1593937A (en) I2l integrated circuitry
JPS62190875A (en) Bipolar transistor and manufacture of the same
JP3850965B2 (en) Well formation method for semiconductor device
JPS60241261A (en) Semiconductor device and manufacture thereof
JPS58110074A (en) Semiconductor device and manufacture thereof
JPS5989458A (en) Manufacture of semiconductor device
JPS6158981B2 (en)
JPH021937A (en) Semiconductor bipolar tranistor having base and emitter structure in trench and its manufacture
JPS58206158A (en) Manufacture of semiconductor device
JPS617664A (en) Semiconductor device and manufacture thereof
JPS59124736A (en) Manufacture of semiconductor device
JPS5984543A (en) Bipolar integrated circuit device and its manufacture
JPS58209140A (en) Manufacture of semiconductor device
JPH0478009B2 (en)
JPS6024055A (en) Manufacture of complementary type semiconductor device
Roesner et al. P+ Buried layer for I 2 L isolation by ion implantation
JPS598377A (en) Semiconductor device
JPS61214567A (en) Manufacture of semiconductor device
JPS59175766A (en) Semiconductor device and manufacture thereof