JPS58209140A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58209140A
JPS58209140A JP57092739A JP9273982A JPS58209140A JP S58209140 A JPS58209140 A JP S58209140A JP 57092739 A JP57092739 A JP 57092739A JP 9273982 A JP9273982 A JP 9273982A JP S58209140 A JPS58209140 A JP S58209140A
Authority
JP
Japan
Prior art keywords
film
insulating film
substrate
semiconductor
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57092739A
Other languages
Japanese (ja)
Other versions
JPH0252864B2 (en
Inventor
Masanori Kikuchi
菊地 正典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57092739A priority Critical patent/JPS58209140A/en
Publication of JPS58209140A publication Critical patent/JPS58209140A/en
Publication of JPH0252864B2 publication Critical patent/JPH0252864B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the device of high reliability easily by forming a SiO2 film onto an Si substrate, selectively forming a poly Si film, coating the surface with an Si3N4 mask, simultaneously oxidizing the poly Si film and the Si substrate and forming a field oxide film. CONSTITUTION:The poly Si layer 4 is vapor-grown onto a thermal oxide film 3 on the P type Si substrate 1 and patterned, the surface is coated with the Si3N4 masks 5', 5'', and the field oxide film 6 is formed through thermal oxidation. Poly Si 4 not masked is changed completely into SiO2 at that time. When the masks 5', 5'' are removed, the SiO2 film 3 is removed and SiO2 7, 8 of approximately 10<3>Angstrom thickness are each formed onto the Si substrate and poly Si at the same time, two regions 9, 10 surrounded by the field oxide film are obtained. A poly Si layer 11 is formed selectively, and the device in which different elements are contained on the Si substrate can be formed in accordance with a normal method.

Description

【発明の詳細な説明】 この発明は改良され几半導体装置の製造法に関し、特に
半導体基体上に異なる素子を含み、多結晶Si膜と基体
を同時に酸化することによってフィールド5iOzl[
=i影形成る工程を含む新規な半導体装置の製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an improved semiconductor device, and more particularly, to a method for manufacturing an improved semiconductor device including different elements on a semiconductor substrate, by simultaneously oxidizing a polycrystalline Si film and the substrate.
This invention relates to a novel method for manufacturing a semiconductor device including a step of forming a =i shadow.

従来、この種の半導体装置の製造法に関し1本発明に比
較的近いものとしては、同一発明者にょる「特願昭53
−17153号」がある。該従来技術に提示の半導体装
置の製造法では、半導体基体の一主表面に第1の絶縁膜
を形成する工程と、該第1の絶縁膜上に導体もしくは半
導体からなる導電膜上形成する工程と、該導電膜上に耐
曖1ヒ性泊縁膜を形成する工程と、該耐酸比性絶嫌mt
選択的に除去する工程と、残余せる該耐酸化性絶縁膜?
マスクとして熱酸[ヒ法によりフィールド絶縁膜勿形成
する工程とを含んでいる。
Conventionally, regarding the manufacturing method of this type of semiconductor device, a method relatively similar to the present invention is disclosed in "Japanese Patent Application No. 1983" by the same inventor.
-17153”. The method for manufacturing a semiconductor device presented in the prior art includes a step of forming a first insulating film on one main surface of a semiconductor substrate, and a step of forming a conductive film made of a conductor or a semiconductor on the first insulating film. a step of forming an oxidation-resistant film on the conductive film; and a step of forming an acid-resistant film on the conductive film.
What is the selective removal process and the remaining oxidation-resistant insulating film?
The method includes a step of forming a field insulating film as a mask using a thermal acid method.

この発明の目的は、上記の如き従来技術に対し基本的に
は比較的近い発想法から出発しつつも、同−半導体基体
内に異なる素子を多数個作る際に非常に有効な半導体装
置の製造法を提供することにある。
The purpose of the present invention is to manufacture a semiconductor device which is basically based on a concept relatively similar to the prior art as described above, but which is very effective in manufacturing a large number of different elements within the same semiconductor substrate. It is about providing law.

この発明の半導体装置の製造法では、所定の半導体基体
の主表面に第1絶縁膜を形成する工程、この上に半導体
膜を形成レバターニングを施丁工程、この半導体膜パタ
ーンおよび第1絶縁膜を被う耐酸fヒ性會有する第2絶
縁膜を形成レバターニング勿施して半導体膜を部分的に
被う第1領域部分とこれとは分離し之第1絶縁膜上の第
2領域部分を選択的に残丁工程、これ?マスクにして@
1゜2領域以外の半導体基体および半導体膜を同時に酸
rヒすることによって厚いフィールド絶縁膜を形成する
工程と、このフィールド絶縁膜に囲まn之第1.2領域
部分にそれぞれ異なる素子を作る工程を含んでいる。又
本発明の他の半導体装置の製造法では、上記説明の第2
絶縁膜をパターニングした後、基体と同−導電型不紳物
全イオン注入法によって、第1絶縁膜および半導体膜と
第1絶縁膜との多層膜を透過させて第1.2領域部分以
外の基体表面近傍に添加することにより、フィールド絶
縁膜直下の拡散層となる基体と同一導電型領域を形成す
る工程とを含んでいるう 上述の如き本発明の半導体装置の製造法によれば、耐酸
比性を有する第2の絶縁膜をパターニング後、半導体膜
をエツチングする必要は無く、この為第1絶縁膜が半導
体膜のエッチャ、トに過度にさらされることなく、従っ
て第1絶縁膜として十分膜厚の薄いものが利用できる。
The method for manufacturing a semiconductor device of the present invention includes a step of forming a first insulating film on the main surface of a predetermined semiconductor substrate, a step of forming a semiconductor film thereon and applying reversing, and a step of applying the semiconductor film pattern and the first insulating film. Forming a second insulating film having acid resistance covering the semiconductor film and separating the first region partially covering the semiconductor film and the second region on the first insulating film by performing revertaning. Selective remaining page process, this? Make it a mask @
A step of forming a thick field insulating film by simultaneously oxidizing the semiconductor substrate and the semiconductor film other than the 1.2 region, and a step of forming different elements in the n-1.2 region surrounded by this field insulating film. Contains. Further, in another method of manufacturing a semiconductor device of the present invention, the second method of the above description is provided.
After patterning the insulating film, the first insulating film and the multilayer film of the semiconductor film and the first insulating film are transmitted through the first insulating film and the multilayer film of the semiconductor film and the first insulating film by a total ion implantation method of the same conductivity type as the substrate. According to the method of manufacturing a semiconductor device of the present invention as described above, which includes the step of forming a region of the same conductivity type as the substrate, which becomes a diffusion layer directly under the field insulating film, by adding the acid near the surface of the substrate. There is no need to etch the semiconductor film after patterning the second insulating film having the same characteristics, so that the first insulating film is not excessively exposed to the etchant of the semiconductor film, and is therefore sufficient as the first insulating film. Thin film thickness can be used.

又半導体膜勿直接耐酸比性絶縁膜で1部被うこともでき
るので半導体膜自体全必要最小限に薄くでき、従って装
置表面の凹凸全滅らし平滑rヒできること、耐酸比性絶
縁膜をマスクにして熱酸比法により厚いフィールド酸化
膜を形成する際、第1領域へのフィールド酸比膜の横方
向へのくい込みを少くし第2領域部のそれと同等程度に
できること、さらにイオン注入法により基体と同型不純
物を半導体膜と第1絶縁嘆の多層@を透過させて、基体
表面近傍に添加することが容易にできること等々の利点
が得られる。従って本発明によれば、q#性が秀れ、信
頼性の高い半導体装置を歩留りよく容易に炸裂でさる。
In addition, since the semiconductor film can be partially covered with an acid-resistant insulating film, the entire semiconductor film itself can be made as thin as possible to the minimum necessary thickness, and therefore, the unevenness on the surface of the device can be completely eliminated and smoothed, and the acid-resistant insulating film can be used as a mask. When forming a thick field oxide film by the thermal oxidation method, it is possible to reduce the lateral penetration of the field oxide film into the first region to the same level as that in the second region, and to form a thick field oxide film using the ion implantation method. Advantages such as the ability to easily add impurities of the same type to the vicinity of the substrate surface by transmitting the same type of impurity through the semiconductor film and the first insulating layer can be obtained. Therefore, according to the present invention, a semiconductor device with excellent q# properties and high reliability can be easily exploded at a high yield.

次に、この発明の特徴をより解り易くする為に。Next, to make the characteristics of this invention easier to understand.

5G(Stacked−Gate )型MOSトランジ
スタおよび通常MO8トランジスタ金同−基体上に形成
する際に本発明の製造法を適用し之場合t”tいくつか
の実施例につき図面を参照しながら詳しく説明する。
When the manufacturing method of the present invention is applied to forming a 5G (Stacked-Gate) type MOS transistor and a normal MO8 transistor on the same gold substrate, several embodiments will be described in detail with reference to the drawings. .

第1図(5)〜(乃は、本発明の半導体装置の製造法の
一実施例に於ける主要工程での断面模型図、第2図は第
1図(F)での平面模型図で第1図(5)〜(F′)は
第2図のA−A断面個所を示している。第3図はさらに
工程を進め友時の平面模型図で、このB−BおよびC−
0部の断面模型図を示しtのが、それぞn第4図(A)
、(B)である。第1図(5)では比抵抗約10Ω−α
のP型8i半導体基体1の、面指数(100)’i有す
る主表面2上に、基体Siの熱酸「ヒ法により厚さ約5
00Xの5IO2膜3を成長L7t。(B)−1’は5
102膜3上に、厚さ約5001の第1の多結晶Si層
4fNz中のSiH4の熱分解により気相成長し、これ
にリンを拡散して導電性を上げt後、公知のPR(Ph
oto Re5ist )技術とエツチング技術を利用
してパターニングを施し友。
Figures 1 (5) to (5) are cross-sectional model diagrams of main steps in an embodiment of the semiconductor device manufacturing method of the present invention, and Figure 2 is a plan view of Figure 1 (F). Figures 1 (5) to (F') show the A-A cross section in Figure 2. Figure 3 is a plan view of Tomoki, who has proceeded further through the process, and shows the B-B and C-
Figure 4 (A) shows the cross-sectional model diagram of part 0.
, (B). In Figure 1 (5), the specific resistance is approximately 10Ω-α
The main surface 2 of the P-type 8i semiconductor substrate 1 having a surface index (100)'i is coated with a thickness of approximately 5 mm using the thermal acid method of Si substrate.
Grow 5IO2 film 3 of 00X L7t. (B)-1' is 5
102 film 3 is grown in a vapor phase by thermal decomposition of SiH4 in a first polycrystalline Si layer 4fNz with a thickness of about 5001 cm, and after diffusing phosphorus into this to increase conductivity, a well-known PR (Ph
Patterning is performed using oto Re5ist) technology and etching technology.

(qでは、全面に8iH4+NHsO熱反応により厚さ
約1000XO8ia、N4$5=1気相成iし之。0
ではSi3N4膜5にパターニングを行い、多結晶5i
4=i部分的に被う部分cj、=、これとは離間し2S
iOz膜3上の部分ヂとを残し他の部分?除去し友、(
E)では耐酸比性を有する8i3N4模り、fをマスク
にして熱酸比法にょ98 i 3N4に被われていない
部分のSi基体1および多結晶Si模4を同時に酸比し
て厚さ約1μのフィールドS i02嘆6を形成しt5
この際、5iaN4膜に被われていない部分の多結晶S
i膜4は完全に5iOz膜に変換され危う(町では先づ
8iaN4嗅ぎ、ヂ全エツチングによジ除去し、次にS
i3N4模ヂ直下の5I02嘆3を除去しt後、熱酸比
法により1厚さ約1000Xの5iQz  7,8’?
それぞれ多結晶Si上およびSi 基体上に、同時に形
成した。第2図は第1図口に対応する平面模型図で、こ
の図の9.10は厚いフィールド5iQzに囲まれた。
(In q, a thickness of about 1000XO8ia is formed on the entire surface due to the 8iH4+NHsO thermal reaction, and a gas phase of N4$5=1 is formed.
Next, pattern the Si3N4 film 5 to form a polycrystalline 5i
4=i partially covered part cj,=, separated from this by 2S
Leaving the part on iOz film 3 and other parts? Remove friend, (
In E), using an 8i3N4 model with acid resistance ratio, using f as a mask, the Si substrate 1 and the polycrystalline Si model 4 in the area not covered with 98i 3N4 were simultaneously compared with acid using a thermal acid ratio method to obtain a thickness of approximately Form a field S i02 of 1μ and t5
At this time, the polycrystalline S in the part not covered with the 5iaN4 film
The i film 4 is completely converted into a 5iOz film and is at risk (in the town, we first sniff the 8iaN4, remove it by complete etching, and then remove the
After removing 5I02 layer 3 directly under the i3N4 pattern, 5iQz 7,8'? with a thickness of about 1000X was removed using the hot acid ratio method.
They were formed simultaneously on polycrystalline Si and on a Si substrate, respectively. FIG. 2 is a plan view corresponding to the opening in FIG. 1, and 9.10 in this figure is surrounded by a thick field 5iQz.

第1の領域部分と第2の領域部分とをそれぞれ示してい
る。第3図、第4図内、(B)では、さらに全面に厚さ
約50001 の第2の多結晶S1層11f 8 i 
H4+ N 2系で気相成長させt後、リン全拡散して
導電性を上げた。次に公知のPRとエツチング技術によ
り多結晶Si層11にバターニングを施しt後、該パタ
ーンに被われていない部分の5iQz膜7.81第1の
多結晶St摸4.5102膜3を逐次エツチング除去し
九。次に多結晶Si層11紫マスクにして81基体表面
に自己整合的にAs fイオン注入しN+領域12.1
3.14゜15tl−形成し之。この第4図(5)、(
B)の断面模型図から容易に解る様に、問はN 領域1
2.13’(Hそれぞれソース、ドレイン、第1の多結
晶S1層4を浮遊ゲート電極、第2の多結晶Si層11
を制御ゲート電極とするSG(S tacked−Ga
 te )型MOSトランジスタ凱(ロ)はN+領域1
4.15ケそれぞれソース、ドレイン、5102g3に
’f −ト絶縁膜、第2の多結晶8i゛膜11をゲート
電極とするMOSトランジスタを示している。以降の工
程は、第5図(5)、(B)に示し之様にNチャンネル
S1ゲートプロセスでよく知られている層間PSG(P
bOspho −81licate Glass )膜
16を厚さ約1.5μ気相成長しt後、PRとエツチン
グ技術全利用してソースコンタクト孔17,19.ドレ
インコンタクト孔18.20.ゲートコンタクト孔21
.22をPSG膜16!fpに開孔し、ついで厚さ約1
μのA!膜をスパッタ法により成長した後。
A first area portion and a second area portion are shown, respectively. In FIGS. 3 and 4, (B), a second polycrystalline S1 layer 11f 8 i with a thickness of about 50,001 mm is further formed over the entire surface.
After vapor phase growth using H4+N2 system, phosphorus was completely diffused to increase conductivity. Next, the polycrystalline Si layer 11 is patterned using known PR and etching techniques. After that, the 5iQz film 7.81, the first polycrystalline St pattern 4.5102 film 3 is successively applied to the portions not covered by the pattern. Etching removed. Next, using a purple mask for the polycrystalline Si layer 11, Asf ions are implanted into the substrate surface 81 in a self-aligned manner to form an N+ region 12.1.
3.14°15tl-formed. This figure 4 (5), (
As can be easily seen from the cross-sectional model diagram in B), the question is N area 1
2.13' (H respectively source, drain, first polycrystalline S1 layer 4 as floating gate electrode, second polycrystalline Si layer 11
SG (S stacked-Ga
te ) type MOS transistor Gai (b) is N+ region 1
4.15 each shows a MOS transistor having a source and a drain, 5102g3 an 'f-to insulating film, and a second polycrystalline 8i' film 11 as a gate electrode. In the subsequent steps, as shown in FIGS. 5(5) and 5(B), an interlayer PSG (P
After growing a (Ospho-81licate Glass) film 16 in a vapor phase to a thickness of approximately 1.5 μm, source contact holes 17, 19 . Drain contact hole 18.20. Gate contact hole 21
.. 22 to PSG film 16! Open a hole in fp, then make a hole in the thickness of about 1
μ's A! After the film is grown by sputtering.

パターニングを施して、ソース引き出し電極23゜25
、ドレイン引き出し電極24.26.ゲート引き出し電
極27.28’に形成し、装置全概略完成する。
After patterning, the source extraction electrode 23°25
, drain extraction electrode 24.26. Gate lead-out electrodes 27 and 28' are formed, and the entire device is generally completed.

第6図(5)、(B)は本発明の半導体装置の製造法の
他の一つの実施例に於ける工程断面模型図を示している
。この第6図に於いて%囚は第1図口を経友後、エネル
ギー150kev、  ドーズ量1×1013/dでP
型導電不純物であるボロン全イオン注入することによジ
8i0z膜32よび多結晶81膜4と5iOz膜3の多
層膜部分を透過させて基体表面近傍に添加しP+領域2
9紫形成し7t、(B)では四から第1図(均と同様に
フィールド5i02膜を熱酸[ヒ法によジ形成すること
によハ フィールド5iO26直下にP+領域が埋め込
まれ721.構造全実現し九。
FIGS. 6(5) and 6(B) show process cross-sectional model diagrams in another embodiment of the method for manufacturing a semiconductor device of the present invention. In this Figure 6, the % prisoner is exposed to P at an energy of 150 kev and a dose of 1 x 1013/d after passing through the mouth in Figure 1.
By implanting all the ions of boron, which is a type conductive impurity, it passes through the multilayer film portion of the di-8iOz film 32, the polycrystalline 81 film 4, and the 5iOz film 3, and is added near the surface of the substrate to form the P+ region 2.
In (B), a P+ region is buried directly under the field 5iO26, and a P+ region is buried directly under the field 5iO26. Fully realized.

上述の実施例は単に例示の為のものであり、本発明がこ
れに限定されるものでないことは本文の説明からも明ら
かである。例えば、装置各部の材料や製法さらに寸法等
を変えることもできるし。
It is clear from the description of the text that the above-described embodiments are merely for illustrative purposes and the present invention is not limited thereto. For example, the materials, manufacturing methods, and dimensions of each part of the device can be changed.

4電型の選択にも自由度がある。又実施例ではSG型M
OSトランジスタと通常のMOS)ランジスタとを同−
半導体基体上に作製する場合の製造法について説明した
が1本製造法が適用され得る半導体装置には他に種々の
ものが考えられる。
There is also a degree of freedom in selecting the 4-electric type. In addition, in the example, SG type M
OS transistors and regular MOS) transistors are the same.
Although the manufacturing method for manufacturing on a semiconductor substrate has been described, there are various other types of semiconductor devices to which the one-piece manufacturing method can be applied.

要するに本明細書および付属の請求範囲に示され之、こ
の発明の精神と範囲を逸脱すること無く。
In short, as herein indicated and in the appended claims, without departing from the spirit and scope of the invention.

当業者は種々の改変をなすことができる。Various modifications can be made by those skilled in the art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(1’)および第4図(5)、(B)、
第5図内。 (至)は本発明の半導体装置の製造法の一実施例に於け
る主要工程での断面模型図、第2図、第3図はそれぞれ
第1図口、第4図(5)、(B)に対応する平面模型図
である。又第6図(5)、(B)は他の実施例に於ける
断面模型図である5 これらの猪図に於いて、1・・・・・・P型Si半導体
基体、2・・・・・・1の主表面、3.7.8・・・・
・・5iOz膜、4.11・・・・・・多結晶Si膜、
5.5’、1’・・・・・・Si3N4膜、6・・・・
・・フィールド5iQ2膜、  9.10・・・・・・
パターン縁端部、12.13.14.15・・・・・・
N型拡散領域、16・・・・・・PSG膜、17.f8
゜19.20.21.22・・川・コンタクト孔、23
゜24.25.26.27.28・旧・・アルミニウム
引き出し電極、29・・・・・・P+型拡散領域、【そ
nぞれ示しているう 代理人 弁理士  内 原   晋 (A) (bす (D〕 (E) 鶴 1 図 娯 ? 図 嶋 J ス (Aノ (βう g、5  凹 (A) (B)  62
Fig. 1 (A) to (1') and Fig. 4 (5), (B),
In Figure 5. (to) is a cross-sectional model diagram of the main steps in an embodiment of the semiconductor device manufacturing method of the present invention, and FIGS. 2 and 3 are respectively the opening of FIG. ) is a plan view corresponding to the model. 6(5) and (B) are cross-sectional model diagrams in other embodiments.5 In these boar diagrams, 1...P-type Si semiconductor substrate, 2... ...main surface of 1, 3.7.8...
...5iOz film, 4.11...polycrystalline Si film,
5.5', 1'...Si3N4 film, 6...
...Field 5iQ2 membrane, 9.10...
Pattern edge, 12.13.14.15...
N-type diffusion region, 16...PSG film, 17. f8
゜19.20.21.22...River/contact hole, 23
゜24.25.26.27.28・Old...Aluminum extraction electrode, 29...P+ type diffusion region, [Representatives shown here: Patent attorney Susumu Uchihara (A) ( bsu(D) (E) Crane 1 Illustration entertainment? Zushima J Su(Aノ(βug, 5 concave(A) (B) 62

Claims (2)

【特許請求の範囲】[Claims] (1)所定の半導体基体の主表面上に第1の絶縁膜を形
成する工程と、該第1の絶縁膜上に半導体膜を形成する
工程と、該半導体膜を形状決定して部分的に残丁工程と
、該形状決定されt半導体膜上および前記第1の絶縁膜
上に、耐酸比性を有する第2の絶縁膜を形成する工程と
、該第2の絶縁膜にパターニングを施して、前記半導体
膜を部分的に被う第1の領域部分と、該領域部分とは分
離した前記第1の絶縁膜上に第2の領域部分とを残丁工
程と、該残余せる第2の絶縁膜全マスクにして該膜に被
われていない部分の前記半導体基体および前記半導体膜
とを同時に酸〔ヒすることにより厚いフィールド絶縁膜
’i形成する工程と、該フィールド絶縁膜に囲1れ友前
記第1領域部分と第2領域部分とにそれぞれ異なる素子
を作る工程とを含むことを特徴とする半導体装置の製造
法。
(1) A step of forming a first insulating film on the main surface of a predetermined semiconductor substrate, a step of forming a semiconductor film on the first insulating film, and a step of determining the shape of the semiconductor film to partially a remaining step, a step of forming a second insulating film having acid resistance on the shape-determined semiconductor film and the first insulating film, and patterning the second insulating film. a step of leaving a first region partially covering the semiconductor film and a second region on the first insulating film separated from the region; forming a thick field insulating film by simultaneously oxidizing the semiconductor substrate and the semiconductor film in the portions not covered by the insulating film with the entire insulating film being masked; A method of manufacturing a semiconductor device, comprising the step of forming different elements in the first region portion and the second region portion.
(2)前記耐酸〔ヒ性を有する纂2の絶縁膜をバターニ
ング後、基体と同型導電型不純物全イオン注入法により
前記第1の絶縁膜および前記半導体膜と第1の絶縁膜と
の多層膜?透過させて、第2の絶縁膜に被われていない
部分の基体主表面近傍に添加する工程とt含むことt特
徴とする特許請求の範囲第(1)項記載の半導体装置の
製造法っ
(2) After patterning the acid-resistant (arsenic-resistant) insulating film, a multilayer structure of the first insulating film, the semiconductor film, and the first insulating film is formed by total ion implantation of impurities of the same conductivity type as the substrate. film? A method for manufacturing a semiconductor device according to claim (1), characterized in that the method includes a step of transmitting the second insulating film and adding it to the vicinity of the main surface of the substrate in a portion not covered with the second insulating film.
JP57092739A 1982-05-31 1982-05-31 Manufacture of semiconductor device Granted JPS58209140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57092739A JPS58209140A (en) 1982-05-31 1982-05-31 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57092739A JPS58209140A (en) 1982-05-31 1982-05-31 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS58209140A true JPS58209140A (en) 1983-12-06
JPH0252864B2 JPH0252864B2 (en) 1990-11-14

Family

ID=14062782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57092739A Granted JPS58209140A (en) 1982-05-31 1982-05-31 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58209140A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169372A (en) * 1974-11-06 1976-06-15 Ibm
JPS5379383A (en) * 1976-12-24 1978-07-13 Toshiba Corp Production of semiconductor device
JPS5464983A (en) * 1977-11-02 1979-05-25 Toshiba Corp Manufacture of semiconductor device
JPS54137982A (en) * 1978-04-19 1979-10-26 Hitachi Ltd Semiconductor device and its manufacture
JPS56111240A (en) * 1980-02-01 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai Semiconductor device and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169372A (en) * 1974-11-06 1976-06-15 Ibm
JPS5379383A (en) * 1976-12-24 1978-07-13 Toshiba Corp Production of semiconductor device
JPS5464983A (en) * 1977-11-02 1979-05-25 Toshiba Corp Manufacture of semiconductor device
JPS54137982A (en) * 1978-04-19 1979-10-26 Hitachi Ltd Semiconductor device and its manufacture
JPS56111240A (en) * 1980-02-01 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai Semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JPH0252864B2 (en) 1990-11-14

Similar Documents

Publication Publication Date Title
JPS6037775A (en) Production of wafer by injection through protective layer
US4160260A (en) Planar semiconductor devices and method of making the same
US4398964A (en) Method of forming ion implants self-aligned with a cut
US4494304A (en) Forming chan-stops by selectively implanting impurity ions through field-oxide layer during later stage of MOS-device fabrication
US4560421A (en) Semiconductor device and method of manufacturing the same
US4263709A (en) Planar semiconductor devices and method of making the same
JPS62290173A (en) Manufacture of semiconductor integrated circuit device
JPS61502925A (en) Manufacturing method of MIS type integrated circuit
JPS6252950B2 (en)
JPS58209140A (en) Manufacture of semiconductor device
JPS5817655A (en) Manufacture of semiconductor device
JPS59161060A (en) Method of producing semiconductor device
JPS59119871A (en) Manufacture of nonvolatile semiconductor memory device
JPS63275181A (en) Manufacture of semiconductor device
JPS6154661A (en) Manufacture of semiconductor device
JPS58200553A (en) Semiconductor device
JPS6122866B2 (en)
JPS63170922A (en) Wiring method
KR100253344B1 (en) Manufacturing method for contact hole of semiconductor memory
JPS6024063A (en) Manufacture of semiconductor device
JPS59105366A (en) Manufacture of metal oxide semiconductor type transistor
JPS62130523A (en) Manufacture of semiconductor device
JPS59105367A (en) Manufacture of metal oxide semiconductor type transistor
JPS6031276A (en) Semiconductor device and manufacture thereof
JPH04133438A (en) Semiconductor device and manufacture thereof