JPS5810936Y2 - Air conditioning equipment - Google Patents

Air conditioning equipment

Info

Publication number
JPS5810936Y2
JPS5810936Y2 JP16276377U JP16276377U JPS5810936Y2 JP S5810936 Y2 JPS5810936 Y2 JP S5810936Y2 JP 16276377 U JP16276377 U JP 16276377U JP 16276377 U JP16276377 U JP 16276377U JP S5810936 Y2 JPS5810936 Y2 JP S5810936Y2
Authority
JP
Japan
Prior art keywords
heat exchanger
capillary tube
compressor
heating
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16276377U
Other languages
Japanese (ja)
Other versions
JPS5487464U (en
Inventor
敏 今林
紘一郎 山口
真 小畑
Original Assignee
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電器産業株式会社 filed Critical 松下電器産業株式会社
Priority to JP16276377U priority Critical patent/JPS5810936Y2/en
Publication of JPS5487464U publication Critical patent/JPS5487464U/ja
Application granted granted Critical
Publication of JPS5810936Y2 publication Critical patent/JPS5810936Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、冷媒回路による冷暖房装置において、冬期の
暖房運転時における外気変動に伴う厳しい負荷変動に際
しても、圧縮機吐出圧力温度等を所定値範囲内におさえ
、かつ熱損失を少なくシ、機器の有効利用をはかると共
に、テ゛フロスト作動時に、蒸発器中の凝縮液をスムー
ズに低圧側に戻すようにして、圧縮機からの高温ガス蒸
発器内にて有効に熱交換を行なわせ除霜時間の短縮をは
かることを目的とする。
[Detailed description of the invention] The present invention is designed to suppress the compressor discharge pressure temperature, etc. within a predetermined value range, and to keep the compressor discharge pressure and temperature within a predetermined value range, even when severe load fluctuations occur due to outside air fluctuations during heating operation in the winter, in heating and cooling systems using refrigerant circuits. In addition to minimizing losses and making effective use of equipment, the condensate in the evaporator is smoothly returned to the low pressure side during frost operation, and heat exchange from the compressor to the high-temperature gas in the evaporator is effectively achieved. The purpose is to shorten the defrosting time.

従来の冷媒回路による冷暖房装置では、冬期の高外気温
時における暖房過負荷運転は圧縮機が過負荷状態になり
、冷媒の熱分解や圧縮機内の潤滑油の粘性変化、劣化な
どを起して圧縮機本体が焼損するおそれがあった。
In conventional heating and cooling systems using refrigerant circuits, overload heating operation during high outside temperatures in winter can cause the compressor to overload, causing thermal decomposition of the refrigerant and changes in the viscosity and deterioration of the lubricating oil in the compressor. There was a risk that the compressor body would burn out.

他方、逆サイクルにて蒸発器に付着した霜を除去する逆
サイクルデフロスト運転においては、デフロスト中に蒸
発器内に凝縮液化した冷媒が貯より込み、圧縮機からの
高温ガスが蒸発器内にゆきわたらず、デフロスト不良に
なる。
On the other hand, in a reverse cycle defrost operation in which frost adhering to the evaporator is removed in a reverse cycle, the condensed and liquefied refrigerant is stored in the evaporator during defrosting, and high-temperature gas from the compressor flows into the evaporator. Otherwise, the defrost will fail.

また、上記原因により、デフロスト運転終了後正常サイ
クルに切換わって運転されるため、液冷媒が圧縮機に送
られて湿り運転を行うことになり、油上り、弁、パツキ
ンの破損などのトラブルの原因となっていた。
In addition, due to the above reasons, after the defrost operation is completed, the operation switches to the normal cycle, which causes liquid refrigerant to be sent to the compressor and performs wet operation, which prevents troubles such as oil spills and damage to valves and packings. It was the cause.

本考案は以上の問題点に立脚し、これを解決したもので
ある。
The present invention is based on and solves the above problems.

そのための構成として、本考案は、圧縮機、冷暖切替え
用四方弁、室内側熱交換器、絞り機構、室外側熱交換器
、上記冷暖切替え用四方弁、アキュムレータ、上記圧縮
機を順次環状に連設し、上記絞り機構は上記室内側熱交
換器側の第1キヤピラリチユーブと上記室外側熱交換器
側の第2キヤピラリチユーブの少なくとも2段以上のキ
ャピラリチューブとし、上記第1キヤピラリチユーブよ
り電磁弁を介して第2の受液器を配設し、上記受液器の
上部りり導出されたガス抜き用パイプと下部より導出さ
れた液抜き用第3キヤピラリチユーブを合流させさらに
第4キヤピラリチユーブを介して上記圧縮機の吸入側の
上記アキュムレータへ結合したものである。
As a configuration for this purpose, the present invention sequentially connects a compressor, a four-way valve for switching between cooling and heating, an indoor heat exchanger, a throttling mechanism, an outdoor heat exchanger, the four-way valve for switching between cooling and heating, an accumulator, and the compressor in an annular manner. and the throttle mechanism has at least two stages of capillary tubes, a first capillary tube on the indoor side heat exchanger side and a second capillary tube on the outdoor side heat exchanger side, and the first capillary tube A second liquid receiver is arranged through a solenoid valve, and a gas venting pipe led out from the upper part of the liquid receiver is joined with a third capillary tube for liquid drainage led out from the lower part. The compressor is connected to the accumulator on the suction side of the compressor via four capillary tubes.

以下本考案をその一実施例を示す図面を参考に説明する
The present invention will be explained below with reference to the drawings showing one embodiment thereof.

1は屋内ユニット、2は屋外ユニット、3゜3′は冷媒
配管ユニットである。
1 is an indoor unit, 2 is an outdoor unit, and 3°3' is a refrigerant piping unit.

4は圧縮機、5は冷暖切替え用四方弁、6は室内側熱交
換器、7は室内側熱交換器6を流れる冷媒を分流させる
複数分割回路の各々の一端に設けたガス側枝管、8は室
内側熱交換器6の上記複数分割回路の各々の他の一端に
直結された第1キヤピラリチユーブ、9はテ゛イストリ
ピユータ、17は室外側熱交換器、18は室外側熱交換
器17を流れる冷媒を分流させる複数分割回路の各々の
一端に設けたガス側枝管、19は室外側熱交換器17の
上記複数分割回路の各々の他の一端に直結された第2キ
ヤピラリチユーブ、20はディストリビュータ、21は
逆止弁、22は暖房専用のキャピラリチューブ、23は
第1の受液器で逆止弁21と暖房専用キャピラリチュー
ブ22はテ゛イストリピユータ20より分岐されて各々
受液器23へ連結される。
4 is a compressor, 5 is a four-way valve for switching between cooling and heating, 6 is an indoor heat exchanger, 7 is a gas side branch pipe provided at one end of each of a plurality of divided circuits for dividing the refrigerant flowing through the indoor heat exchanger 6, 8 1 is a first capillary tube directly connected to the other end of each of the plurality of divided circuits of the indoor heat exchanger 6, 9 is a transistor repeater, 17 is an outdoor heat exchanger, and 18 is an outdoor heat exchanger. a gas side branch pipe provided at one end of each of the plurality of divided circuits for dividing the refrigerant flowing through the outdoor heat exchanger 17; a second capillary tube 19 directly connected to the other end of each of the plurality of divided circuits of the outdoor heat exchanger 17; 20 is a distributor, 21 is a check valve, 22 is a capillary tube exclusively for heating, and 23 is a first liquid receiver, and the check valve 21 and the capillary tube 22 exclusively for heating are branched from the sample repeater 20 to receive liquid respectively. It is connected to the container 23.

24は過冷却熱交換器で受液器23とディストリビュー
タ9の間に配設される。
A subcooling heat exchanger 24 is disposed between the liquid receiver 23 and the distributor 9.

10はアキュムレータで圧縮機4の吸入側へ配設される
10 is an accumulator arranged on the suction side of the compressor 4.

16.16’、 25.25’はジヨイント、12は第
2の受液器で電磁弁11を介してテ゛イストリピユータ
9へ接続される。
16.16' and 25.25' are joints, and 12 is a second liquid receiver which is connected to the taste repeater 9 via the solenoid valve 11.

13は第2の受液器12の下部より導出された液抜き用
第3キヤピラリチユーブ、14は第2の受液器12の上
部より導出されたガ゛ス抜き用パイプで液抜き用第3キ
ヤピラリチユーブ13とガス抜き用パイプ14は合流さ
れて第4キヤピラリチユーブ15を介してアキュムレー
タ10と接続する。
13 is a third capillary tube for draining liquid led out from the lower part of the second liquid receiver 12, and 14 is a gas draining pipe led out from the upper part of the second liquid receiver 12. The third capillary tube 13 and the gas venting pipe 14 are joined together and connected to the accumulator 10 via the fourth capillary tube 15.

以上の冷媒回路構成について、作用を説明すると、暖房
運転時は圧縮機4の吐出ガスが室内側熱交換器6へ流れ
るように冷暖切替え用四方弁5を設定することにより、
室内側熱交換器6で高温高圧ガスが凝縮液化する時に暖
房作用を行なうものである。
To explain the operation of the above refrigerant circuit configuration, by setting the four-way cooling/heating switching valve 5 so that the discharge gas of the compressor 4 flows to the indoor heat exchanger 6 during heating operation,
When the high-temperature, high-pressure gas is condensed and liquefied in the indoor heat exchanger 6, a heating effect is performed.

この凝縮液化した冷媒液は第1キヤピラリチユーブ8に
て第1次の絞り減圧が行なわれ、ディストリビュータ9
.ジヨイント16.25を経由して過冷却熱交換器24
で過冷却を大きくとり、第1の受液器23を経て、暖房
専用キャピラリチューブ22で第2次の絞り減圧が行な
われ、ディス) IJピユータ20から室外側熱交換器
17の複数分割回路の各々の一端に直結した第2キヤピ
ラリチユーブ19により各々の回路に均等に分流し、有
効に熱交換ができるように第3次の絞り減圧を行ない、
室外側熱交換器17で蒸発し、圧縮機4へ吸入されるも
のである。
This condensed and liquefied refrigerant liquid is subjected to the first throttling and pressure reduction in the first capillary tube 8, and then to the distributor 9.
.. Subcooling heat exchanger 24 via joint 16.25
After passing through the first liquid receiver 23, a second throttling depressurization is performed in the capillary tube 22 dedicated to heating, and the liquid is transferred from the IJ computer 20 to the plurality of divided circuits of the outdoor heat exchanger 17. A second capillary tube 19 directly connected to one end of each circuit divides the flow evenly to each circuit, and performs tertiary throttling and pressure reduction to enable effective heat exchange.
It is evaporated in the outdoor heat exchanger 17 and sucked into the compressor 4.

通常の暖房運転時は、電磁弁11は閉となり、上記主回
路のみを冷媒は流れる。
During normal heating operation, the solenoid valve 11 is closed and the refrigerant flows only through the main circuit.

つぎに、高外気温時の暖房運転の場合、外気温度の上昇
とともに暖房負荷は低減するのに対し、暖房能力は増大
するため圧縮機4の吐出圧力、吐出温度が上昇する。
Next, in the case of heating operation at a high outside temperature, the heating load decreases as the outside temperature increases, but the heating capacity increases, so the discharge pressure and discharge temperature of the compressor 4 increase.

そこで、電磁弁11を開にして第1キヤピラリチユーブ
8で第1次の絞り減圧された中圧の冷媒を第2の受液器
12へ導き貯溜することで、主回路を流れる冷媒量が相
対的に不足状態となり、その結果圧縮機4の吐出圧力を
低下させることができる。
Therefore, the amount of refrigerant flowing through the main circuit is reduced by opening the solenoid valve 11 and guiding the medium-pressure refrigerant, which has been first throttled and depressurized in the first capillary tube 8, to the second liquid receiver 12 and storing it. This results in a relatively insufficient state, and as a result, the discharge pressure of the compressor 4 can be reduced.

一方、蒸発器である室外側熱交換器17への冷媒量が減
少するため室外側熱交換器17からアキュムレータ10
への冷媒の過熱度が大きくなるが、第2受液器12の上
部ガス抜き用パイプ14よりガス冷媒を、下部液抜き用
第3キヤピラリチユーブ13より冷媒液の一部を導き出
し、第4キヤピラリチユーブ15にて減圧流量調整され
てアキュムレータ10へ流入させることにより、圧縮機
4への吸入冷媒の過熱度が調整されるため、圧縮機4の
吐出温度の上昇を防止することができる。
On the other hand, since the amount of refrigerant to the outdoor heat exchanger 17, which is an evaporator, decreases, the amount of refrigerant flows from the outdoor heat exchanger 17 to the accumulator 10.
Although the degree of superheating of the refrigerant increases, the gas refrigerant is led out from the upper gas vent pipe 14 of the second liquid receiver 12, and a part of the refrigerant liquid is led out from the lower third capillary tube 13 for liquid removal. Since the degree of superheat of the refrigerant sucked into the compressor 4 is adjusted by adjusting the decompression flow rate in the capillary tube 15 and causing the refrigerant to flow into the accumulator 10, an increase in the discharge temperature of the compressor 4 can be prevented.

したがって、圧縮機4の吐出圧力と吐出温度を広い外気
温度範囲にわたり所定値以下におさえることができる。
Therefore, the discharge pressure and discharge temperature of the compressor 4 can be kept below a predetermined value over a wide outside temperature range.

また第2の受液器12は構成を前記のように高圧に近い
中圧に連通させ、上部のガス抜き用パイプ14よりガス
を抜き、下部の液抜き用第3キヤピラリチユーブ13で
一部の液を抜くようにしているため、第2受液器12内
へ冷媒液を有効に貯溜させることが可能である。
In addition, the second liquid receiver 12 has a structure that is connected to a medium pressure close to high pressure as described above, and gas is removed from the gas removal pipe 14 in the upper part, and a portion is removed by the third capillary tube 13 for liquid removal in the lower part. Since the liquid is drained, it is possible to effectively store the refrigerant liquid in the second liquid receiver 12.

つぎに低外気温時の暖房運転の場合、蒸発器として作用
する室外熱交換器17に霜が付着してくるとタイマーな
どの検知装置により四方弁5を切換え、逆サイクルデフ
ロスト運転に切換えるとともに、電磁弁11を開路する
Next, in the case of heating operation at low outside temperatures, when frost begins to adhere to the outdoor heat exchanger 17, which acts as an evaporator, a detection device such as a timer switches the four-way valve 5 to reverse cycle defrost operation. The solenoid valve 11 is opened.

これにより、圧縮機4より吐出した高温高圧冷媒ガスは
室外側熱交換器17に流入して凝縮液化し、霜の融解を
行なう。
As a result, the high-temperature, high-pressure refrigerant gas discharged from the compressor 4 flows into the outdoor heat exchanger 17 and is condensed and liquefied, thereby melting the frost.

そしてこの時、電磁弁11は開路されているので、第2
キヤピラリチユーブ19から第1キヤピラリチユーブ8
の間の中間圧配管の冷媒は第2の受液器12に流入する
とともに、圧縮機4への吸入回路が室内側熱交換器6と
第2の受液器12との2系路となるため、室外側熱交換
器17内にて凝縮液化した冷媒は円滑に流れて室外側熱
交換器17にたまり込むことがなく、圧縮機4からの高
温高圧冷媒ガスは、室外側熱交換器17全域にわたり、
有効に熱交換して除霜作用を短時間で、効果的に行なう
ことができる。
At this time, since the solenoid valve 11 is open, the second
Capillary tube 19 to first capillary tube 8
The refrigerant in the intermediate-pressure pipe between the two flows into the second liquid receiver 12, and the suction circuit to the compressor 4 becomes a two-system path connecting the indoor heat exchanger 6 and the second liquid receiver 12. Therefore, the refrigerant condensed and liquefied in the outdoor heat exchanger 17 flows smoothly and does not accumulate in the outdoor heat exchanger 17, and the high temperature and high pressure refrigerant gas from the compressor 4 is transferred to the outdoor heat exchanger 17. Throughout the area,
Defrosting can be performed effectively in a short time by effectively exchanging heat.

また、除霜運転時における室外側熱交換器17内の凝縮
液化した冷媒の残液量が少量のため、除霜運転終了後の
暖房サイクル運転時に対して、湿り運転による圧縮機4
のトラブルの発生が防止できる。
In addition, since the residual amount of condensed and liquefied refrigerant in the outdoor heat exchanger 17 during defrosting operation is small, the compressor 4 in wet operation is
The occurrence of troubles can be prevented.

以上のように、本考案によれば、高外気温時の暖房運転
において電磁弁を開にすることで圧縮機の吐出圧力、吐
出温度の上昇をおさえ所定値内にて暖房運転が行なえる
ため、冷媒の熱分解や圧縮機内の潤滑油の粘性変化、劣
化を防ぎ圧縮機本体の焼損を防止できる。
As described above, according to the present invention, by opening the solenoid valve during heating operation at high outside temperatures, the increase in the discharge pressure and discharge temperature of the compressor can be suppressed, and heating operation can be performed within predetermined values. This prevents thermal decomposition of the refrigerant, changes in viscosity and deterioration of the lubricating oil in the compressor, and prevents burnout of the compressor body.

また、除霜運転時においても上記電磁弁を開にすること
で、室外側熱交換器内の冷媒が円滑に流出されて室外側
熱交換器内に冷媒がたまり込むことなく有効に熱交換し
除霜時間の短縮ができ、さらにまた、除霜運転終了後の
暖房サイクルへの切替時に湿り運転が防止されるため、
圧縮機の弁やパツキンの破損、油上りなどを防止できる
等の多大の効果を有するものである。
In addition, by opening the solenoid valve during defrosting operation, the refrigerant in the outdoor heat exchanger can be smoothly flowed out, allowing effective heat exchange without accumulating the refrigerant in the outdoor heat exchanger. Defrosting time can be shortened, and damp operation can be prevented when switching to the heating cycle after defrosting operation is completed.
This has many effects, such as preventing damage to compressor valves and gaskets, as well as preventing oil leakage.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本考案の一実施例を示す冷暖房装置の冷媒回路図で
ある。 4・・・・・・圧縮機、5・・・・・・冷暖切替え用四
方弁、6・・・・・・室内側熱交換器、8・・・・・・
第1キヤピラリチユーブ、10・・・・・・アキュムレ
ータ、11・・・・・・電磁弁、12・・・・・・第2
の受液器、13・・・・・・液抜き用第3キヤピラリチ
ユーブ、14・・・・・・ガス抜き用パイプ、15・・
・・・・第4キヤピラリチユーブ、17・・・・・・室
外側熱交換器、19・・・・・・第2キヤピラリチユー
ブ。
The figure is a refrigerant circuit diagram of a heating and cooling device showing an embodiment of the present invention. 4... Compressor, 5... Four-way valve for switching between cooling and heating, 6... Indoor heat exchanger, 8...
1st capillary tube, 10...Accumulator, 11...Solenoid valve, 12...2nd
Liquid receiver, 13...Third capillary tube for liquid drainage, 14...Pipe for gas venting, 15...
... Fourth capillary tube, 17... Outdoor heat exchanger, 19... Second capillary tube.

Claims (1)

【実用新案登録請求の範囲】 圧縮機、冷暖切替え用四方弁、室内側熱交換器。 絞り機構、室外側熱交換器、上記冷暖切替え用四方弁、
アキュムレータ、上記圧縮機を順次環状に連設し、上記
絞り機構は上記室内側熱交換器側の第1キヤピラリチユ
ーブと上記室外側熱交換器側の第2キヤピラリチユーブ
の少なくとも2段以上のキャピラリチューブとし、上記
第1キヤピラリチユーブより電磁弁を介して第2の受液
器を配設し、上記受液器の上部より導出されたガス抜き
用パイプと下部より導出された液抜き用第3キヤピラリ
チユーブを合流させさらに第4キヤピラリチユーブを介
して上記圧縮機の吸入側の上記アキュムレータへ結合し
た冷暖房装置。
[Scope of claim for utility model registration] Compressor, four-way valve for switching between cooling and heating, and indoor heat exchanger. Throttle mechanism, outdoor heat exchanger, four-way valve for switching between heating and cooling,
The accumulator and the compressor are sequentially connected in an annular manner, and the throttling mechanism has at least two stages of a first capillary tube on the indoor heat exchanger side and a second capillary tube on the outdoor heat exchanger side. A second liquid receiver is arranged as a capillary tube via a solenoid valve from the first capillary tube, and a gas vent pipe led out from the upper part of the liquid receiver and a liquid drain pipe led out from the lower part of the liquid receiver. A heating and cooling system in which a third capillary tube is joined to the accumulator on the suction side of the compressor via a fourth capillary tube.
JP16276377U 1977-12-02 1977-12-02 Air conditioning equipment Expired JPS5810936Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16276377U JPS5810936Y2 (en) 1977-12-02 1977-12-02 Air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16276377U JPS5810936Y2 (en) 1977-12-02 1977-12-02 Air conditioning equipment

Publications (2)

Publication Number Publication Date
JPS5487464U JPS5487464U (en) 1979-06-20
JPS5810936Y2 true JPS5810936Y2 (en) 1983-02-28

Family

ID=29158802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16276377U Expired JPS5810936Y2 (en) 1977-12-02 1977-12-02 Air conditioning equipment

Country Status (1)

Country Link
JP (1) JPS5810936Y2 (en)

Also Published As

Publication number Publication date
JPS5487464U (en) 1979-06-20

Similar Documents

Publication Publication Date Title
KR101872784B1 (en) Outdoor heat exchanger
EP2211127A1 (en) Heat pump type air conditioner
EP2257749A2 (en) Refrigerating system and method for operating the same
WO2009103469A2 (en) Refrigerating system and method for operating the same
US3065610A (en) Charge stabilizer for heat pump
JPS5810936Y2 (en) Air conditioning equipment
JP4747439B2 (en) Multi-room air conditioner
JP2877552B2 (en) Air conditioner
CN208720416U (en) Superposition type changes in temperature unit
JPH1163709A (en) Air conditioner
JPH02192559A (en) Dual refrigerator
JP2923166B2 (en) Air conditioner
JP3723244B2 (en) Air conditioner
JP2003336914A (en) Air conditioner
CN219014671U (en) Condenser flow path structure with frost prevention function
JPS5912529Y2 (en) Air conditioning equipment
JPH03170758A (en) Air conditioner
JPS5818618Y2 (en) Heat pump air conditioner
JPS5852460Y2 (en) Refrigeration equipment
JPH0117007Y2 (en)
JPH0611202A (en) Air conditioning apparatus
JPS6022293Y2 (en) Air conditioning equipment
JPS5969663A (en) Refrigeration cycle
JPS5825233Y2 (en) air conditioner
JPH0136064Y2 (en)